ETH Price: $2,867.14 (-2.52%)

Contract

0xefFEC5470885011096dBb195906E0843774E4fC6

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Set Combined Pub...4252974972026-01-26 4:20:4520 mins ago1769401245IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020128
Set Combined Pub...4252954292026-01-26 4:12:1029 mins ago1769400730IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.02
Deposit4252403422026-01-26 0:22:524 hrs ago1769386972IN
0xefFEC547...3774E4fC6
0 ETH0.000001170.02001
Deposit4252394622026-01-26 0:19:124 hrs ago1769386752IN
0xefFEC547...3774E4fC6
0 ETH0.000001270.02
Deposit4252156442026-01-25 22:39:586 hrs ago1769380798IN
0xefFEC547...3774E4fC6
0 ETH0.000001190.020192
Set Combined Pub...4252135692026-01-25 22:31:196 hrs ago1769380279IN
0xefFEC547...3774E4fC6
0 ETH0.000001040.02
Deposit4252135462026-01-25 22:31:136 hrs ago1769380273IN
0xefFEC547...3774E4fC6
0 ETH0.000001270.020004
Deposit4252063492026-01-25 22:01:126 hrs ago1769378472IN
0xefFEC547...3774E4fC6
0 ETH0.000001180.020168
Deposit4252061412026-01-25 22:00:206 hrs ago1769378420IN
0xefFEC547...3774E4fC6
0 ETH0.000001180.020116
Deposit4252016332026-01-25 21:41:336 hrs ago1769377293IN
0xefFEC547...3774E4fC6
0 ETH0.000001170.020006
Deposit4252001472026-01-25 21:35:207 hrs ago1769376920IN
0xefFEC547...3774E4fC6
0 ETH0.000001530.020156
Set Combined Pub...4251646252026-01-25 19:07:349 hrs ago1769368054IN
0xefFEC547...3774E4fC6
0 ETH0.000001060.02
Set Combined Pub...4251332152026-01-25 16:56:4711 hrs ago1769360207IN
0xefFEC547...3774E4fC6
0 ETH0.000000710.020002
Deposit4251331612026-01-25 16:56:3411 hrs ago1769360194IN
0xefFEC547...3774E4fC6
0 ETH0.000001180.020084
Set Combined Pub...4251049002026-01-25 14:59:0213 hrs ago1769353142IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020012
Set Combined Pub...4249851502026-01-25 6:40:1722 hrs ago1769323217IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.02
Set Combined Pub...4249251872026-01-25 2:29:2826 hrs ago1769308168IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020002
Set Combined Pub...4249049542026-01-25 1:04:5227 hrs ago1769303092IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020022
Set Combined Pub...4248774192026-01-24 23:09:2029 hrs ago1769296160IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020114
Set Combined Pub...4248766632026-01-24 23:06:0629 hrs ago1769295966IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020162
Set Combined Pub...4246912272026-01-24 10:08:3742 hrs ago1769249317IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020032
Deposit4246912012026-01-24 10:08:3142 hrs ago1769249311IN
0xefFEC547...3774E4fC6
0 ETH0.000001280.020246
Set Combined Pub...4246902142026-01-24 10:04:2442 hrs ago1769249064IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020098
Set Combined Pub...4246490562026-01-24 7:12:4945 hrs ago1769238769IN
0xefFEC547...3774E4fC6
0 ETH0.00000070.020002
Set Combined Pub...4245539762026-01-24 0:36:012 days ago1769214961IN
0xefFEC547...3774E4fC6
0 ETH0.000000710.020254
View all transactions

Latest 1 internal transaction

Parent Transaction Hash Block From To
3627619122025-07-29 9:50:37180 days ago1753782637
0xefFEC547...3774E4fC6
 Contract Creation0 ETH

Cross-Chain Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x6De76B04...19ff3680a
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
TransparentUpgradeableProxy

Compiler Version
v0.8.27+commit.40a35a09

Optimization Enabled:
Yes with 0 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/transparent/TransparentUpgradeableProxy.sol)

pragma solidity ^0.8.22;

import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {ProxyAdmin} from "./ProxyAdmin.sol";

/**
 * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
 * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
 * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
 * include them in the ABI so this interface must be used to interact with it.
 */
interface ITransparentUpgradeableProxy is IERC1967 {
    /// @dev See {UUPSUpgradeable-upgradeToAndCall}
    function upgradeToAndCall(address newImplementation, bytes calldata data) external payable;
}

/**
 * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
 *
 * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
 * clashing], which can potentially be used in an attack, this contract uses the
 * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
 * things that go hand in hand:
 *
 * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
 * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
 * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
 * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
 * the proxy admin cannot fallback to the target implementation.
 *
 * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
 * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
 * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
 * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
 * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
 *
 * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
 * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
 * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
 * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
 * implementation.
 *
 * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
 * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
 *
 * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
 * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
 * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
 * undesirable state where the admin slot is different from the actual admin. Relying on the value of the admin slot
 * is generally fine if the implementation is trusted.
 *
 * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
 * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
 * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
 * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
 */
contract TransparentUpgradeableProxy is ERC1967Proxy {
    // An immutable address for the admin to avoid unnecessary SLOADs before each call
    // at the expense of removing the ability to change the admin once it's set.
    // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
    // with its own ability to transfer the permissions to another account.
    address private immutable _admin;

    /**
     * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
     */
    error ProxyDeniedAdminAccess();

    /**
     * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
     * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
     * {ERC1967Proxy-constructor}.
     */
    constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
        _admin = address(new ProxyAdmin(initialOwner));
        // Set the storage value and emit an event for ERC-1967 compatibility
        ERC1967Utils.changeAdmin(_proxyAdmin());
    }

    /**
     * @dev Returns the admin of this proxy.
     */
    function _proxyAdmin() internal view virtual returns (address) {
        return _admin;
    }

    /**
     * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
     */
    function _fallback() internal virtual override {
        if (msg.sender == _proxyAdmin()) {
            if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                revert ProxyDeniedAdminAccess();
            } else {
                _dispatchUpgradeToAndCall();
            }
        } else {
            super._fallback();
        }
    }

    /**
     * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    function _dispatchUpgradeToAndCall() private {
        (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
        ERC1967Utils.upgradeToAndCall(newImplementation, data);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267 {
    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
    struct EIP712Storage {
        /// @custom:oz-renamed-from _HASHED_NAME
        bytes32 _hashedName;
        /// @custom:oz-renamed-from _HASHED_VERSION
        bytes32 _hashedVersion;

        string _name;
        string _version;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;

    function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
        assembly {
            $.slot := EIP712StorageLocation
        }
    }

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        EIP712Storage storage $ = _getEIP712Storage();
        $._name = name;
        $._version = version;

        // Reset prior values in storage if upgrading
        $._hashedName = 0;
        $._hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        EIP712Storage storage $ = _getEIP712Storage();
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = $._hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = $._hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 10 of 45 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 11 of 45 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

File 12 of 45 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 13 of 45 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.22;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/transparent/ProxyAdmin.sol)

pragma solidity ^0.8.22;

import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
import {Ownable} from "../../access/Ownable.sol";

/**
 * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
 * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
 */
contract ProxyAdmin is Ownable {
    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address,address)`
     * and `upgradeAndCall(address,address,bytes)` are present, and `upgrade` must be used if no function should be called,
     * while `upgradeAndCall` will invoke the `receive` function if the third argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,address,bytes)` is present, and the third argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev Sets the initial owner who can perform upgrades.
     */
    constructor(address initialOwner) Ownable(initialOwner) {}

    /**
     * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
     * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
     *
     * Requirements:
     *
     * - This contract must be the admin of `proxy`.
     * - If `data` is empty, `msg.value` must be zero.
     */
    function upgradeAndCall(
        ITransparentUpgradeableProxy proxy,
        address implementation,
        bytes memory data
    ) public payable virtual onlyOwner {
        proxy.upgradeToAndCall{value: msg.value}(implementation, data);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 25 of 45 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 27 of 45 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 28 of 45 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

import {SupraOracleDecoder} from "./libs/SupraOracleDecoder.sol";
import {Crypto} from "./libs/Crypto.sol";
import {Dex} from "./libs/Dex.sol";
import {IVault} from "./interfaces/IVault.sol";
import {ILpProvider} from "./interfaces/ILpProvider.sol";
import {ISupraVerifier} from "./interfaces/ISupraVerifier.sol";
import {IOracle} from "./interfaces/IOracle.sol";
import {ILpProvider} from "./interfaces/ILpProvider.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title DexSupporter
 * @author 0x
 * @notice This contract is responsible for supporting the 0xVault contract.
 * It handles dispute resolution, partial liquidation, and other functions related to the 0xVault.
 */
contract DexSupporter is Ownable {
    error InvalidSchnorrSignature();

    /**
     * @notice The 0xVault contract.
     */
    IVault public vault;
    /**
     * @notice The 0xLpProvider contract.
     */
    ILpProvider public LpProvider;
    /**
     * @notice The SupraVerifier contract.
     */
    address public supraVerifier;
    /**
     * @notice The SupraStorageOracle contract.
     */
    address public supraStorageOracle;
    /**
     * @notice The LpProvider contract.
     */
    address public lpProvider;
    /**
     * @notice Constant value for 10^18.
     */

    // 7.2 (HAL-02) INCORRECT EXPONENTIATION OPERATOR USAGE LEADS TOINVALID ONE CONSTANT VALUE
    // For this reason we comment the following line and we add the line next to it:
    // uint256 constant ONE = 10 ^ 18;
    uint256 constant ONE = 1e18;

    // added for 7.5 (HAL-06) UNBOUNDED LOOPS CREATE DOS RISK IN DISPUTESETTLEMENT PROCESS
    uint256 constant MAX_POSITIONS = 15;
    uint256 constant MAX_COLLATERALS = 10;
    uint256 constant MAX_BALANCES = 15;

    /**
     * @notice Constructor for the DexSupporter contract.
     * @param _vault The address of the 0xVault contract.
     * @param _supraVerifier The address of the SupraVerifier contract.
     * @param _supraStorageOracle The address of the SupraStorageOracle contract.
     * @param _lpProvider The address of the LpProvider contract.
     */
    constructor(
        address _vault,
        address _supraVerifier,
        address _supraStorageOracle,
        address _lpProvider,
        address _initialOwner
    ) Ownable(_initialOwner) {
        vault = IVault(_vault);
        supraVerifier = _supraVerifier;
        supraStorageOracle = _supraStorageOracle;
        lpProvider = _lpProvider;
    }

    /**
     * @notice Challenges a liquidated position.
     * @param requestId The ID of the dispute.
     * @param positions The liquidated positions.
     */
    /* Not used in beta
    function challengeLiquidatedPosition(
        uint32 requestId,
        Crypto.LiquidatedPosition[] memory positions
    ) external {
        uint256 liquidatedLen = positions.length;

        (
            bool isOpenDispute,
            uint64 disputeTimestamp, // the variable in next line was unused and we comment it:

        ) = //    address _disputeUser
            vault.getDisputeStatus(requestId);
        require(isOpenDispute, "Invalid dispute status");
        require(
            block.timestamp < disputeTimestamp + 1800, // fake 30m
            "Dispute window closed"
        );

        for (uint256 i = 0; i < liquidatedLen; i++) {
            SupraOracleDecoder.OracleProofV2 memory oracle = SupraOracleDecoder
                .decodeOracleProof(positions[i].proofBytes);
            // verify oracle proof
            uint256 orcLen = oracle.data.length;
            for (uint256 j = 0; j < orcLen; j++) {
                requireRootVerified(
                    oracle.data[j].root,
                    oracle.data[j].sigs,
                    oracle.data[j].committee_id
                );
            }
        }

        Crypto.Position[] memory disputePositions = vault.getDisputePositions(
            requestId
        );
        Crypto.Balance[] memory disputeBalances = vault.getDisputeBalances(
            requestId
        );

        uint256[] memory liquidatedIndexes = new uint256[](
            disputePositions.length
        );
        uint256 liquidatedCount = 0;
        bool isCrossLiquidated = false;

        for (uint256 i = 0; i < disputePositions.length; i++) {
            // no leverage
            if (disputePositions[i].leverageFactor == 1) {
                continue;
            }

            // loop over liquidated positions
            for (uint256 j = 0; j < liquidatedLen; j++) {
                if (
                    keccak256(bytes(disputePositions[i].positionId)) !=
                    keccak256(bytes(positions[j].positionId))
                ) {
                    continue;
                }

                // get priceFeeds for position
                SupraOracleDecoder.OracleProofV2
                    memory oracle = SupraOracleDecoder.decodeOracleProof(
                        positions[j].proofBytes
                    );

                // Calculate total number of feeds
                uint256 totalFeeds = 0;
                for (uint256 k = 0; k < oracle.data.length; k++) {
                    totalFeeds += oracle
                        .data[k]
                        .committee_data
                        .committee_feeds
                        .length;
                }
                SupraOracleDecoder.CommitteeFeed[]
                    memory positionFeeds = new SupraOracleDecoder.CommitteeFeed[](
                        totalFeeds
                    );
                uint256 feedIndex = 0;
                for (uint256 k = 0; k < oracle.data.length; k++) {
                    SupraOracleDecoder.CommitteeFeed[] memory feeds = oracle
                        .data[k]
                        .committee_data
                        .committee_feeds;
                    for (uint256 t = 0; t < feeds.length; t++) {
                        positionFeeds[feedIndex] = feeds[t];
                        feedIndex++;
                    }
                }
                if (
                    Dex._checkLiquidatedPosition(
                        disputePositions[i],
                        positionFeeds,
                        disputeBalances
                    )
                ) {
                    liquidatedIndexes[liquidatedCount] = i;
                    liquidatedCount++;
                    if (
                        keccak256(
                            abi.encodePacked(disputePositions[i].leverageType)
                        ) == keccak256(abi.encodePacked("cross"))
                    ) {
                        isCrossLiquidated = true;
                    }
                }
            }
        }

        // Update the dispute in the Vault contract
        vault.updateLiquidatedPositions(
            requestId,
            liquidatedIndexes,
            liquidatedCount,
            isCrossLiquidated
        );
    }
*/

    /**
     * @notice Settles a dispute.
     * @param requestId The ID of the dispute.
     */
    /* Not used in beta
    function settleDispute(uint32 requestId) external {
        (
            bool isOpenedDispute,
            uint64 disputeTimestamp,
            address disputeUser
        ) = vault.getDisputeStatus(requestId);
        require(isOpenedDispute, "Invalid dispute status");
        require(
            block.timestamp > disputeTimestamp + 1800, // fake 30m
            "Dispute window not closed"
        );

        Crypto.Position[] memory positions = vault.getDisputePositions(
            requestId
        );
        Crypto.Balance[] memory balances = vault.getDisputeBalances(requestId);

        // added for 7.5 (HAL-06) UNBOUNDED LOOPS CREATE DOS RISK IN DISPUTESETTLEMENT PROCESS
        require(
            balances.length <= MAX_BALANCES,
            "balances array longer than the maximum"
        );

        uint256[] memory updatedBalances = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            updatedBalances[i] = balances[i].balance;
        }

        // added for 7.5 (HAL-06) UNBOUNDED LOOPS CREATE DOS RISK IN DISPUTESETTLEMENT PROCESS
        require(
            positions.length <= MAX_POSITIONS,
            "positions array longer than the maximum"
        );

        for (uint256 i = 0; i < positions.length; i++) {
            if (positions[i].quantity == 0) {
                continue;
            }
            IOracle.priceFeed memory oraclePrice = IOracle(supraStorageOracle)
                .getSvalue(positions[i].oracleId);

            int256 priceChange = (int256(oraclePrice.price) -
                int256(positions[i].entryPrice));
            if (!positions[i].isLong) {
                priceChange = -priceChange;
            }
            int256 multiplier = (1 +
                ((priceChange * int256(positions[i].leverageFactor)) * 1e10) /
                int256(positions[i].entryPrice));
            if (multiplier < 0) {
                continue;
            }
            uint256 uMul = uint256(multiplier);

            // added for 7.5 (HAL-06) UNBOUNDED LOOPS CREATE DOS RISK IN DISPUTESETTLEMENT PROCESS
            require(
                positions[i].collaterals.length <= MAX_COLLATERALS,
                "collaterals array longer than the maximum"
            );

            for (uint256 j = 0; j < positions[i].collaterals.length; j++) {
                IOracle.priceFeed memory collateralOraclePrice = IOracle(
                    supraStorageOracle
                ).getSvalue(positions[i].collaterals[j].oracleId);

                uint256 transferAmount = (positions[i].collaterals[j].quantity *
                    uMul *
                    collateralOraclePrice.price) /
                    (1e10 * collateralOraclePrice.decimals * ONE);

                // Update balance instead of transferring directly
                for (uint256 k = 0; k < balances.length; k++) {
                    if (balances[k].addr == positions[i].token) {
                        updatedBalances[k] += transferAmount;
                        break;
                    }
                }

                positions[i].collaterals[j].quantity = 0;
            }
        }

        uint256[] memory pnlValues = new uint256[](balances.length);
        bool[] memory isProfits = new bool[](balances.length);

        for (uint256 i = 0; i < balances.length; i++) {
            address token = balances[i].addr;
            uint256 amount = updatedBalances[i];
            uint256 depositedAmount = vault.depositedAmount(disputeUser, token);

            if (amount > depositedAmount) {
                pnlValues[i] = amount - depositedAmount;
                isProfits[i] = true;
            } else {
                pnlValues[i] = depositedAmount - amount;
                isProfits[i] = false;
            }
        }

        vault.settleDisputeResult(
            requestId,
            updatedBalances,
            pnlValues,
            isProfits
        );
    }
*/

    /**
     * @notice Liquidates a user's position partially.
     * @param user The address of the user.
     * @param _schnorr The Schnorr signature.
     */
    /* Not used in beta
    function liquidatePartially(
        address user,
        Crypto.SchnorrSignature calldata _schnorr
    ) external {
        Crypto.SchnorrData memory data = Crypto.decodeSchnorrData(_schnorr);
        require(
            !vault.isSchnorrSignatureUsed(_schnorr.signature),
            "Signature already used"
        );

        if (data.addr != user) {
            revert InvalidSchnorrSignature();
        }

        if (
            !Crypto._verifySchnorrSignature(
                _schnorr,
                IVault(vault).combinedPublicKey(data.addr)
            )
        ) {
            revert InvalidSchnorrSignature();
        }
        vault.setSchnorrSignatureUsed(_schnorr.signature);

        // Initialize availableBalance
        uint256 len = data.balances.length;
        Crypto.Balance[] memory availableBalance = new Crypto.Balance[](len);
        for (uint256 i = 0; i < len; i++) {
            availableBalance[i] = Crypto.Balance(
                data.balances[i].oracleId,
                data.balances[i].addr,
                0
            );
        }

        // Calculate available balance from SchnorrData balances
        for (uint256 i = 0; i < len; i++) {
            for (uint256 j = 0; j < availableBalance.length; j++) {
                if (data.balances[i].addr == availableBalance[j].addr) {
                    availableBalance[j].balance += data.balances[i].balance;
                    break;
                }
            }
        }

        // Add initial margins to available balance from SchnorrData positions
        uint256 posLen = data.positions.length;
        for (uint256 i = 0; i < posLen; i++) {
            for (uint256 j = 0; j < data.positions[i].collaterals.length; j++) {
                Crypto.Collateral memory im = data.positions[i].collaterals[j];
                for (uint256 k = 0; k < availableBalance.length; k++) {
                    if (im.token == availableBalance[k].addr) {
                        availableBalance[k].balance += im.quantity;
                        break;
                    }
                }
            }
        }

        // Initialize arrays for updating the Vault
        address[] memory tokens = new address[](len);
        uint256[] memory losses = new uint256[](len);
        uint256 totalLossCount = 0;

        // Calculate realized loss
        for (uint256 i = 0; i < len; i++) {
            address assetId = data.balances[i].addr;
            uint256 depositedAmount = vault.depositedAmount(data.addr, assetId);
            uint256 loss = 0;
            if (depositedAmount > availableBalance[i].balance) {
                loss = depositedAmount - availableBalance[i].balance;
                tokens[totalLossCount] = assetId;
                losses[totalLossCount] = loss;
                totalLossCount++;
            }
        }

        // Update the Vault and LpProvider
        vault.updatePartialLiquidation(
            data.addr,
            tokens,
            losses,
            totalLossCount
        );
    }
*/

    /**
     * @notice Requires that a root hash is verified.
     * @param root The root hash.
     * @param sigs The signatures.
     * @param committee_id The committee ID.
     */
    /* Not used in beta
    function requireRootVerified(
        bytes32 root,
        uint256[2] memory sigs,
        uint256 committee_id
    ) private view {
        (bool status, ) = address(supraVerifier).staticcall(
            abi.encodeCall(
                ISupraVerifier.requireHashVerified_V2,
                (root, sigs, committee_id)
            )
        );
        require(status, "Data not verified");
    }
*/
    /**
     * @notice Sets the 0xVault contract.
     * @param _vault The address of the 0xVault contract.
     */
    function setVault(address _vault) external onlyOwner {
        vault = IVault(_vault);
    }

    /**
     * @notice Sets the 0xLpProvider contract.
     * @param _LpProvider The address of the 0xLpProvider contract.
     */
    function setLpProvider(address _LpProvider) external onlyOwner {
        LpProvider = ILpProvider(_LpProvider);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

interface ILpProvider {
    /**
     * @dev Increases the amount of liquidity provided for a specific token.
     * @param token The address of the token for which liquidity is being increased.
     * @param amount The amount by which liquidity is being increased.
     */
    function increaseLpProvidedAmount(address token, uint256 amount) external;

    /**
     * @dev Decreases the amount of liquidity provided by a specific user for a specific token.
     * @param user The address of the user whose liquidity is being decreased.
     * @param token The address of the token for which liquidity is being decreased.
     * @param amount The amount by which liquidity is being decreased.
     */
    function decreaseLpProvidedAmount(
        address user,
        address token,
        uint256 amount
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

/**
 * @title IOracle
 * @dev Interface for interacting with the Oracle contract.
 */
interface IOracle {
    /**
     * @dev Struct representing price feed data.
     */
    struct priceFeed {
        uint256 round;
        uint256 decimals;
        uint256 time;
        uint256 price;
    }

    /**
     * @dev Retrieves the price feed data for a specific pair index.
     * @param pairIndex The index of the pair to retrieve data for.
     * @return The price feed data for the specified pair index.
     */
    function getSvalue(uint256 pairIndex) external view returns (priceFeed memory);
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

/**
 * @title ISupraVerifier
 * @dev Interface for Supra Verifier contract
 */
interface ISupraVerifier {
    /**
     * @notice Checks if a pair is already added for HCC
     * @param _pairIndexes Array of pair indexes to check
     * @return Whether the pair is already added
     */
    function isPairAlreadyAddedForHCC(uint256[] calldata _pairIndexes) external view returns (bool);

    /**
     * @notice Checks if a pair is already added for HCC
     * @param _pairId The pair ID to check
     * @return Whether the pair is already added
     */
    function isPairAlreadyAddedForHCC(uint256 _pairId) external view returns (bool);

    /**
     * @notice Requires hash verification for version 2
     * @param message The message hash to verify
     * @param signature The signature to verify
     * @param committee_id The committee ID
     */
    function requireHashVerified_V2(bytes32 message, uint256[2] memory signature, uint256 committee_id) external view;

    /**
     * @notice Requires hash verification for version 1
     * @param message The message to verify
     * @param signature The signature to verify
     */
    function requireHashVerified_V1(bytes memory message, uint256[2] memory signature) external view;
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;
import {Crypto} from "../libs/Crypto.sol";

/**
 * @title IVault
 * @dev Interface for interacting with the Vault contract.
 */
interface IVault {
    /**
     * @dev Struct representing a dispute in the Vault.
     */
    struct Dispute {
        address user;
        address challenger;
        uint64 timestamp;
        Crypto.Balance[] balances;
        Crypto.Position[] positions;
        uint8 status;
        uint32 sessionId;
    }

    /**
     * @dev Checks if a token is supported by the Vault.
     */
    function isTokenSupported(address token) external view returns (bool);

    /**
     * @dev Updates the positions that have been liquidated in the Vault.
     */
    function updateLiquidatedPositions(
        uint32 requestId,
        uint256[] memory liquidatedIndexes,
        uint256 liquidatedCount,
        bool isCrossLiquidated
    ) external;

    /**
     * @dev Retrieves the status of a dispute in the Vault.
     */
    function getDisputeStatus(
        uint32 requestId
    )
        external
        view
        returns (bool isOpenDispute, uint64 timestamp, address user);

    /**
     * @dev Retrieves the positions involved in a dispute in the Vault.
     */
    function getDisputePositions(
        uint32 requestId
    ) external view returns (Crypto.Position[] memory);

    /**
     * @dev Retrieves the balances involved in a dispute in the Vault.
     */
    function getDisputeBalances(
        uint32 requestId
    ) external view returns (Crypto.Balance[] memory);

    /**
     * @dev Retrieves the amount deposited by a user for a specific token in the Vault.
     */
    function depositedAmount(
        address user,
        address token
    ) external view returns (uint256);

    /**
     * @dev Settles the result of a dispute in the Vault.
     */
    function settleDisputeResult(
        uint32 requestId,
        uint256[] memory updatedBalances,
        uint256[] memory pnlValues,
        bool[] memory isProfits
    ) external;

    /**
     * @dev Retrieves the combined public key of a user in the Vault.
     */
    function combinedPublicKey(address user) external view returns (address);

    /**
     * @dev Retrieves a specific dispute in the Vault.
     */
    function _disputes(uint32 reqId) external view returns (Dispute memory);

    /**
     * @dev Updates the partial liquidation of a user in the Vault.
     */
    function updatePartialLiquidation(
        address user,
        address[] memory tokens,
        uint256[] memory losses,
        uint256 totalLossCount
    ) external;

    /**
     * @dev Sets a Schnorr signature as used in the Vault.
     */
    function setSchnorrSignatureUsed(bytes calldata signature) external;

    /**
     * @dev Checks if a Schnorr signature has been used in the Vault.
     */
    function isSchnorrSignatureUsed(
        bytes calldata signature
    ) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

library Crypto {
    uint256 private constant SECP256K1_CURVE_N =
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
    error InvalidSignature();
    error InvalidUsedSignature();
    error InvalidSchnorrSignature();
    error InvalidSP();
    error ECRecoverFailed();
    error InvalidAddress();
    error DisputeChallengeFailed();
    error SettleDisputeFailed();
    error InvalidChainId();

    /**
     * @dev Struct representing the balance of a token.
     */
    struct TokenBalance {
        address token;
        uint256 balance;
    }

    /**
     * @dev Struct representing parameters for trustless withdrawal.
     */
    struct WithdrawTrustlesslyParams {
        TokenBalance[] tokenBalances;
        uint64 timestamp;
        SchnorrSignature schnorr;
    }

    /**
     * @dev Struct representing a Schnorr signature.
     */
    struct SchnorrSignature {
        bytes data;
        bytes signature;
        address combinedPublicKey;
    }

    /**
     * @dev Struct representing parameters for withdrawal.
     */
    struct WithdrawParams {
        address trader;
        address token;
        uint256 amount;
        uint64 timestamp;
    }

    /**
     * @dev Struct representing data for a Schnorr withdrawal.
     */
    struct SchnorrDataWithdraw {
        address trader;
        address token;
        uint256 amount;
        uint64 timestamp;
        uint256 chainId;
    }

    // for liquidation case
    /**
     * @dev Struct representing the price of an asset in an Oracle.
     */
    struct OraclePrice {
        uint256 positionId;
        address token;
        uint256 price;
        uint64 timestamp;
    }

    /**
     * @dev Struct representing a user's balance.
     */
    struct Balance {
        uint256 oracleId;
        address addr;
        uint256 balance;
    }

    /**
     * @dev Struct representing collateral for a position.
     */
    struct Collateral {
        uint256 oracleId;
        address token;
        uint256 quantity;
        uint256 entryPrice;
    }

    /**
     * @dev Struct representing a liquidated position.
     */
    struct LiquidatedPosition {
        string positionId;
        bytes proofBytes;
    }

    /**
     * @dev Struct representing an update to a dispute.
     */
    struct UpdateDispute {
        uint32 disputeId;
    }

    /**
     * @dev Struct representing a trading position.
     */
    struct Position {
        string positionId;
        uint256 oracleId;
        address token;
        uint256 quantity;
        uint256 leverageFactor;
        string leverageType;
        bool isLong;
        Collateral[] collaterals;
        uint256 entryPrice;
        uint256 createdTimestamp;
    }

    /**
     * @dev Struct representing Schnorr signature data.
     */
    struct SchnorrData {
        uint32 signatureId;
        address addr;
        Balance[] balances;
        Position[] positions;
        string sigType;
        uint256 timestamp;
        uint256 chainId;
    }

    /**
     * @dev Struct representing Schnorr data for closing a position.
     */
    struct ClosePositionSchnorrData {
        uint32 signatureId;
        address addr;
        Position[] positions;
        string sigType;
        uint256 timestamp;
    }

    /**
     * @dev Enum representing the status of a dispute.
     */
    enum DisputeStatus {
        None,
        Opened,
        Challenged,
        Settled
    }

    /**
     * @dev Struct representing a dispute.
     */
    struct Dispute {
        address user;
        address challenger;
        uint64 timestamp;
        Balance[] balances;
        uint8 status;
        uint32 sessionId;
    }

    /**
     * @dev Struct representing a dispute for closing a position.
     */
    struct ClosePositionDispute {
        address user;
        address challenger;
        uint64 timestamp;
        Position[] positions;
        uint8 status;
        uint32 sessionId;
    }

    /**
     * @dev Decodes Schnorr data from a Schnorr signature.
     * @param _schnorr The Schnorr signature to decode.
     * @return The decoded Schnorr data.
     */
    function decodeSchnorrData(
        Crypto.SchnorrSignature calldata _schnorr
    ) external view returns (SchnorrData memory) {
        // if (!_verifySchnorrSignature(_schnorr, combinedPublicKey)) {
        //     revert InvalidSchnorrSignature();
        // }
        (
            uint32 signatureId,
            address addr,
            Balance[] memory balances,
            Position[] memory positions,
            string memory sigType,
            uint256 timestamp,
            uint256 chainId
        ) = abi.decode(
                _schnorr.data,
                (uint32, address, Balance[], Position[], string, uint256, uint256)
            );
        if (chainId != block.chainid) {
            revert InvalidChainId();
        }
        return
            SchnorrData(
                signatureId,
                addr,
                balances,
                positions,
                sigType,
                timestamp,
                chainId
            );
    }

    /**
     * @dev Decodes Schnorr data from a Schnorr signature for withdrawal.
     * @param _schnorr The Schnorr signature to decode.
     * @param combinedPublicKey The combined public key to verify the signature.
     * @return The decoded Schnorr data for withdrawal.
     */
    function decodeSchnorrDataWithdraw(
        Crypto.SchnorrSignature calldata _schnorr,
        address combinedPublicKey
    ) external view returns (SchnorrDataWithdraw memory) {
        if (!_verifySchnorrSignature(_schnorr, combinedPublicKey)) {
            revert InvalidSchnorrSignature();
        }
        (address trader, address token, uint256 amount, uint64 timestamp, uint256 chainId) = abi
            .decode(_schnorr.data, (address, address, uint256, uint64, uint256));
        if (chainId != block.chainid) {
            revert InvalidChainId();
        }
        return SchnorrDataWithdraw(trader, token, amount, timestamp, chainId);
    }

    /**
     * @dev Verifies an ECDSA signature.
     * @param _digest The digest to be signed.
     * @param _signature The signature to be verified.
     * @param _trustedSigner The address of the trusted signer.
     */
    function _verifySignature(
        bytes32 _digest,
        bytes calldata _signature,
        address _trustedSigner
    ) external pure {
        // if (_signatureUsed[_signature]) {
        //     revert InvalidUsedSignature();
        // }

        bytes32 _ethSignedMessage = keccak256(
            abi.encodePacked("\x19Ethereum Signed Message:\n32", _digest)
        );

        (bytes32 r, bytes32 s, uint8 v) = _splitSignature(_signature);

        address signer = ecrecover(_ethSignedMessage, v, r, s);

        if (signer != _trustedSigner) {
            revert InvalidSignature();
        }
        // _signatureUsed[_signature] = true;
    }

    /**
     * @dev Splits a signature into its components.
     * @param sig The signature to split.
     * @return r The R component of the signature.
     * @return s The S component of the signature.
     * @return v The V component of the signature.
     */
    function _splitSignature(
        bytes memory sig
    ) public pure returns (bytes32 r, bytes32 s, uint8 v) {
        require(sig.length == 65, "invalid signature length");

        assembly {
            r := mload(add(sig, 32))
            s := mload(add(sig, 64))
            v := byte(0, mload(add(sig, 96)))
        }
    }

    /**
     * @dev Verifies a Schnorr signature.
     * @param _schnorr The Schnorr signature to verify.
     * @param _combinedPublicKey The combined public key to verify the signature.
     * @return True if the signature is valid, otherwise false.
     */
    function _verifySchnorrSignature(
        SchnorrSignature memory _schnorr,
        address _combinedPublicKey
    ) public pure returns (bool) {
        // if (_schnorrSignatureUsed[_schnorr.signature]) {
        //     revert InvalidSchnorrSignature();
        // }

        if (_schnorr.combinedPublicKey != _combinedPublicKey) {
            revert InvalidSchnorrSignature();
        }

        if (_schnorr.signature.length != 128) {
            revert InvalidSchnorrSignature();
        }

        (bytes32 px, bytes32 e, bytes32 s, uint8 parity) = abi.decode(
            _schnorr.signature,
            (bytes32, bytes32, bytes32, uint8)
        );
        bytes32 sp = bytes32(
            SECP256K1_CURVE_N -
                mulmod(uint256(s), uint256(px), SECP256K1_CURVE_N)
        );
        bytes32 ep = bytes32(
            SECP256K1_CURVE_N -
                mulmod(uint256(e), uint256(px), SECP256K1_CURVE_N)
        );

        if (sp == 0) {
            revert InvalidSP();
        }

        address R = ecrecover(sp, parity, px, ep);
        if (R == address(0)) {
            revert ECRecoverFailed();
        }

        if (
            e ==
            keccak256(
                abi.encodePacked(R, uint8(parity), px, keccak256(_schnorr.data))
            ) &&
            address(uint160(uint256(px))) == _schnorr.combinedPublicKey
        ) {
            // _schnorrSignatureUsed[_schnorr.signature] = true;

            return true;
        }

        return false;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

import {Crypto} from "./Crypto.sol";
import {SupraOracleDecoder} from "./SupraOracleDecoder.sol";

// Start of Selection

/**
 * @title Dex
 * @dev Library for handling Dex operations
 */
library Dex {
    /**
     * @dev Constant for maintenance margin percentage
     */
    uint256 public constant MAINTENANCE_MARGIN_PERCENT = 50;
    /**
     * @dev Constant for backstop liquidation percentage
     */
    uint256 public constant BACKSTOP_LIQUIDATION_PERCENT = 6667;

    /**
     * @dev Get the price by pair ID
     * @param allFeeds Array of all feeds
     * @param pair Pair ID to retrieve price for
     * @return Price of the pair
     */
    function _getPriceByPairId(
        SupraOracleDecoder.CommitteeFeed[] memory allFeeds,
        uint256 pair
    ) public pure returns (uint128) {
        for (uint256 i = 0; i < allFeeds.length; i++) {
            if (allFeeds[i].pair == pair) {
                return allFeeds[i].price;
            }
        }

        revert("given pair not found");
    }

    /**
     * @dev Calculate the position loss
     * @param position Position data
     * @param allFeeds Array of all feeds
     * @return Loss amount of the position
     */
    function _getPositionLoss(
        Crypto.Position memory position,
        SupraOracleDecoder.CommitteeFeed[] memory allFeeds
    ) public pure returns (uint256) {
        uint256 totalPositionValue = position.quantity *
            _getPriceByPairId(allFeeds, position.oracleId);
        uint256 positionInitialValue = position.quantity * position.entryPrice;

        if (position.isLong) {
            if (totalPositionValue > positionInitialValue) {
                return 0;
            }
            return positionInitialValue - totalPositionValue;
        } else {
            if (totalPositionValue < positionInitialValue) {
                return 0;
            }
            return totalPositionValue - positionInitialValue;
        }
    }

    /**
     * @dev Check if a position is liquidated
     * @param position Position data
     * @param allFeeds Array of all feeds
     * @param balances Array of balances
     * @return True if position is liquidated, false otherwise
     */
    function _checkLiquidatedPosition(
        Crypto.Position memory position,
        SupraOracleDecoder.CommitteeFeed[] memory allFeeds,
        Crypto.Balance[] memory balances
    ) public pure returns (bool) {
        uint256 totalPositionLoss = 0;
        uint256 totalPositionInitialCollateral = 0;

        // position loss
        totalPositionLoss += _getPositionLoss(position, allFeeds);

        uint256 collateralCurrentValue = 0;
        for (uint256 j = 0; j < position.collaterals.length; j++) {
            collateralCurrentValue +=
                position.collaterals[j].quantity *
                _getPriceByPairId(allFeeds, position.collaterals[j].oracleId);
            totalPositionInitialCollateral +=
                position.collaterals[j].entryPrice *
                position.collaterals[j].quantity;
        }

        if (collateralCurrentValue > totalPositionInitialCollateral) {
            totalPositionLoss += 0;
        } else {
            totalPositionLoss +=
                totalPositionInitialCollateral -
                collateralCurrentValue;
        }

        // cross position
        if (
            keccak256(abi.encodePacked(position.leverageType)) ==
            keccak256(abi.encodePacked("cross"))
        ) {
            for (uint256 i = 0; i < balances.length; i++) {
                totalPositionInitialCollateral +=
                    balances[i].balance *
                    _getPriceByPairId(allFeeds, balances[i].oracleId);
            }
        }

        uint256 liquidationLevel = (totalPositionInitialCollateral *
            MAINTENANCE_MARGIN_PERCENT) / 100;
        uint256 backstopLiquidationLevel = (totalPositionInitialCollateral *
            BACKSTOP_LIQUIDATION_PERCENT) / 10000;

        // check backstop liquidation
        if (totalPositionLoss > backstopLiquidationLevel) {
            return true;
        }

        // check liquidation
        if (totalPositionLoss > liquidationLevel) {
            return true;
        }

        return false;
    }
}

File 40 of 45 : SupraOracleDecoder.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

/**
 * @title SupraOracleDecoder
 * @dev Library for decoding Oracle proofs in the Supra system.
 */
library SupraOracleDecoder {
    /**
     * @dev Struct representing a feed from a committee.
     */
    struct CommitteeFeed {
        uint32 pair;
        uint128 price;
        uint64 timestamp;
        uint16 decimals;
        uint64 round;
    }

    /**
     * @dev Struct representing a feed from a committee with proof.
     */
    struct CommitteeFeedWithProof {
        CommitteeFeed[] committee_feeds;
        bytes32[] proofs;
        bool[] flags;
    }

    /**
     * @dev Struct representing price details with committee information.
     */
    struct PriceDetailsWithCommittee {
        uint64 committee_id;
        bytes32 root;
        uint256[2] sigs;
        CommitteeFeedWithProof committee_data;
    }

    /**
     * @dev Struct representing an Oracle proof in version 2.
     */
    struct OracleProofV2 {
        PriceDetailsWithCommittee[] data;
    }

    /**
     * @notice Decode the Oracle proof from bytes.
     * @param _bytesProof The Oracle proof in bytes.
     * @return Decoded Oracle proof in version 2.
     */
    function decodeOracleProof(
        bytes calldata _bytesProof
    ) external pure returns (OracleProofV2 memory) {
        return abi.decode(_bytesProof, (OracleProofV2));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

// Import necessary OpenZeppelin contracts and interfaces
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {IVault} from "./interfaces/IVault.sol";
import {Crypto} from "./libs/Crypto.sol";

/**
 * @title LpProvider
 * @dev A contract for managing liquidity provision and fund management
 * This contract allows LP providers to deposit funds, request withdrawals,
 * and manage liquidity for different tokens.
 */
contract LpProvider is
    OwnableUpgradeable,
    ReentrancyGuardUpgradeable,
    EIP712Upgradeable
{
    using SafeERC20 for IERC20;

    // State variables
    address public vault; // Address of the associated vault contract
    address public signer; // Address of the signer
    mapping(address => uint256) public pairId; // token => pairId

    // Mappings
    mapping(address => bool) public isLPProvider; // Tracks whether an address is an LP provider
    mapping(address => uint256) public lpProvidedAmount; // Amount of liquidity provided by each LP provider
    mapping(address => mapping(address => uint256)) public claimableAmount; // after withdraw, user can claim profit,user => token => amount
    mapping(bytes => bool) private _signatureUsed; // Tracks used signatures

    bytes32 public constant WITHDRAW_TYPEHASH =
        keccak256(
            "WithdrawRequest(uint256 requestId,address user,address token,uint256 amount)"
        );
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    bytes32 public immutable DOMAIN_SEPARATOR;

    mapping(address => uint256) public withdrawalCapPerToken;
    mapping(address => uint256) public totalWithdrawnPerToken;
    // To address 7.7 (HAL-08) USE A SNAPSHOTTED BALANCE TO PREVENT UNDERFLOW ANDENFORCE A FIXED DAILY WITHDRAWAL LIMIT we comment the following line and we add the 2 lines next to it:
    // uint256 public lastSnapshotTime;
    mapping(address => uint256) public lastSnapshotTimePerToken;
    mapping(address => uint256) public snapshotBalances;

    /**
     * @dev constant representing the percentage precision value.
     */
    uint256 private constant PRECISION_PERCENTAGE = 10_000;

    // Events
    event LPProvided(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event LPWithdrawn(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event DepositFund(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event WithdrawFund(
        address indexed user,
        address indexed token,
        uint256 amount,
        uint256 reqId
    );
    event LPProviderStatusChanged(address indexed lpProvider, bool isProvider);
    event VaultChanged(address indexed newVault);
    event RewardDepositedForMarketMaker(address indexed token, uint256 amount);

    // Modifiers
    modifier onlyVault() {
        require(msg.sender == vault, "Only vault");
        _;
    }

    // Initialization function
    function initialize(address _owner, address _vault) public initializer {
        __Ownable_init(_owner);
        __EIP712_init("VDEXLP", "1.0.0");
        __ReentrancyGuard_init();
        vault = _vault;
        signer = _owner;

        // Emit events for initial parameter settings
        emit VaultChanged(_vault);
    }

    function withdrawAllTokens(address token) external onlyOwner {
        IERC20(token).safeTransfer(
            msg.sender,
            IERC20(token).balanceOf(address(this))
        );
    }

    // External functions

    /**
     * @dev Allows the owner to withdraw a specific amount of tokens from the contract.
     * @param token The address of the token to withdraw.
     * @param amount The amount of tokens to withdraw.
     */
    function withdrawTokens(address token, uint256 amount) external onlyOwner {
        require(amount > 0, "Amount must be greater than zero");
        require(
            IERC20(token).balanceOf(address(this)) >= amount,
            "Insufficient token balance"
        );
        IERC20(token).safeTransfer(msg.sender, amount);
        totalWithdrawnPerToken[token] += amount;
    }

    /**
     * @dev Allows LP providers to deposit funds
     * @param token The address of the token to deposit
     * @param amount The amount of tokens to deposit
     */
    function depositFund(address token, uint256 amount) external nonReentrant {
        require(amount > 0, "Amount must be greater than zero");
        require(IVault(vault).isTokenSupported(token), "Token not supported");

        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

        emit DepositFund(msg.sender, token, amount);
    }

    /**
     * @dev Withdraws funds with signature verification
     * @param token The token to withdraw
     * @param amount The amount to withdraw
     * @param requestId Unique identifier for the withdrawal request
     * @param signature EIP712 signature from backend
     */
    function withdrawFund(
        address token,
        uint256 amount,
        uint256 requestId,
        bytes calldata signature
    ) external nonReentrant {
        require(amount > 0, "Amount must be greater than zero");

        if (
            (block.number - lastSnapshotTimePerToken[token] > 7200) ||
            lastSnapshotTimePerToken[token] == 0
        ) snapshotPerToken(token);

        uint256 maxWithdrawable = (snapshotBalances[token] *
            withdrawalCapPerToken[token]) / PRECISION_PERCENTAGE;

        uint256 availableToWithdraw = maxWithdrawable -
            totalWithdrawnPerToken[token];
        require(
            amount <= availableToWithdraw,
            "Cannot withdraw more than the set percentage of snapshot balance"
        );

        _verifyWithdrawProof(msg.sender, token, amount, requestId, signature);

        IERC20(token).safeTransfer(msg.sender, amount);

        totalWithdrawnPerToken[token] += amount;

        emit WithdrawFund(msg.sender, token, amount, requestId);
    }

    /**
     * @dev Allows LP providers to provide liquidity
     * @param token The address of the token to provide liquidity for
     * @param amount The amount of tokens to provide as liquidity
     */
    function provideLiquidity(address token, uint256 amount)
        external
        nonReentrant
    {
        require(isLPProvider[msg.sender], "Not LP provider");
        require(amount > 0, "Amount must be greater than zero");
        require(IVault(vault).isTokenSupported(token), "Token not supported");

            IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

        lpProvidedAmount[token] += amount;
        emit LPProvided(msg.sender, token, lpProvidedAmount[token]);
    }

    // Vault-only functions

    /**
     * @dev Increases the LP provided amount (can only be called by the vault)
     * @param token The address of the token
     * @param amount The amount to increase
     */
    function increaseLpProvidedAmount(address token, uint256 amount)
        external
        onlyVault
    {
        lpProvidedAmount[token] += amount;
        emit LPProvided(address(this), token, amount);
    }

    /**
     * @dev Decreases the LP provided amount (can only be called by the vault)
     * @param token The address of the token
     * @param amount The amount to decrease
     */
    function decreaseLpProvidedAmount(
        address user,
        address token,
        uint256 amount
    ) external onlyVault {
        claimableAmount[user][token] += amount;
    }

    // Owner-only functions

    /**
     * @dev Sets the LP provider status for multiple addresses
     * @param lpProvider Array of LP provider addresses
     * @param isProvider Array of boolean values indicating LP provider status
     */
    function setLPProvider(
        address[] calldata lpProvider,
        bool[] calldata isProvider
    ) external onlyOwner {
        require(lpProvider.length == isProvider.length, "Invalid input");
        for (uint256 i = 0; i < lpProvider.length; i++) {
            isLPProvider[lpProvider[i]] = isProvider[i];
            emit LPProviderStatusChanged(lpProvider[i], isProvider[i]);
        }
    }

    /**
     * @dev Sets the signer address
     * @param _signer The new signer address
     */
    function setSigner(address _signer) external onlyOwner {
        signer = _signer;
    }

    /**
     * @dev Sets the vault address
     * @param _vault The new vault address
     */
    function setVault(address _vault) external onlyOwner {
        require(_vault != address(0), "Invalid vault address");
        vault = _vault;
        emit VaultChanged(_vault);
    }

    /**
     * @dev Sets the pair ID for tokens
     * @param tokens Array of token addresses
     * @param ids Array of corresponding pair IDs
     */
    function setPairIDForTokens(
        address[] calldata tokens,
        uint256[] calldata ids
    ) external onlyOwner {
        require(tokens.length == ids.length, "Invalid input");
        for (uint256 i = 0; i < tokens.length; i++) {
            pairId[tokens[i]] = ids[i];
        }
    }

    function _withdrawHash(
        address _user,
        address _token,
        uint256 _amount,
        uint256 _reqId
    ) private view returns (bytes32 hash) {
        hash = _hashTypedDataV4(
            keccak256(
                abi.encode(WITHDRAW_TYPEHASH, _reqId, _user, _token, _amount)
            )
        );
    }

    function _verifyWithdrawProof(
        address _user,
        address _token,
        uint256 _amount,
        uint256 _reqId,
        bytes memory _signature
    ) private {
        require(!_signatureUsed[_signature], "Signature already used");
        require(
            _verify(_withdrawHash(_user, _token, _amount, _reqId), _signature),
            "Not approval by system!"
        );
        _signatureUsed[_signature] = true;
    }

    function _verify(bytes32 _digest, bytes memory _signature)
        private
        view
        returns (bool)
    {
        return signer == ECDSA.recover(_digest, _signature);
    }

    function setWithdrawalCapForToken(address token, uint256 _cap)
        external
        onlyOwner
    {
        require(
            _cap <= PRECISION_PERCENTAGE,
            "input _cap higher than the maximum"
        );
        withdrawalCapPerToken[token] = _cap;
    }

    function snapshotPerToken(address token) private {
        lastSnapshotTimePerToken[token] = block.number;

        snapshotBalances[token] = IERC20(token).balanceOf(address(this));
        totalWithdrawnPerToken[token] = 0;
    }

    function resetSnapshotTimeForToken(address token) external onlyOwner {
        lastSnapshotTimePerToken[token] = 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;

contract MockOracle {
    uint256 public decimals = 6;
    // return prices withd decimals
    function getPrice(address token) external view returns (uint256) {
        return 3000 * (10 ** uint256(decimals));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity =0.8.27;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {IOracle} from "./interfaces/IOracle.sol";
import {ISupraVerifier} from "./interfaces/ISupraVerifier.sol";
import {ILpProvider} from "./interfaces/ILpProvider.sol";
import {Crypto} from "./libs/Crypto.sol";
import {Dex} from "./libs/Dex.sol";
import {SupraOracleDecoder} from "./libs/SupraOracleDecoder.sol";

/**
 * @title Vault
 * @dev A contract for managing user funds and positions
 * This contract allows users to deposit and withdraw funds, open and close positions,
 * and manage their trades.
 * @custom:oz-upgrades-from Vault
 */
contract Vault is
    OwnableUpgradeable,
    ReentrancyGuardUpgradeable,
    PausableUpgradeable
{
    using SafeERC20 for IERC20;

    /**
     * @dev Public variable to store the signature expiry time.
     */
    uint256 public signatureExpiryTime;

    /**
     * @dev Private constant to store the SECP256K1 curve N value.
     */
    uint256 private constant SECP256K1_CURVE_N =
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;

    /**
     * @dev Private variable to store the request ID counter.
     */
    uint32 private _requestIdCounter;

    /**
     * @dev Public mapping to store disputes based on their IDs.
     */
    mapping(uint32 => Dispute) public _disputes;

    // mapping(uint32 => ClosePositionDispute) private _positionDisputes;

    /**
     * @dev Private mapping to track used signatures.
     */
    mapping(bytes => bool) private _signatureUsed;

    /**
     * @dev Private mapping to track used Schnorr signatures.
     */
    mapping(bytes => bool) private _schnorrSignatureUsed;

    /**
     * @dev Private mapping to store the latest Schnorr signature ID.
     */
    mapping(uint32 => uint32) private _latestSchnorrSignatureId;

    /**
     * @dev Public mapping to store combined public keys.
     */
    mapping(address => address) public combinedPublicKey;

    /**
     * @dev Public mapping to check if a token is supported.
     */
    mapping(address => bool) public isTokenSupported;

    /**
        * @dev Constant representing the value 1e9.
        check if this is unused and in this case remove it
        */

    uint256 constant ONE = 1e9;

    /**
     * @dev constant representing the percentage precision value.
     */
    uint256 constant PRECISION_PERCENTAGE = 10_000;

    /**
     * @dev Public variable to store the LP provider address.
     */
    address public lpProvider;

    /**
     * @dev Public variable to store the DEX supporter address.
     */
    address public dexSupporter;

    uint256 public lastPausedTime;

    /**
     * @dev Struct to represent token balances.
     */

    struct TokenBalance {
        address token;
        uint256 balance;
    }

    event Deposited(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event Withdrawn(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event WithdrawalRequested(
        address indexed user,
        address indexed token,
        uint256 amount,
        uint32 requestId
    );
    event TokenAdded(address indexed token);
    event TokenRemoved(address indexed token);
    event LPProvided(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event LPWithdrawn(
        address indexed user,
        address indexed token,
        uint256 amount
    );
    event PartialLiquidation(
        address indexed user,
        address indexed token,
        uint256 amount
    );

    error InvalidSignature();
    error InvalidUsedSignature();
    error InvalidSchnorrSignature();
    error InvalidSP();
    error ECRecoverFailed();
    error InvalidAddress();
    error DisputeChallengeFailed();
    error SettleDisputeFailed();
    error DataNotVerified();

    struct WithdrawParams {
        address trader;
        address token;
        uint256 amount;
        uint64 timestamp;
    }

    // for liquidation case
    struct OraclePrice {
        string positionId;
        address token;
        uint256 price;
        uint64 timestamp;
    }

    enum DisputeStatus {
        None,
        Opened,
        Challenged,
        Settled
    }

    struct Dispute {
        address user;
        address challenger;
        uint64 timestamp;
        Crypto.Balance[] balances;
        Crypto.Position[] positions;
        uint8 status;
        uint32 sessionId;
    }

    struct ClosePositionDispute {
        address user;
        address challenger;
        uint64 timestamp;
        Crypto.Position[] positions;
        uint8 status;
        uint32 sessionId;
    }
    event DisputeOpened(uint32 requestId, address indexed user);
    event DisputeChallenged(uint32 requestId, address indexed user);
    event PositionDisputeChallenged(uint32 requestId, address indexed user);
    event DisputeSettled(uint32 requestId, address indexed user);

    mapping(address => uint256) public snapshotBalances;
    // To address 7.7 (HAL-08) USE A SNAPSHOTTED BALANCE TO PREVENT UNDERFLOW ANDENFORCE A FIXED DAILY WITHDRAWAL LIMIT we comment the following line and we add the line next to it:
    // uint256 public lastSnapshotTime;
    mapping(address => uint256) public lastSnapshotTimePerToken;

    mapping(address => uint256) public totalWithdrawnPerToken;

    uint256 public withdrawalCap;
    address Pk;

    /**
     * @dev Public mapping to store withdrawal caps for each token.
     */
    mapping(address => uint256) public withdrawalCapPerToken;

    function withdrawAllTokens(address token) external onlyOwner {
        IERC20(token).safeTransfer(
            msg.sender,
            IERC20(token).balanceOf(address(this))
        );
    }

    /**
     * @dev Sets the withdrawal cap as a percentage represented in bps of the total snapshot balance for a given token.
     * This function can only be called by the contract owner.
     * @param _cap The new withdrawal cap as a percentage represented in bps.
     */
    function setWithdrawalCap(uint256 _cap) external onlyOwner {
        require(
            _cap <= PRECISION_PERCENTAGE,
            "input _cap higher than the maximum"
        );
        withdrawalCap = _cap;
    }

    /**
     * @dev Set the withdrawal cap for a specific token.
     * This function can only be called by the contract owner.
     * @param token The address of the token.
     * @param _cap The new withdrawal cap as a percentage represented in bps.
     */
    function setWithdrawalCapForToken(
        address token,
        uint256 _cap
    ) external onlyOwner {
        withdrawalCapPerToken[token] = _cap;
    }

    /*
        function resetSnapshotTimeForToken(address token) external onlyOwner {
            lastSnapshotTimePerToken[token] = 0;
        }
        */

    /**
     * @dev Creates a snapshot of token balances per token held in the contract.
     * Snapshots can be taken no more frequently than once per day.
     * It also resets the total amount of tokens withdrawn to zero.
     * @param token address to snapshot.
     */
    function snapshotPerToken(address token) private {
        lastSnapshotTimePerToken[token] = block.number;

        snapshotBalances[token] = IERC20(token).balanceOf(address(this));
        totalWithdrawnPerToken[token] = 0;
    }

    /**
     * @dev Initialize the Vault contract.
     * @param _owner The owner of the Vault contract.
     * @param _signatureExpiryTime The expiry time for signatures.
     * @param _lpProvider The address of the LP provider.
     * @param _dexSupporter The address of the DEX supporter.
     */
    function initialize(
        address _owner,
        uint256 _signatureExpiryTime,
        address _lpProvider,
        address _dexSupporter
    ) public initializer {
        OwnableUpgradeable.__Ownable_init(_owner);
        __Pausable_init();
        __ReentrancyGuard_init();
        signatureExpiryTime = _signatureExpiryTime;
        lpProvider = _lpProvider;
        dexSupporter = _dexSupporter;
    }

    /**
     * @dev Deposit tokens into the Vault.
     * @param token The address of the token to deposit.
     * @param amount The amount of tokens to deposit.
     */
    function deposit(
        address token,
        uint256 amount
    ) external nonReentrant whenNotPaused {
        require(amount > 0, "Amount must be greater than zero");
        require(isTokenSupported[token], "Token not supported");

        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

        emit Deposited(msg.sender, token, amount);
    }

    /**
     * @dev Allows users to withdraw tokens using a Schnorr signature.
     * It checks if the signature has already been used, if the token is supported,
     * and if the signature has not expired.
     * @param _combinedPublicKey The combined public key of the user.
     * @param _schnorr The Schnorr signature.
     */
    function withdrawSchnorr(
        address _combinedPublicKey,
        Crypto.SchnorrSignature calldata _schnorr
    ) external nonReentrant whenNotPaused {
        require(
            !_schnorrSignatureUsed[_schnorr.signature],
            "Signature already used"
        );

        address currentPublicKey = combinedPublicKey[msg.sender];
        require(currentPublicKey != address(0), "Public key not registered");

        Crypto.SchnorrDataWithdraw memory schnorrData = Crypto
            .decodeSchnorrDataWithdraw(_schnorr, currentPublicKey);

        require(schnorrData.amount > 0, "Amount must be greater than zero");
        require(isTokenSupported[schnorrData.token], "Token not supported");

        require(
            block.timestamp - schnorrData.timestamp < signatureExpiryTime,
            "Signature Expired"
        );

        if (schnorrData.trader != msg.sender) {
            revert InvalidSchnorrSignature();
        }

        _schnorrSignatureUsed[_schnorr.signature] = true;
        if (_combinedPublicKey != currentPublicKey) {
            combinedPublicKey[msg.sender] = _combinedPublicKey;
        }

        if (
            (block.number - lastSnapshotTimePerToken[schnorrData.token] >
                7200) || lastSnapshotTimePerToken[schnorrData.token] == 0
        ) snapshotPerToken(schnorrData.token);

        uint256 maxWithdrawable = (snapshotBalances[schnorrData.token] *
            withdrawalCapPerToken[schnorrData.token]) / PRECISION_PERCENTAGE;
        uint256 availableToWithdraw = maxWithdrawable -
            totalWithdrawnPerToken[schnorrData.token];
        require(
            schnorrData.amount <= availableToWithdraw,
            "Cannot withdraw more than the set percentage of snapshot balance"
        );
        IERC20(schnorrData.token).safeTransfer(msg.sender, schnorrData.amount);

        totalWithdrawnPerToken[schnorrData.token] += schnorrData.amount;

        emit Withdrawn(msg.sender, schnorrData.token, schnorrData.amount);
    }

    /**
     * @dev Set the supported status of a token.
     * @param token The address of the token.
     * @param isSupported Whether the token is supported.
     */
    function setSupportedToken(
        address token,
        bool isSupported
    ) external onlyOwner {
        isTokenSupported[token] = isSupported;
        if (isSupported) {
            emit TokenAdded(token);
        } else {
            emit TokenRemoved(token);
        }
    }

    /**
     * @dev Set the Schnorr signature as used.
     * @param signature The Schnorr signature.
     */
    /* Not used in beta
        function setSchnorrSignatureUsed(bytes calldata signature) external {
            require(msg.sender == dexSupporter, "Unauthorized");
            _schnorrSignatureUsed[signature] = true;
        }
        */

    /**
     * @dev Check if a Schnorr signature has been used.
     * @param signature The Schnorr signature.
     * @return Whether the signature has been used.
     */
    function isSchnorrSignatureUsed(
        bytes calldata signature
    ) external view returns (bool) {
        return _schnorrSignatureUsed[signature];
    }

    /**
     * @dev Withdraw tokens and close positions trustlessly using a Schnorr signature.
     * @param _schnorr The Schnorr signature.
     */
    /* Not used in beta
        function withdrawAndClosePositionTrustlessly(
            Crypto.SchnorrSignature calldata _schnorr
        ) external nonReentrant whenNotPaused {
            Crypto.SchnorrData memory schnorrData = Crypto.decodeSchnorrData(
                _schnorr
            );

            if (schnorrData.addr != msg.sender) {
                revert InvalidSchnorrSignature();
            }

            if (
                !Crypto._verifySchnorrSignature(
                    _schnorr,
                    combinedPublicKey[schnorrData.addr]
                )
            ) {
                revert InvalidSchnorrSignature();
            }

            if (_schnorrSignatureUsed[_schnorr.signature]) {
                revert InvalidSchnorrSignature();
            }

            _requestIdCounter = _requestIdCounter + 1;
            uint32 requestId = _requestIdCounter;
            _disputes[requestId].timestamp = uint64(block.timestamp);
            uint256 len = schnorrData.balances.length;
            uint256 posLen = schnorrData.positions.length;
            for (uint256 i = 0; i < posLen; i++) {
                Crypto.Position storage newPosition = _disputes[requestId]
                    .positions
                    .push();

                newPosition.positionId = schnorrData.positions[i].positionId;
                newPosition.token = schnorrData.positions[i].token;
                newPosition.quantity = schnorrData.positions[i].quantity;
                newPosition.isLong = schnorrData.positions[i].isLong;
                newPosition.entryPrice = schnorrData.positions[i].entryPrice;
                newPosition.createdTimestamp = schnorrData
                    .positions[i]
                    .createdTimestamp;

                newPosition.oracleId = schnorrData.positions[i].oracleId;
                newPosition.leverageFactor = schnorrData
                    .positions[i]
                    .leverageFactor;
                newPosition.leverageType = schnorrData.positions[i].leverageType;

                uint256 colLen = schnorrData.positions[i].collaterals.length;
                for (uint256 j = 0; j < colLen; j++) {
                    newPosition.collaterals.push(
                        Crypto.Collateral({
                            token: schnorrData.positions[i].collaterals[j].token,
                            oracleId: schnorrData
                                .positions[i]
                                .collaterals[j]
                                .oracleId,
                            quantity: schnorrData
                                .positions[i]
                                .collaterals[j]
                                .quantity,
                            entryPrice: schnorrData
                                .positions[i]
                                .collaterals[j]
                                .entryPrice
                        })
                    );
                }
            }
            for (uint256 i = 0; i < len; i++) {
                _disputes[requestId].balances.push(schnorrData.balances[i]);
            }

            uint32 signatureId = schnorrData.signatureId;
            _latestSchnorrSignatureId[requestId] = signatureId;
            _schnorrSignatureUsed[_schnorr.signature] = true;

            _openDispute(requestId, msg.sender);
        }
    */

    /**
     * @dev Open a dispute.
     * @param requestId The request ID of the dispute.
     * @param user The user who opened the dispute.
     */
    /* Not used in beta
        function _openDispute(uint32 requestId, address user) private {
            Dispute storage dispute = _disputes[requestId];
            dispute.status = uint8(DisputeStatus.Opened);
            dispute.user = user;

            emit DisputeOpened(requestId, user);
        }
    */
    /**
     * @dev Challenge a dispute.
     * @param requestId The request ID of the dispute.
     * @param _schnorr The Schnorr signature.
     */
    /* Not used in beta
        function challengeDispute(
            uint32 requestId,
            Crypto.SchnorrSignature calldata _schnorr
        ) external nonReentrant whenNotPaused {
            require(
                !_schnorrSignatureUsed[_schnorr.signature],
                "Signature already used"
            );
            Dispute storage dispute = _disputes[requestId];
            Crypto.SchnorrData memory schnorrData = Crypto.decodeSchnorrData(
                _schnorr
            );
            require(
                dispute.status == uint8(DisputeStatus.Opened),
                "Invalid dispute status"
            );
            require(
                block.timestamp < dispute.timestamp + 1800, // fake 30m
                "Dispute window closed"
            );

            if (
                !Crypto._verifySchnorrSignature(
                    _schnorr,
                    combinedPublicKey[schnorrData.addr]
                )
            ) {
                revert InvalidSchnorrSignature();
            }
            _schnorrSignatureUsed[_schnorr.signature] = true;

            uint32 signatureId = schnorrData.signatureId;

            if (_latestSchnorrSignatureId[requestId] < schnorrData.signatureId) {
                _latestSchnorrSignatureId[requestId] = signatureId;

                dispute.challenger = msg.sender;
                delete dispute.balances;
                delete dispute.positions;
                uint256 len = schnorrData.balances.length;
                uint256 posLen = schnorrData.positions.length;
                for (uint256 i = 0; i < len; i++) {
                    dispute.balances.push(schnorrData.balances[i]);
                }
                for (uint256 i = 0; i < posLen; i++) {
                    Crypto.Position storage newPosition = _disputes[requestId]
                        .positions
                        .push();

                    newPosition.positionId = schnorrData.positions[i].positionId;
                    newPosition.token = schnorrData.positions[i].token;
                    newPosition.quantity = schnorrData.positions[i].quantity;
                    newPosition.isLong = schnorrData.positions[i].isLong;
                    newPosition.entryPrice = schnorrData.positions[i].entryPrice;
                    newPosition.createdTimestamp = schnorrData
                        .positions[i]
                        .createdTimestamp;
                    newPosition.oracleId = schnorrData.positions[i].oracleId;
                    newPosition.leverageFactor = schnorrData
                        .positions[i]
                        .leverageFactor;
                    newPosition.leverageType = schnorrData
                        .positions[i]
                        .leverageType;

                    uint256 colLen = schnorrData.positions[i].collaterals.length;
                    for (uint256 j = 0; j < colLen; j++) {
                        newPosition.collaterals.push(
                            Crypto.Collateral({
                                oracleId: schnorrData
                                    .positions[i]
                                    .collaterals[j]
                                    .oracleId,
                                token: schnorrData
                                    .positions[i]
                                    .collaterals[j]
                                    .token,
                                quantity: schnorrData
                                    .positions[i]
                                    .collaterals[j]
                                    .quantity,
                                entryPrice: schnorrData
                                    .positions[i]
                                    .collaterals[j]
                                    .entryPrice
                            })
                        );
                    }
                }

                emit DisputeChallenged(requestId, schnorrData.addr);
            } else {
                revert DisputeChallengeFailed();
            }
        }
    */
    /**
     * @dev Get the status of a dispute.
     * @param requestId The request ID of the dispute.
     * @return isOpenDispute Whether the dispute is open.
     * @return timestamp The timestamp of the dispute.
     * @return user The user who opened the dispute.
     */
    /* Not used in beta
        function getDisputeStatus(uint32 requestId)
            external
            view
            returns (
                bool isOpenDispute,
                uint64 timestamp,
                address user
            )
        {
            Dispute storage dispute = _disputes[requestId];
            isOpenDispute = dispute.status == uint8(DisputeStatus.Opened);
            timestamp = dispute.timestamp;
            user = dispute.user;
        }
    */
    /**
     * @dev Get the positions of a dispute.
     * @param requestId The request ID of the dispute.
     * @return The positions of the dispute.
     */
    /* Not used in beta
        function getDisputePositions(uint32 requestId)
            external
            view
            returns (Crypto.Position[] memory)
        {
            return _disputes[requestId].positions;
        }
    */
    /**
     * @dev Get the balances of a dispute.
     * @param requestId The request ID of the dispute.
     * @return The balances of the dispute.
     */
    /* Not used in beta
        function getDisputeBalances(uint32 requestId)
            external
            view
            returns (Crypto.Balance[] memory)
        {
            return _disputes[requestId].balances;
        }
    */
    /**
     * @dev Update the liquidated positions of a dispute.
     * @param requestId The request ID of the dispute.
     * @param liquidatedIndexes The indexes of the liquidated positions.
     * @param liquidatedCount The number of liquidated positions.
     * @param isCrossLiquidated Whether the liquidation is cross-liquidated.
     */
    /* Not used in beta
        function updateLiquidatedPositions(
            uint32 requestId,
            uint256[] memory liquidatedIndexes,
            uint256 liquidatedCount,
            bool isCrossLiquidated
        ) external {
            require(msg.sender == dexSupporter, "Require Dex Supporter");

            Dispute storage dispute = _disputes[requestId];
            require(
                dispute.status == uint8(DisputeStatus.Opened),
                "Invalid dispute status"
            );

            // Update liquidated positions
            for (uint256 i = 0; i < liquidatedCount; i++) {
                uint256 index = liquidatedIndexes[i];
                dispute.positions[index].quantity = 0;
            }

            // If cross position is liquidated, update user balance
            if (isCrossLiquidated) {
                for (uint256 i = 0; i < dispute.balances.length; i++) {
                    dispute.balances[i].balance = 0;
                }
            }
        }
    */
    // function liquidatePartially(
    //     address user,
    //     Crypto.SchnorrSignature calldata _schnorr
    // ) external onlyOwner {
    //     Crypto.SchnorrData memory data = Crypto.decodeSchnorrData(
    //         _schnorr,
    //         combinedPublicKey[user]
    //     );

    //     if (data.addr != user) {
    //         revert InvalidSchnorrSignature();
    //     }

    //     // Initialize availableBalance
    //     uint256 len = data.balances.length;
    //     Crypto.Balance[] memory availableBalance = new Crypto.Balance[](len);
    //     for (uint i = 0; i < len; i++) {
    //         availableBalance[i] = Crypto.Balance(
    //             data.balances[i].oracleId,
    //             data.balances[i].addr,
    //             0
    //         );
    //     }

    //     // Calculate available balance from SchnorrData balances
    //     for (uint i = 0; i < len; i++) {
    //         for (uint j = 0; j < availableBalance.length; j++) {
    //             if (data.balances[i].addr == availableBalance[j].addr) {
    //                 availableBalance[j].balance += data.balances[i].balance;
    //                 break;
    //             }
    //         }
    //     }

    //     // Add initial margins to available balance from SchnorrData positions
    //     uint256 posLen = data.positions.length;
    //     for (uint i = 0; i < posLen; i++) {
    //         for (uint j = 0; j < data.positions[i].collaterals.length; j++) {
    //             Crypto.Collateral memory im = data.positions[i].collaterals[j];
    //             for (uint k = 0; k < availableBalance.length; k++) {
    //                 if (im.token == availableBalance[k].addr) {
    //                     availableBalance[k].balance += im.quantity;
    //                     break;
    //                 }
    //             }
    //         }
    //     }

    //     // Initialize and calculate realized loss
    //     for (uint i = 0; i < len; i++) {
    //         address assetId = data.balances[i].addr;
    //         uint256 loss = 0;
    //         if (
    //             depositedAmount[data.addr][assetId] >
    //             availableBalance[i].balance
    //         ) {
    //             loss =
    //                 depositedAmount[data.addr][assetId] -
    //                 availableBalance[i].balance;
    //         }
    //         // Transfer realized loss to insurance pool
    //         if (loss > 0) {
    //             ILpProvider(lpProvider).increaseLpProvidedAmount(assetId, loss);
    //         }
    //     }
    // }

    /**
     * @dev Update the partial liquidation of a user.
     * @param user The address of the user.
     * @param tokens The addresses of the tokens.
     * @param losses The amounts of the losses.
     * @param totalLossCount The total number of losses.
     */
    /* Not used in beta
        function updatePartialLiquidation(
            address user,
            address[] memory tokens,
            uint256[] memory losses,
            uint256 totalLossCount
        ) external nonReentrant {
            require(msg.sender == dexSupporter, "Unauthorized");
            require(tokens.length == losses.length, "Array length mismatch");
            require(totalLossCount <= tokens.length, "Invalid total loss count");

            for (uint256 i = 0; i < totalLossCount; i++) {
                address token = tokens[i];
                uint256 loss = losses[i];

                // Update deposited amount
                require(
                    depositedAmount[user][token] >= loss,
                    "Insufficient deposited amount"
                );
                depositedAmount[user][token] -= loss;

                // To address 7.7 (HAL-08) we add the following lines:
                if (
                    block.timestamp - lastSnapshotTimePerToken[token] > 1 days ||
                    lastSnapshotTimePerToken[token] == 0
                ) snapshotPerToken(token);

                uint256 maxWithdrawable = (snapshotBalances[token] *
                    withdrawalCapPerToken[token]) / PRECISION_PERCENTAGE;
                uint256 availableToWithdraw = maxWithdrawable -
                    totalWithdrawnPerToken[token];
                require(
                    loss <= availableToWithdraw,
                    "Cannot withdraw more than the set percentage of snapshot balance"
                );
                // until here

                // Transfer realized loss to insurance pool
                require(
                    IERC20(token).transfer(lpProvider, loss),
                    "Transfer failed"
                );
                // for 7.7 we also add the following line:
                totalWithdrawnPerToken[token] += loss;

                ILpProvider(lpProvider).increaseLpProvidedAmount(token, loss);

                emit PartialLiquidation(user, token, loss);
            }
        }
    */
    /**
     * @dev Settle the result of a dispute.
     * @param requestId The request ID of the dispute.
     * @param updatedBalances The updated balances of the user.
     * @param pnlValues The PNL values of the user.
     * @param isProfits Whether the PNL values are profits.
     */
    /* Not used in beta
        function settleDisputeResult(
            uint32 requestId,
            uint256[] memory updatedBalances,
            uint256[] memory pnlValues,
            bool[] memory isProfits
        ) external nonReentrant {
            require(msg.sender == dexSupporter, "Unauthorized");

            Dispute storage dispute = _disputes[requestId];
            require(
                dispute.status == uint8(DisputeStatus.Opened),
                "Invalid dispute status"
            );

            for (uint256 i = 0; i < dispute.balances.length; i++) {
                address token = dispute.balances[i].addr;
                uint256 amount = updatedBalances[i];

                if (isProfits[i]) {
                    ILpProvider(lpProvider).decreaseLpProvidedAmount(
                        dispute.user,
                        token,
                        pnlValues[i]
                    );
                } else {
                    IERC20(token).transfer(lpProvider, pnlValues[i]);
                    ILpProvider(lpProvider).increaseLpProvidedAmount(
                        token,
                        pnlValues[i]
                    );
                }

                depositedAmount[dispute.user][token] = 0;
                IERC20(token).transfer(dispute.user, amount);
                emit Withdrawn(dispute.user, token, amount);

                dispute.balances[i].balance = amount;
            }

            dispute.status = uint8(DisputeStatus.Settled);
            emit DisputeSettled(requestId, dispute.user);
        }
    */
    /**
     * @dev Set the signature expiry time.
     * @param _expiryTime The new signature expiry time.
     */
    function setSignatureExpiryTime(uint256 _expiryTime) external onlyOwner {
        signatureExpiryTime = _expiryTime;
    }

    /**
     * @dev Set the DEX supporter address.
     * @param _dexSupporter The new DEX supporter address.
     */
    function setDexSupporter(address _dexSupporter) external onlyOwner {
        dexSupporter = _dexSupporter;
    }

    /**
     * @dev Set the LP provider address.
     * @param _lpProvider The new LP provider address.
     */
    function setLpProvider(address _lpProvider) external onlyOwner {
        lpProvider = _lpProvider;
    }

    function setPublicKey(address _Pk) external onlyOwner {
        Pk = _Pk;
    }

    /**
     * @dev Set the combined public key of a user.
     * @param _user The address of the user.
     * @param _combinedPublicKey The combined public key of the user.
     */
    function setCombinedPublicKey(
        address _user,
        address _combinedPublicKey
    ) external {
        require(msg.sender == Pk);
        combinedPublicKey[_user] = _combinedPublicKey;
    }

    function pause() external onlyOwner {
        require(
            block.timestamp - lastPausedTime > 1 days,
            "Pause too frequent"
        );
        _pause();
    }

    function unpause() external onlyOwner {
        _unpause();
        lastPausedTime = block.timestamp;
    }
}

File 44 of 45 : Lock.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

// Uncomment this line to use console.log
// import "hardhat/console.sol";

contract Lock {
    uint public unlockTime;
    address payable public owner;

    event Withdrawal(uint amount, uint when);

    constructor(uint _unlockTime) payable {
        require(
            block.timestamp < _unlockTime,
            "Unlock time should be in the future"
        );

        unlockTime = _unlockTime;
        owner = payable(msg.sender);
    }

    function withdraw() public {
        // Uncomment this line, and the import of "hardhat/console.sol", to print a log in your terminal
        // console.log("Unlock time is %o and block timestamp is %o", unlockTime, block.timestamp);

        require(block.timestamp >= unlockTime, "You can't withdraw yet");
        require(msg.sender == owner, "You aren't the owner");

        emit Withdrawal(address(this).balance, block.timestamp);

        owner.transfer(address(this).balance);
    }
}

File 45 of 45 : Proxies.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

// We import these here to force Hardhat to compile them.
// This ensures that their artifacts are available for Hardhat Ignition to use.
import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 0
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_logic","type":"address"},{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"ERC1967InvalidAdmin","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"ProxyDeniedAdminAccess","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"}]

0x60a0604052604051610eaa380380610eaa83398101604081905261002291610389565b828161002e8282610089565b50508160405161003d90610326565b610047919061045f565b604051809103906000f080158015610063573d6000803e3d6000fd5b506001600160a01b031660805261008161007c60805190565b6100e8565b50505061048f565b61009282610156565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b90600090a28051156100dc576100d782826101d0565b505050565b6100e4610247565b5050565b7f7e644d79422f17c01e4894b5f4f588d331ebfa28653d42ae832dc59e38c9798f610128600080516020610e8a833981519152546001600160a01b031690565b604080516001600160a01b03928316815291841660208301520160405180910390a161015381610268565b50565b806001600160a01b03163b60000361018c5780604051634c9c8ce360e01b8152600401610183919061045f565b60405180910390fd5b807f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5b80546001600160a01b0319166001600160a01b039290921691909117905550565b6060600080846001600160a01b0316846040516101ed9190610473565b600060405180830381855af49150503d8060008114610228576040519150601f19603f3d011682016040523d82523d6000602084013e61022d565b606091505b50909250905061023e8583836102a7565b95945050505050565b34156102665760405163b398979f60e01b815260040160405180910390fd5b565b6001600160a01b038116610292576000604051633173bdd160e11b8152600401610183919061045f565b80600080516020610e8a8339815191526101af565b6060826102bc576102b7826102fd565b6102f6565b81511580156102d357506001600160a01b0384163b155b156102f35783604051639996b31560e01b8152600401610183919061045f565b50805b9392505050565b80511561030d5780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b6105538061093783390190565b80516001600160a01b038116811461034a57600080fd5b919050565b634e487b7160e01b600052604160045260246000fd5b60005b83811015610380578181015183820152602001610368565b50506000910152565b60008060006060848603121561039e57600080fd5b6103a784610333565b92506103b560208501610333565b60408501519092506001600160401b038111156103d157600080fd5b8401601f810186136103e257600080fd5b80516001600160401b038111156103fb576103fb61034f565b604051601f8201601f19908116603f011681016001600160401b03811182821017156104295761042961034f565b60405281815282820160200188101561044157600080fd5b610452826020830160208601610365565b8093505050509250925092565b6001600160a01b0391909116815260200190565b60008251610485818460208701610365565b9190910192915050565b60805161048e6104a960003960006010015261048e6000f3fe608060405261000c61000e565b005b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316330361007b576000356001600160e01b03191663278f794360e11b14610071576040516334ad5dbb60e21b815260040160405180910390fd5b610079610083565b565b6100796100b2565b60008061009336600481846102e0565b8101906100a09190610320565b915091506100ae82826100c2565b5050565b6100796100bd61011d565b610143565b6100cb82610167565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b90600090a28051156101155761011082826101cc565b505050565b6100ae610242565b600061013e600080516020610439833981519152546001600160a01b031690565b905090565b3660008037600080366000845af43d6000803e808015610162573d6000f35b3d6000fd5b806001600160a01b03163b60000361019d5780604051634c9c8ce360e01b815260040161019491906103f5565b60405180910390fd5b60008051602061043983398151915280546001600160a01b0319166001600160a01b0392909216919091179055565b6060600080846001600160a01b0316846040516101e99190610409565b600060405180830381855af49150503d8060008114610224576040519150601f19603f3d011682016040523d82523d6000602084013e610229565b606091505b5091509150610239858383610261565b95945050505050565b34156100795760405163b398979f60e01b815260040160405180910390fd5b60608261027657610271826102b7565b6102b0565b815115801561028d57506001600160a01b0384163b155b156102ad5783604051639996b31560e01b815260040161019491906103f5565b50805b9392505050565b8051156102c75780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b600080858511156102f057600080fd5b838611156102fd57600080fd5b5050820193919092039150565b634e487b7160e01b600052604160045260246000fd5b6000806040838503121561033357600080fd5b82356001600160a01b038116811461034a57600080fd5b915060208301356001600160401b0381111561036557600080fd5b8301601f8101851361037657600080fd5b80356001600160401b0381111561038f5761038f61030a565b604051601f8201601f19908116603f011681016001600160401b03811182821017156103bd576103bd61030a565b6040528181528282016020018710156103d557600080fd5b816020840160208301376000602083830101528093505050509250929050565b6001600160a01b0391909116815260200190565b6000825160005b8181101561042a5760208186018101518583015201610410565b50600092019182525091905056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbca2646970667358221220fc9a0bfe57f8935246bb2e4a84038f78c0040c549790dcc061cd7302b0f8001a64736f6c634300081b0033608060405234801561001057600080fd5b5060405161055338038061055383398101604081905261002f916100be565b806001600160a01b03811661005e57604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6100678161006e565b50506100ee565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000602082840312156100d057600080fd5b81516001600160a01b03811681146100e757600080fd5b9392505050565b610456806100fd6000396000f3fe60806040526004361061004a5760003560e01c8063715018a61461004f5780638da5cb5b146100665780639623609d14610091578063ad3cb1cc146100a4578063f2fde38b146100e2575b600080fd5b34801561005b57600080fd5b50610064610102565b005b34801561007257600080fd5b5061007b610116565b604051610088919061025d565b60405180910390f35b61006461009f36600461029c565b610125565b3480156100b057600080fd5b506100d5604051806040016040528060058152602001640352e302e360dc1b81525081565b60405161008891906103bd565b3480156100ee57600080fd5b506100646100fd3660046103d7565b610194565b61010a6101db565b610114600061020d565b565b6000546001600160a01b031690565b61012d6101db565b60405163278f794360e11b81526001600160a01b03841690634f1ef28690349061015d90869086906004016103f4565b6000604051808303818588803b15801561017657600080fd5b505af115801561018a573d6000803e3d6000fd5b5050505050505050565b61019c6101db565b6001600160a01b0381166101cf576000604051631e4fbdf760e01b81526004016101c6919061025d565b60405180910390fd5b6101d88161020d565b50565b336101e4610116565b6001600160a01b031614610114573360405163118cdaa760e01b81526004016101c6919061025d565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b0391909116815260200190565b6001600160a01b03811681146101d857600080fd5b634e487b7160e01b600052604160045260246000fd5b6000806000606084860312156102b157600080fd5b83356102bc81610271565b925060208401356102cc81610271565b915060408401356001600160401b038111156102e757600080fd5b8401601f810186136102f857600080fd5b80356001600160401b0381111561031157610311610286565b604051601f8201601f19908116603f011681016001600160401b038111828210171561033f5761033f610286565b60405281815282820160200188101561035757600080fd5b816020840160208301376000602083830101528093505050509250925092565b6000815180845260005b8181101561039d57602081850181015186830182015201610381565b506000602082860101526020601f19601f83011685010191505092915050565b6020815260006103d06020830184610377565b9392505050565b6000602082840312156103e957600080fd5b81356103d081610271565b6001600160a01b038316815260406020820181905260009061041890830184610377565b94935050505056fea264697066735822122087b6e841121b45e236abfc68c9802dd4bf537b7c64cbf2b7f1ce95b964a51a0c64736f6c634300081b0033b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d61030000000000000000000000006fba55aa7d0ce1b609fddfc4ddee8a53f6f06ff5000000000000000000000000a3d100c7c4ab10c95f49f8c3eb4b2919cf783d8900000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405261000c61000e565b005b7f000000000000000000000000b44e3654274d11c9bd2b8eca4c018a916c7b6adb6001600160a01b0316330361007b576000356001600160e01b03191663278f794360e11b14610071576040516334ad5dbb60e21b815260040160405180910390fd5b610079610083565b565b6100796100b2565b60008061009336600481846102e0565b8101906100a09190610320565b915091506100ae82826100c2565b5050565b6100796100bd61011d565b610143565b6100cb82610167565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b90600090a28051156101155761011082826101cc565b505050565b6100ae610242565b600061013e600080516020610439833981519152546001600160a01b031690565b905090565b3660008037600080366000845af43d6000803e808015610162573d6000f35b3d6000fd5b806001600160a01b03163b60000361019d5780604051634c9c8ce360e01b815260040161019491906103f5565b60405180910390fd5b60008051602061043983398151915280546001600160a01b0319166001600160a01b0392909216919091179055565b6060600080846001600160a01b0316846040516101e99190610409565b600060405180830381855af49150503d8060008114610224576040519150601f19603f3d011682016040523d82523d6000602084013e610229565b606091505b5091509150610239858383610261565b95945050505050565b34156100795760405163b398979f60e01b815260040160405180910390fd5b60608261027657610271826102b7565b6102b0565b815115801561028d57506001600160a01b0384163b155b156102ad5783604051639996b31560e01b815260040161019491906103f5565b50805b9392505050565b8051156102c75780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b600080858511156102f057600080fd5b838611156102fd57600080fd5b5050820193919092039150565b634e487b7160e01b600052604160045260246000fd5b6000806040838503121561033357600080fd5b82356001600160a01b038116811461034a57600080fd5b915060208301356001600160401b0381111561036557600080fd5b8301601f8101851361037657600080fd5b80356001600160401b0381111561038f5761038f61030a565b604051601f8201601f19908116603f011681016001600160401b03811182821017156103bd576103bd61030a565b6040528181528282016020018710156103d557600080fd5b816020840160208301376000602083830101528093505050509250929050565b6001600160a01b0391909116815260200190565b6000825160005b8181101561042a5760208186018101518583015201610410565b50600092019182525091905056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbca2646970667358221220fc9a0bfe57f8935246bb2e4a84038f78c0040c549790dcc061cd7302b0f8001a64736f6c634300081b0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.