Latest 25 from a total of 2,424 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Send Multi Sig T... | 427531746 | 18 hrs ago | IN | 0 ETH | 0.00000168 | ||||
| Send Multi Sig T... | 427448413 | 24 hrs ago | IN | 0 ETH | 0.00000203 | ||||
| Send Multi Sig T... | 427439249 | 24 hrs ago | IN | 0 ETH | 0.00000166 | ||||
| Send Multi Sig T... | 427430820 | 25 hrs ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 427186116 | 42 hrs ago | IN | 0 ETH | 0.00000358 | ||||
| Send Multi Sig T... | 425864608 | 5 days ago | IN | 0 ETH | 0.00000202 | ||||
| Send Multi Sig T... | 425757134 | 5 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 424842954 | 8 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 424813150 | 8 days ago | IN | 0 ETH | 0.00000206 | ||||
| Send Multi Sig T... | 424773946 | 8 days ago | IN | 0 ETH | 0.00000203 | ||||
| Send Multi Sig T... | 424645593 | 9 days ago | IN | 0 ETH | 0.00000167 | ||||
| Send Multi Sig T... | 424644123 | 9 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 424618236 | 9 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 424055904 | 10 days ago | IN | 0 ETH | 0.00000203 | ||||
| Send Multi Sig T... | 423290989 | 13 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 422915759 | 14 days ago | IN | 0 ETH | 0.00000167 | ||||
| Send Multi Sig T... | 422914978 | 14 days ago | IN | 0 ETH | 0.00000202 | ||||
| Send Multi Sig T... | 422712441 | 14 days ago | IN | 0 ETH | 0.000002 | ||||
| Send Multi Sig T... | 421234946 | 18 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 421040406 | 19 days ago | IN | 0 ETH | 0.00000166 | ||||
| Send Multi Sig T... | 421037691 | 19 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 420979059 | 19 days ago | IN | 0 ETH | 0.000002 | ||||
| Send Multi Sig T... | 420701217 | 20 days ago | IN | 0 ETH | 0.00000201 | ||||
| Send Multi Sig T... | 420324986 | 21 days ago | IN | 0 ETH | 0.000002 | ||||
| Send Multi Sig T... | 419488621 | 24 days ago | IN | 0 ETH | 0.0000017 |
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x944fef03af368414f29dc31a72061b8d64f568d2
Contract Name:
ArbethWalletSimple
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 1000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.20;
import '../Forwarder.sol';
import '../ERC20Interface.sol';
import '../WalletSimple.sol';
/**
*
* WalletSimple
* ============
*
* Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.
* Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.
*
* The first signature is created on the operation hash (see Data Formats) and passed to sendMultiSig/sendMultiSigToken
* The signer is determined by verifyMultiSig().
*
* The second signature is created by the submitter of the transaction and determined by msg.signer.
*
* Data Formats
* ============
*
* The signature is created with ethereumjs-util.ecsign(operationHash).
* Like the eth_sign RPC call, it packs the values as a 65-byte array of [r, s, v].
* Unlike eth_sign, the message is not prefixed.
*
* The operationHash the result of keccak256(prefix, toAddress, value, data, expireTime).
* For ether transactions, `prefix` is chain id of the coin i.e. for arbitrum mainnet it is "42161"
* For token transaction, `prefix` is "42161-ERC20" and `data` is the tokenContractAddress.
*
*
*/
contract ArbethWalletSimple is WalletSimple {
/**
* Get the network identifier that signers must sign over
* This provides protection signatures being replayed on other chains
*/
function getNetworkId() internal override view returns (string memory) {
return Strings.toString(block.chainid);
}
/**
* Get the network identifier that signers must sign over for token transfers
* This provides protection signatures being replayed on other chains
*/
function getTokenNetworkId() internal override view returns (string memory) {
return string.concat(Strings.toString(block.chainid), '-ERC20');
}
/**
* Get the network identifier that signers must sign over for batch transfers
* This provides protection signatures being replayed on other chains
*/
function getBatchNetworkId() internal override view returns (string memory) {
return string.concat(Strings.toString(block.chainid), '-Batch');
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/utils/ERC1155Holder.sol)
pragma solidity ^0.8.20;
import {IERC165, ERC165} from "../../../utils/introspection/ERC165.sol";
import {IERC1155Receiver} from "../IERC1155Receiver.sol";
/**
* @dev Simple implementation of `IERC1155Receiver` that will allow a contract to hold ERC1155 tokens.
*
* IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be
* stuck.
*/
abstract contract ERC1155Holder is ERC165, IERC1155Receiver {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId);
}
function onERC1155Received(
address,
address,
uint256,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155Received.selector;
}
function onERC1155BatchReceived(
address,
address,
uint256[] memory,
uint256[] memory,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155BatchReceived.selector;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;
/**
* Contract that exposes the needed erc20 token functions
*/
abstract contract ERC20Interface {
// Send _value amount of tokens to address _to
function transfer(address _to, uint256 _value)
public
virtual
returns (bool success);
// Get the account balance of another account with address _owner
function balanceOf(address _owner)
public
view
virtual
returns (uint256 balance);
}// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.20;
import '@openzeppelin/contracts/token/ERC1155/IERC1155.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol';
import '@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol';
import './ERC20Interface.sol';
import './TransferHelper.sol';
import './IForwarder.sol';
/**
* Contract that will forward any incoming Ether to the creator of the contract
*
*/
contract Forwarder is IERC721Receiver, ERC1155Holder, IForwarder {
// Address to which any funds sent to this contract will be forwarded
address public parentAddress;
bool public autoFlush721 = true;
bool public autoFlush1155 = true;
event ForwarderDeposited(address from, uint256 value, bytes data);
/**
* Initialize the contract, and sets the destination address to that of the creator
*/
function init(
address _parentAddress,
bool _autoFlush721,
bool _autoFlush1155
) external onlyUninitialized {
parentAddress = _parentAddress;
uint256 value = address(this).balance;
// set whether we want to automatically flush erc721/erc1155 tokens or not
autoFlush721 = _autoFlush721;
autoFlush1155 = _autoFlush1155;
if (value == 0) {
return;
}
// NOTE: since we are forwarding on initialization,
// we don't have the context of the original sender.
// We still emit an event about the forwarding but set
// the sender to the forwarder itself
emit ForwarderDeposited(address(this), value, msg.data);
(bool success, ) = parentAddress.call{ value: value }('');
require(success, 'Flush failed');
}
/**
* Modifier that will execute internal code block only if the sender is the parent address
*/
modifier onlyParent() {
require(msg.sender == parentAddress, 'Only Parent');
_;
}
/**
* Modifier that will execute internal code block only if the contract has not been initialized yet
*/
modifier onlyUninitialized() {
require(parentAddress == address(0x0), 'Already initialized');
_;
}
/**
* Default function; Gets called when data is sent but does not match any other function
*/
fallback() external payable {
flush();
}
/**
* Default function; Gets called when Ether is deposited with no data, and forwards it to the parent address
*/
receive() external payable {
flush();
}
/**
* @inheritdoc IForwarder
*/
function setAutoFlush721(bool autoFlush)
external
virtual
override
onlyParent
{
autoFlush721 = autoFlush;
}
/**
* @inheritdoc IForwarder
*/
function setAutoFlush1155(bool autoFlush)
external
virtual
override
onlyParent
{
autoFlush1155 = autoFlush;
}
/**
* ERC721 standard callback function for when a ERC721 is transfered. The forwarder will send the nft
* to the base wallet once the nft contract invokes this method after transfering the nft.
*
* @param _operator The address which called `safeTransferFrom` function
* @param _from The address of the sender
* @param _tokenId The token id of the nft
* @param data Additional data with no specified format, sent in call to `_to`
*/
function onERC721Received(
address _operator,
address _from,
uint256 _tokenId,
bytes memory data
) external virtual override returns (bytes4) {
if (autoFlush721) {
IERC721 instance = IERC721(msg.sender);
require(
instance.supportsInterface(type(IERC721).interfaceId),
'The caller does not support the ERC721 interface'
);
// this won't work for ERC721 re-entrancy
instance.safeTransferFrom(address(this), parentAddress, _tokenId, data);
}
return this.onERC721Received.selector;
}
function callFromParent(
address target,
uint256 value,
bytes calldata data
) external onlyParent returns (bytes memory) {
(bool success, bytes memory returnedData) = target.call{ value: value }(
data
);
require(success, 'Parent call execution failed');
return returnedData;
}
/**
* @inheritdoc ERC1155Holder
*/
function onERC1155Received(
address _operator,
address _from,
uint256 id,
uint256 value,
bytes memory data
) public virtual override returns (bytes4) {
IERC1155 instance = IERC1155(msg.sender);
require(
instance.supportsInterface(type(IERC1155).interfaceId),
'The caller does not support the IERC1155 interface'
);
if (autoFlush1155) {
instance.safeTransferFrom(address(this), parentAddress, id, value, data);
}
return this.onERC1155Received.selector;
}
/**
* @inheritdoc ERC1155Holder
*/
function onERC1155BatchReceived(
address _operator,
address _from,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual override returns (bytes4) {
IERC1155 instance = IERC1155(msg.sender);
require(
instance.supportsInterface(type(IERC1155).interfaceId),
'The caller does not support the IERC1155 interface'
);
if (autoFlush1155) {
instance.safeBatchTransferFrom(
address(this),
parentAddress,
ids,
values,
data
);
}
return this.onERC1155BatchReceived.selector;
}
/**
* @inheritdoc IForwarder
*/
function flushTokens(address tokenContractAddress)
external
virtual
override
onlyParent
{
ERC20Interface instance = ERC20Interface(tokenContractAddress);
address forwarderAddress = address(this);
uint256 forwarderBalance = instance.balanceOf(forwarderAddress);
if (forwarderBalance == 0) {
return;
}
TransferHelper.safeTransfer(
tokenContractAddress,
parentAddress,
forwarderBalance
);
}
/**
* @inheritdoc IForwarder
*/
function flushERC721Token(address tokenContractAddress, uint256 tokenId)
external
virtual
override
onlyParent
{
IERC721 instance = IERC721(tokenContractAddress);
require(
instance.supportsInterface(type(IERC721).interfaceId),
'The tokenContractAddress does not support the ERC721 interface'
);
address ownerAddress = instance.ownerOf(tokenId);
instance.transferFrom(ownerAddress, parentAddress, tokenId);
}
/**
* @inheritdoc IForwarder
*/
function flushERC1155Tokens(address tokenContractAddress, uint256 tokenId)
external
virtual
override
onlyParent
{
IERC1155 instance = IERC1155(tokenContractAddress);
require(
instance.supportsInterface(type(IERC1155).interfaceId),
'The caller does not support the IERC1155 interface'
);
address forwarderAddress = address(this);
uint256 forwarderBalance = instance.balanceOf(forwarderAddress, tokenId);
instance.safeTransferFrom(
forwarderAddress,
parentAddress,
tokenId,
forwarderBalance,
''
);
}
/**
* @inheritdoc IForwarder
*/
function batchFlushERC1155Tokens(
address tokenContractAddress,
uint256[] calldata tokenIds
) external virtual override onlyParent {
IERC1155 instance = IERC1155(tokenContractAddress);
require(
instance.supportsInterface(type(IERC1155).interfaceId),
'The caller does not support the IERC1155 interface'
);
address forwarderAddress = address(this);
uint256[] memory amounts = new uint256[](tokenIds.length);
for (uint256 i = 0; i < tokenIds.length; i++) {
amounts[i] = instance.balanceOf(forwarderAddress, tokenIds[i]);
}
instance.safeBatchTransferFrom(
forwarderAddress,
parentAddress,
tokenIds,
amounts,
''
);
}
/**
* Flush the entire balance of the contract to the parent address.
*/
function flush() public {
uint256 value = address(this).balance;
if (value == 0) {
return;
}
emit ForwarderDeposited(msg.sender, value, msg.data);
(bool success, ) = parentAddress.call{ value: value }('');
require(success, 'Flush failed');
}
/**
* @inheritdoc IERC165
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override(ERC1155Holder, IERC165)
returns (bool)
{
return
interfaceId == type(IForwarder).interfaceId ||
super.supportsInterface(interfaceId);
}
}// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.20;
import '@openzeppelin/contracts/utils/introspection/IERC165.sol';
interface IForwarder is IERC165 {
/**
* Sets the autoflush721 parameter.
*
* @param autoFlush whether to autoflush erc721 tokens
*/
function setAutoFlush721(bool autoFlush) external;
/**
* Sets the autoflush1155 parameter.
*
* @param autoFlush whether to autoflush erc1155 tokens
*/
function setAutoFlush1155(bool autoFlush) external;
/**
* Execute a token transfer of the full balance from the forwarder to the parent address
*
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushTokens(address tokenContractAddress) external;
/**
* Execute a nft transfer from the forwarder to the parent address
*
* @param tokenContractAddress the address of the ERC721 NFT contract
* @param tokenId The token id of the nft
*/
function flushERC721Token(address tokenContractAddress, uint256 tokenId)
external;
/**
* Execute a nft transfer from the forwarder to the parent address.
*
* @param tokenContractAddress the address of the ERC1155 NFT contract
* @param tokenId The token id of the nft
*/
function flushERC1155Tokens(address tokenContractAddress, uint256 tokenId)
external;
/**
* Execute a batch nft transfer from the forwarder to the parent address.
*
* @param tokenContractAddress the address of the ERC1155 NFT contract
* @param tokenIds The token ids of the nfts
*/
function batchFlushERC1155Tokens(
address tokenContractAddress,
uint256[] calldata tokenIds
) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// source: https://github.com/Uniswap/solidity-lib/blob/master/contracts/libraries/TransferHelper.sol
pragma solidity 0.8.20;
import '@openzeppelin/contracts/utils/Address.sol';
// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library TransferHelper {
function safeTransfer(
address token,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(0xa9059cbb, to, value)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
'TransferHelper::safeTransfer: transfer failed'
);
}
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytes memory returndata) = token.call(
abi.encodeWithSelector(0x23b872dd, from, to, value)
);
Address.verifyCallResult(success, returndata);
}
}// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.20;
import './TransferHelper.sol';
import './ERC20Interface.sol';
import './IForwarder.sol';
/** ERC721, ERC1155 imports */
import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol';
import '@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol';
import '@openzeppelin/contracts/utils/Strings.sol';
/**
*
* WalletSimple
* ============
*
* Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.
* Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.
*
* The first signature is created on the operation hash (see Data Formats) and passed to sendMultiSig/sendMultiSigToken
* The signer is determined by verifyMultiSig().
*
* The second signature is created by the submitter of the transaction and determined by msg.signer.
*
* Data Formats
* ============
*
* The signature is created with ethereumjs-util.ecsign(operationHash).
* Like the eth_sign RPC call, it packs the values as a 65-byte array of [r, s, v].
* Unlike eth_sign, the message is not prefixed.
*
* The operationHash the result of keccak256(prefix, toAddress, value, data, expireTime).
* For ether transactions, `prefix` is chain id of the coin i.e. for eth mainnet it is "1".
* For token transaction, `prefix` is chain id + "-ERC20" i.e. for mainnet it is "1-ERC20" and `data` is the tokenContractAddress.
*
*
*/
contract WalletSimple is IERC721Receiver, ERC1155Holder {
// Events
event Deposited(address from, uint256 value, bytes data);
event SafeModeActivated(address msgSender);
event Transacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation, // Operation hash (see Data Formats)
address toAddress, // The address the transaction was sent to
uint256 value, // Amount of Wei sent to the address
bytes data // Data sent when invoking the transaction
);
event BatchTransfer(address sender, address recipient, uint256 value);
// this event shows the other signer and the operation hash that they signed
// specific batch transfer events are emitted in Batcher
event BatchTransacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation // Operation hash (see Data Formats)
);
// Public fields
mapping(address => bool) public signers; // The addresses that can co-sign transactions on the wallet
bool public safeMode = false; // When active, wallet may only send to signer addresses
bool public initialized = false; // True if the contract has been initialized
// Internal fields
uint256 private constant MAX_SEQUENCE_ID_INCREASE = 10000;
uint256 constant SEQUENCE_ID_WINDOW_SIZE = 10;
uint256[SEQUENCE_ID_WINDOW_SIZE] recentSequenceIds;
/**
* Set up a simple multi-sig wallet by specifying the signers allowed to be used on this wallet.
* 2 signers will be required to send a transaction from this wallet.
* Note: The sender is NOT automatically added to the list of signers.
* Signers CANNOT be changed once they are set
*
* @param allowedSigners An array of signers on the wallet
*/
function init(address[] calldata allowedSigners) external onlyUninitialized {
require(allowedSigners.length == 3, 'Invalid number of signers');
for (uint8 i = 0; i < allowedSigners.length; i++) {
require(allowedSigners[i] != address(0), 'Invalid signer');
signers[allowedSigners[i]] = true;
}
initialized = true;
}
/**
* Get the network identifier that signers must sign over
* This provides protection signatures being replayed on other chains
* This must be a virtual function because chain-specific contracts will need
* to override with their own network ids. It also can't be a field
* to allow this contract to be used by proxy with delegatecall, which will
* not pick up on state variables
*/
function getNetworkId() internal view virtual returns (string memory) {
return Strings.toString(block.chainid);
}
/**
* Get the network identifier that signers must sign over for token transfers
* This provides protection signatures being replayed on other chains
* This must be a virtual function because chain-specific contracts will need
* to override with their own network ids. It also can't be a field
* to allow this contract to be used by proxy with delegatecall, which will
* not pick up on state variables
*/
function getTokenNetworkId() internal view virtual returns (string memory) {
return string.concat(Strings.toString(block.chainid), '-ERC20');
}
/**
* Get the network identifier that signers must sign over for batch transfers
* This provides protection signatures being replayed on other chains
* This must be a virtual function because chain-specific contracts will need
* to override with their own network ids. It also can't be a field
* to allow this contract to be used by proxy with delegatecall, which will
* not pick up on state variables
*/
function getBatchNetworkId() internal view virtual returns (string memory) {
return string.concat(Strings.toString(block.chainid), '-Batch');
}
/**
* Modifier that will execute internal code block only if the sender is an authorized signer on this wallet
*/
modifier onlySigner() {
require(signers[msg.sender], 'Non-signer in onlySigner method');
_;
}
/**
* Modifier that will execute internal code block only if the contract has not been initialized yet
*/
modifier onlyUninitialized() {
require(!initialized, 'Contract already initialized');
_;
}
/**
* Gets called when a transaction is received with data that does not match any other method
*/
fallback() external payable {
if (msg.value > 0) {
// Fire deposited event if we are receiving funds
emit Deposited(msg.sender, msg.value, msg.data);
}
}
/**
* Gets called when a transaction is received with ether and no data
*/
receive() external payable {
if (msg.value > 0) {
// Fire deposited event if we are receiving funds
// message data is always empty for receive. If there is data it is sent to fallback function.
emit Deposited(msg.sender, msg.value, '');
}
}
/**
* Execute a multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in Wei to be sent
* @param data the data to send to the toAddress when invoking the transaction
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature see Data Formats
*/
function sendMultiSig(
address toAddress,
uint256 value,
bytes calldata data,
uint256 expireTime,
uint256 sequenceId,
bytes calldata signature
) external onlySigner {
// Verify the other signer
bytes32 operationHash = keccak256(
abi.encode(getNetworkId(), toAddress, value, data, expireTime, sequenceId)
);
address otherSigner = verifyMultiSig(
toAddress,
operationHash,
signature,
expireTime,
sequenceId
);
emit Transacted(
msg.sender,
otherSigner,
operationHash,
toAddress,
value,
data
);
// Success, send the transaction
(bool success, ) = toAddress.call{ value: value }(data);
require(success, 'Call execution failed');
}
/**
* Execute a batched multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
* The recipients and values to send are encoded in two arrays, where for index i, recipients[i] will be sent values[i].
*
* @param recipients The list of recipients to send to
* @param values The list of values to send to
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature see Data Formats
*/
function sendMultiSigBatch(
address[] calldata recipients,
uint256[] calldata values,
uint256 expireTime,
uint256 sequenceId,
bytes calldata signature
) external onlySigner {
require(recipients.length != 0, 'Not enough recipients');
require(
recipients.length == values.length,
'Unequal recipients and values'
);
require(recipients.length < 256, 'Too many recipients, max 255');
// Verify the other signer
bytes32 operationHash = keccak256(
abi.encode(
getBatchNetworkId(),
recipients,
values,
expireTime,
sequenceId
)
);
// the first parameter (toAddress) is used to ensure transactions in safe mode only go to a signer
// if in safe mode, we should use normal sendMultiSig to recover, so this check will always fail if in safe mode
require(!safeMode, 'Batch in safe mode');
address otherSigner = verifyMultiSig(
address(0x0),
operationHash,
signature,
expireTime,
sequenceId
);
emit BatchTransacted(msg.sender, otherSigner, operationHash);
batchTransfer(recipients, values);
}
/**
* Transfer funds in a batch to each of recipients
* @param recipients The list of recipients to send to
* @param values The list of values to send to recipients.
* The recipient with index i in recipients array will be sent values[i].
* Thus, recipients and values must be the same length
*/
function batchTransfer(
address[] calldata recipients,
uint256[] calldata values
) private {
for (uint256 i = 0; i < recipients.length; i++) {
require(address(this).balance >= values[i], 'Insufficient funds');
emit BatchTransfer(msg.sender, recipients[i], values[i]);
(bool success, ) = recipients[i].call{ value: values[i] }('');
require(success, 'Call failed');
}
}
/**
* Execute a multi-signature token transfer from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in tokens to be sent
* @param tokenContractAddress the address of the erc20 token contract
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature see Data Formats
*/
function sendMultiSigToken(
address toAddress,
uint256 value,
address tokenContractAddress,
uint256 expireTime,
uint256 sequenceId,
bytes calldata signature
) external onlySigner {
// Verify the other signer
bytes32 operationHash = keccak256(
abi.encodePacked(
getTokenNetworkId(),
toAddress,
value,
tokenContractAddress,
expireTime,
sequenceId
)
);
verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);
TransferHelper.safeTransfer(tokenContractAddress, toAddress, value);
}
/**
* Execute a token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushForwarderTokens(
address payable forwarderAddress,
address tokenContractAddress
) external onlySigner {
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.flushTokens(tokenContractAddress);
}
/**
* Execute a ERC721 token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushERC721ForwarderTokens(
address payable forwarderAddress,
address tokenContractAddress,
uint256 tokenId
) external onlySigner {
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.flushERC721Token(tokenContractAddress, tokenId);
}
/**
* Execute a ERC1155 batch token flush from one of the forwarder addresses.
* This transfer needs only a single signature and can be done by any signer.
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc1155 token contract
*/
function batchFlushERC1155ForwarderTokens(
address payable forwarderAddress,
address tokenContractAddress,
uint256[] calldata tokenIds
) external onlySigner {
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.batchFlushERC1155Tokens(tokenContractAddress, tokenIds);
}
/**
* Execute a ERC1155 token flush from one of the forwarder addresses.
* This transfer needs only a single signature and can be done by any signer.
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc1155 token contract
* @param tokenId the token id associated with the ERC1155
*/
function flushERC1155ForwarderTokens(
address payable forwarderAddress,
address tokenContractAddress,
uint256 tokenId
) external onlySigner {
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.flushERC1155Tokens(tokenContractAddress, tokenId);
}
/**
* Sets the autoflush 721 parameter on the forwarder.
*
* @param forwarderAddress the address of the forwarder to toggle.
* @param autoFlush whether to autoflush erc721 tokens
*/
function setAutoFlush721(address forwarderAddress, bool autoFlush)
external
onlySigner
{
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.setAutoFlush721(autoFlush);
}
/**
* Sets the autoflush 721 parameter on the forwarder.
*
* @param forwarderAddress the address of the forwarder to toggle.
* @param autoFlush whether to autoflush erc1155 tokens
*/
function setAutoFlush1155(address forwarderAddress, bool autoFlush)
external
onlySigner
{
IForwarder forwarder = IForwarder(forwarderAddress);
forwarder.setAutoFlush1155(autoFlush);
}
/**
* Do common multisig verification for both eth sends and erc20token transfers
*
* @param toAddress the destination address to send an outgoing transaction
* @param operationHash see Data Formats
* @param signature see Data Formats
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* returns address that has created the signature
*/
function verifyMultiSig(
address toAddress,
bytes32 operationHash,
bytes calldata signature,
uint256 expireTime,
uint256 sequenceId
) private returns (address) {
address otherSigner = recoverAddressFromSignature(operationHash, signature);
// Verify if we are in safe mode. In safe mode, the wallet can only send to signers
require(!safeMode || signers[toAddress], 'External transfer in safe mode');
// Verify that the transaction has not expired
require(expireTime >= block.timestamp, 'Transaction expired');
// Try to insert the sequence ID. Will revert if the sequence id was invalid
tryInsertSequenceId(sequenceId);
require(signers[otherSigner], 'Invalid signer');
require(otherSigner != msg.sender, 'Signers cannot be equal');
return otherSigner;
}
/**
* ERC721 standard callback function for when a ERC721 is transfered.
*
* @param _operator The address of the nft contract
* @param _from The address of the sender
* @param _tokenId The token id of the nft
* @param _data Additional data with no specified format, sent in call to `_to`
*/
function onERC721Received(
address _operator,
address _from,
uint256 _tokenId,
bytes memory _data
) external virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
/**
* @inheritdoc ERC1155Holder
*/
function onERC1155Received(
address _operator,
address _from,
uint256 id,
uint256 value,
bytes memory data
) public virtual override returns (bytes4) {
return this.onERC1155Received.selector;
}
/**
* @inheritdoc ERC1155Holder
*/
function onERC1155BatchReceived(
address _operator,
address _from,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual override returns (bytes4) {
return this.onERC1155BatchReceived.selector;
}
/**
* Irrevocably puts contract into safe mode. When in this mode, transactions may only be sent to signing addresses.
*/
function activateSafeMode() external onlySigner {
safeMode = true;
emit SafeModeActivated(msg.sender);
}
/**
* Gets signer's address using ecrecover
* @param operationHash see Data Formats
* @param signature see Data Formats
* returns address recovered from the signature
*/
function recoverAddressFromSignature(
bytes32 operationHash,
bytes memory signature
) private pure returns (address) {
require(signature.length == 65, 'Invalid signature - wrong length');
// We need to unpack the signature, which is given as an array of 65 bytes (like eth.sign)
bytes32 r;
bytes32 s;
uint8 v;
// solhint-disable-next-line
assembly {
r := mload(add(signature, 32))
s := mload(add(signature, 64))
v := and(mload(add(signature, 65)), 255)
}
if (v < 27) {
v += 27; // Ethereum versions are 27 or 28 as opposed to 0 or 1 which is submitted by some signing libs
}
// protect against signature malleability
// S value must be in the lower half orader
// reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/051d340171a93a3d401aaaea46b4b62fa81e5d7c/contracts/cryptography/ECDSA.sol#L53
require(
uint256(s) <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
"ECDSA: invalid signature 's' value"
);
// note that this returns 0 if the signature is invalid
// Since 0x0 can never be a signer, when the recovered signer address
// is checked against our signer list, that 0x0 will cause an invalid signer failure
return ecrecover(operationHash, v, r, s);
}
/**
* Verify that the sequence id has not been used before and inserts it. Throws if the sequence ID was not accepted.
* We collect a window of up to 10 recent sequence ids, and allow any sequence id that is not in the window and
* greater than the minimum element in the window.
* @param sequenceId to insert into array of stored ids
*/
function tryInsertSequenceId(uint256 sequenceId) private {
// Keep a pointer to the lowest value element in the window
uint256 lowestValueIndex = 0;
// fetch recentSequenceIds into memory for function context to avoid unnecessary sloads
uint256[SEQUENCE_ID_WINDOW_SIZE]
memory _recentSequenceIds = recentSequenceIds;
for (uint256 i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
require(_recentSequenceIds[i] != sequenceId, 'Sequence ID already used');
if (_recentSequenceIds[i] < _recentSequenceIds[lowestValueIndex]) {
lowestValueIndex = i;
}
}
// The sequence ID being used is lower than the lowest value in the window
// so we cannot accept it as it may have been used before
require(
sequenceId > _recentSequenceIds[lowestValueIndex],
'Sequence ID below window'
);
// Block sequence IDs which are much higher than the lowest value
// This prevents people blocking the contract by using very large sequence IDs quickly
require(
sequenceId <=
(_recentSequenceIds[lowestValueIndex] + MAX_SEQUENCE_ID_INCREASE),
'Sequence ID above maximum'
);
recentSequenceIds[lowestValueIndex] = sequenceId;
}
/**
* Gets the next available sequence ID for signing when using executeAndConfirm
* returns the sequenceId one higher than the highest currently stored
*/
function getNextSequenceId() external view returns (uint256) {
uint256 highestSequenceId = 0;
for (uint256 i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
if (recentSequenceIds[i] > highestSequenceId) {
highestSequenceId = recentSequenceIds[i];
}
}
return highestSequenceId + 1;
}
}{
"evmVersion": "paris",
"optimizer": {
"enabled": true,
"runs": 1000
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"msgSender","type":"address"},{"indexed":false,"internalType":"address","name":"otherSigner","type":"address"},{"indexed":false,"internalType":"bytes32","name":"operation","type":"bytes32"}],"name":"BatchTransacted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"BatchTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"Deposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"msgSender","type":"address"}],"name":"SafeModeActivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"msgSender","type":"address"},{"indexed":false,"internalType":"address","name":"otherSigner","type":"address"},{"indexed":false,"internalType":"bytes32","name":"operation","type":"bytes32"},{"indexed":false,"internalType":"address","name":"toAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"Transacted","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"activateSafeMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"forwarderAddress","type":"address"},{"internalType":"address","name":"tokenContractAddress","type":"address"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"batchFlushERC1155ForwarderTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"forwarderAddress","type":"address"},{"internalType":"address","name":"tokenContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"flushERC1155ForwarderTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"forwarderAddress","type":"address"},{"internalType":"address","name":"tokenContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"flushERC721ForwarderTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"forwarderAddress","type":"address"},{"internalType":"address","name":"tokenContractAddress","type":"address"}],"name":"flushForwarderTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getNextSequenceId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"allowedSigners","type":"address[]"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"safeMode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"toAddress","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"expireTime","type":"uint256"},{"internalType":"uint256","name":"sequenceId","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"sendMultiSig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"uint256","name":"expireTime","type":"uint256"},{"internalType":"uint256","name":"sequenceId","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"sendMultiSigBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"toAddress","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"address","name":"tokenContractAddress","type":"address"},{"internalType":"uint256","name":"expireTime","type":"uint256"},{"internalType":"uint256","name":"sequenceId","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"sendMultiSigToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"forwarderAddress","type":"address"},{"internalType":"bool","name":"autoFlush","type":"bool"}],"name":"setAutoFlush1155","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"forwarderAddress","type":"address"},{"internalType":"bool","name":"autoFlush","type":"bool"}],"name":"setAutoFlush721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"signers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$386,260.36
Net Worth in ETH
169.524817
Token Allocations
SQD
98.57%
AIRENA
1.42%
ETH
0.01%
Multichain Portfolio | 35 Chains
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.