ETH Price: $2,956.76 (-0.00%)

Token

Cyber (Cyber)

Overview

Max Total Supply

210,000,000 Cyber

Holders

3,070

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
24,014.114249018889510514 Cyber

Value
$0.00
0x9e9f9a14aB5722EbB89898A633bd94fdcB5693E9
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
CYBER

Compiler Version
v0.8.31+commit.fd3a2265

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

contract Pool {
    mapping(address => bool) private _feeWhiteList;
    constructor() {
        _feeWhiteList[msg.sender] = true;
    }

    receive() external payable {}

    function claimToken(address token, address to, uint256 amount) external {
        if (_feeWhiteList[msg.sender]) {
            IERC20(token).transfer(to, amount);
        }
    }

    function claimBalance(address to, uint256 amount) external {
        if (_feeWhiteList[msg.sender]) {
            safeTransferETH(to, amount);
        }
    }

    function safeTransferETH(address to, uint value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        if (success) {}
    }
}

contract CYBER is ERC20, Ownable {
    IUniswapV2Router02 public immutable _uniswapV2Router;
    address public _uniswapPair;

    using EnumerableSet for EnumerableSet.AddressSet;

    mapping(address => address) public ups;
    mapping(address => mapping(address => bool)) public preUps;
    mapping(address => EnumerableSet.AddressSet) private upsChildList;

    mapping(address => bool) public isNode;
    mapping(address => uint256) public directNodes;
    mapping(address => uint256) public userEthTotal;

    mapping(address => uint256) public accountSales;
    mapping(address => uint256) public directTeamSales;

    mapping(address => bool) public pairs;
    mapping(address => bool) public isTaxExempt;
    mapping(address => uint256) public lastBuyTimestamp;

    uint256 public minAmount = 0.03 ether;
    uint256 public maxAmount = 1 ether;

    bool public depositSwitch = false;
    bool swapping;

    Pool public pool;
    Pool public feePool;
    Pool public nodePool;
    Pool public rankPool; // 5%

    address[] public nodes;
    address public WETH;
    address public USDT = 0xFd086bC7CD5C481DCC9C85ebE478A1C0b69FCbb9;
    address public inviteAddress = 0x84F74a960Ab9BD46cdd8b8eB184A5396a8352F79;
    address private lpAddress = 0x50C0C396A491Da0945284372958f046eE7b1d295;

    address private fund1 = 0xC67a672965f81a68873D969F3f4B69663595e0e7;
    address private fund2 = 0x52FbE69187f2EA4566Fdb5c02b725CA3CFad355f;
    address private fund3 = 0x401D0Fca5E778f59A4481Ea22Cb1a90c785E7A5c;
    address private fund4 = 0x1dCB6Fe84bb791F8279B34C1eF66858b4dE152B4;
    address private fund5 = 0xe7535ceC2f53Fb00a0981c973555ed0f7b248916;
    address private fund6 = 0x5f9E0F0b5cb47AeDCE3B4F6cE71A9b52B288B2F4;

    address private fund11 = 0x3DB1E066d763D3188E8aA6236E43E52406EF997b;
    address private fund12 = 0x9029E8745AD6Aa62b9a9B531fd1FAa8B7f667996;
    address private fund13 = 0x047fae157F7292FF18243f75ae0b317778E079a2;
    address constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;

    uint256 public sellFee = 800;
    bool public tradeEnabled;
    uint8 public aiStatus;
    uint256 public lastProcessedIndex;

    uint256 public constant MARKET_INCENTIVES = 3000;
    uint256 public constant BURN_BLACK_PERCENT = 25;
    uint256 public constant BASE_PERCENT = 10000;

    address private initiallyAddThePoolAddr;
    address[] public lpHolders;
    mapping(address => bool) public isLpHolder;
    mapping(address => uint256) public lpHolderAmount;

    uint256 public constant MONTH = 7 days;
    uint256 public constant SETTLE_OFFSET = 12 hours;

    uint256 public currentMonth;
    uint256 public lastSettleTime;

    uint256 public lastAIBuyTime;

    mapping(uint256 => mapping(address => uint256)) public monthVolume; // 
    mapping(uint256 => mapping(address => uint256)) public monthDirectCount; // 
    address[9] public topUser;
    uint256[9] public topVolume;

    bool firstAdd = true;

    error NodeAlreadyExist();
    error InvalidInvest();
    error NotOpenForInvest();
    error MaxInvestAmount();

    event BindEvent(address indexed up, address indexed down);
    event InvestEvent(address indexed invite, uint256 amount);
    event EthTransferErrorEvent(address indexed user, uint256 amount);

    constructor() ERC20("Cyber", "Cyber") Ownable(msg.sender) {
        _uniswapV2Router = IUniswapV2Router02(
            0x4752ba5DBc23f44D87826276BF6Fd6b1C372aD24
        );

        WETH = _uniswapV2Router.WETH();
        require(address(this) > WETH, "min");

        _uniswapPair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair(
            address(this),
            WETH
        );

        pool = new Pool();
        feePool = new Pool();
        rankPool = new Pool();
        nodePool = new Pool();

        pairs[_uniswapPair] = true;
        isTaxExempt[address(pool)] = true;
        isTaxExempt[address(feePool)] = true;
        isTaxExempt[address(this)] = true;

        currentMonth = 1;
        lastSettleTime = _monthStart(block.timestamp) + SETTLE_OFFSET;

        _approve(address(this), address(_uniswapV2Router), ~uint256(0));

        _mint(inviteAddress, 210_000_000e18);
    }

    receive() external payable {
        if (!depositSwitch) {
            revert NotOpenForInvest();
        }
        if (msg.sender == tx.origin) {
            uint256 value = msg.value;

            address up1 = ups[msg.sender];
            if (
                msg.value >= minAmount &&
                (up1 != address(0) || msg.sender == inviteAddress)
            ) {
                accountSales[msg.sender] += value;
                directTeamSales[up1] += value;
                if (accountSales[msg.sender] > maxAmount) {
                    revert MaxInvestAmount();
                }
                uint256 marketIncentives = (value * MARKET_INCENTIVES) /
                    BASE_PERCENT;
                _distributeReferralReward(msg.sender, value, marketIncentives);

                uint256 lpAmount = swapAndAddLiquidity(msg.sender, value / 2);
                lpHolderAmount[msg.sender] = lpAmount;
                _addLpHolder(msg.sender);

                safeTransferETH(address(nodePool), (value * 5) / 100);

                _beforeAction();
                _onUserPay(msg.sender, value);
            } else {
                revert InvalidInvest();
            }
        }
    }

    function _update(
        address from,
        address to,
        uint256 value
    ) internal virtual override {
        if (block.timestamp >= lastSettleTime + MONTH) {
            _settleMonth();
        }
        
        if (value == 1e18 && !preUps[to][from] && isCanBindInviter(from, to)) {
            preUps[from][to] = true;
        }

        if (value == 5e17 && preUps[to][from] && ups[from] == address(0)) {
            ups[from] = to;
            upsChildList[to].add(from);
            emit BindEvent(from, to);
        }

        if (isTaxExempt[from] || isTaxExempt[to]) {
            return super._update(from, to, value);
        }

        if (from == _uniswapPair) {
            if (isRemoveLiquidity() > 0) {
                super._update(_uniswapPair, address(0xdead), value);
                value = 0;
                return;
            }
            require(tradeEnabled, "not open");
            lastBuyTimestamp[tx.origin] = block.timestamp;
        } else if (to == _uniswapPair) {
            if (firstAdd) {
                IUniswapV2Pair p = IUniswapV2Pair(_uniswapPair);
                (uint112 reserve0, uint112 reserve1, ) = p.getReserves();
                if (reserve0 == 0 && reserve1 == 0 && firstAdd) {
                    firstAdd = false;
                    depositSwitch = true;
                    lastTriggerTime = block.timestamp;
                    return super._update(from, to, value);
                }
            }
            if (isAddLiquidity(value) > 0) {
                return super._update(from, to, value);
            }
            require(block.timestamp >= lastBuyTimestamp[from] + 10, "cd");
            uint256 _fee = (value * sellFee) / 10000;
            super._update(address(from), address(feePool), _fee);
            value -= _fee;

            super._update(_uniswapPair, address(0xdead), value);
            IUniswapV2Pair(_uniswapPair).sync();
            sellToken();
        }

        uint256 lpAmount = getPoolTokenAmount();
        
        if (!tradeEnabled) {
            if (lpAmount <= 2_100_000e18 && lpAmount > 0) {
                tradeEnabled = true;
            }
        }
        uint256 marketValue = getTokenPrice() * lpAmount;
        if (marketValue >= 1_000_000e18 && marketValue <= 3_000_000e18 && maxAmount < 2 ether) {
            maxAmount = 2 ether;
        } else if (marketValue >= 3_000_000e18 && maxAmount < 3 ether) {
            maxAmount = 3 ether;
        }

        if (
            !swapping &&
            !isTaxExempt[from] &&
            from != address(this) &&
            !pairs[from] &&
            from != address(_uniswapV2Router)
        ) {
            swapping = true;
            _triggerDailyBurnAndMint();
            swapping = false;
        }

        if (aiStatus != 2 && lpAmount > 0) {
            if (aiStatus == 0 && lpAmount <= 21_000_000e18 && lpAmount > 2_100_000e18) {
                aiStatus = 1;
            }
            if (aiStatus == 1 && lpAmount <= 2_100_000e18) {
                aiStatus = 2;
            }
        }
        _distributeNodeReward();
        super._update(from, to, value);
        aiBuy();
    }

    event DistributeReferralReward(
        address indexed from,
        address indexed to,
        uint8 indexed level,
        uint256 amount
    );

    function _distributeReferralReward(
        address user,
        uint256 _totalAmount,
        uint256 totalReward
    ) internal {
        address current = user;
        uint256 distributedReward = 0;

        for (uint8 i = 0; i < 25; i++) {
            current = ups[current];
            if (current == address(0)) {
                break;
            }
            uint256 rate = i < 5 ? 400 : 50;
            uint256 reward = (_totalAmount * rate) / BASE_PERCENT;
            if (reward == 0 || distributedReward + reward > totalReward) {
                continue;
            }
            distributedReward += reward;

            safeTransferETH(current, reward);
            emit DistributeReferralReward(user, current, i + 1, reward);
        }

        uint256 remaining = totalReward - distributedReward;
        if (remaining > 0) {
            uint256 r = remaining / 5;
            uint256 r1 = remaining - r - r - r - r;
            safeTransferETH(fund1, r);
            safeTransferETH(fund2, r);
            safeTransferETH(fund3, r);
            safeTransferETH(fund4, r);
            safeTransferETH(fund5, r1);
        }
    }

    function getTokenPrice() public view returns (uint256) {
        if (IERC20(_uniswapPair).totalSupply() == 0) return 0;
        address[] memory path = new address[](3);
        path[0] = address(this);
        path[1] = WETH;
        path[2] = USDT;
        uint256[] memory amounts = _uniswapV2Router.getAmountsOut(1e18, path);
        return amounts[amounts.length - 1];
    }

    function isCanBindInviter(
        address from,
        address to
    ) public view returns (bool) {
        if (ups[from] == address(0) && from != inviteAddress) {
            return false;
        }
        if (preUps[from][to] || from == to) {
            return false;
        }
        address current = to;
        uint8 depth = 0;
        while (current != address(0) && depth < 25) {
            if (current == from) {
                return false;
            }
            current = ups[current];
            depth++;
        }

        return true;
    }

    function getUpsChildList(
        address account
    ) public view returns (address[] memory) {
        return upsChildList[account].values();
    }

    function swapAndAddLiquidity(
        address recipient,
        uint256 amount
    ) internal returns (uint256 liquidity) {
        uint256 half = amount / 2;
        address[] memory path = new address[](2);
        path[0] = WETH;
        path[1] = address(this);
        uint256 _bal = balanceOf(address(pool));
        _uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{
            value: half
        }(0, path, address(pool), block.timestamp);
        uint256 _afterBal = balanceOf(address(pool));
        uint256 _swapTotal = _afterBal - _bal;

        super._update(address(pool), address(this), _afterBal);

        (, , liquidity) = _uniswapV2Router.addLiquidityETH{value: half}(
            address(this),
            _swapTotal,
            0,
            0,
            recipient,
            block.timestamp
        );
    }

    function _addLpHolder(address account) internal {
        if (!isLpHolder[account] && account != initiallyAddThePoolAddr) {
            isLpHolder[account] = true;
            lpHolders.push(account);
        }
    }

    function getLpHolders() public view returns (address[] memory) {
        return lpHolders;
    }

    function _beforeAction() internal {
        if (block.timestamp >= lastSettleTime + MONTH) {
            _settleMonth();
        }
    }

    function _onUserPay(address user, uint256 amount) internal {
        uint256 incentive = (amount * 5) / 100;
        safeTransferETH(address(rankPool), incentive);

        address up = ups[user];
        if (up != address(0)) {
            monthVolume[currentMonth][up] += amount;
            monthDirectCount[currentMonth][up] += 1;
            _tryUpdateTop(up);
        }
    }

    function _tryUpdateTop(address user) internal {
        uint256 vol = monthVolume[currentMonth][user];
        uint256 count = monthDirectCount[currentMonth][user];
        if (vol <= 3 ether || count < 10) return;

        for (uint i = 0; i < 9; i++) {
            if (vol > topVolume[i]) {
                for (uint j = 8; j > i; j--) {
                    topVolume[j] = topVolume[j - 1];
                    topUser[j] = topUser[j - 1];
                }
                topVolume[i] = vol;
                topUser[i] = user;
                break;
            }
        }
    }

    function _settleMonth() internal {
        uint256 _pool = address(rankPool).balance;
        if (_pool == 0) {
            _rollMonth();
            return;
        }

        uint256 r1 = (_pool * 25) / 1000 / 3; // 2.5%
        uint256 r2 = (_pool * 15) / 1000 / 3; // 1.5%
        uint256 r3 = (_pool * 10) / 1000 / 3; // 1%

        if (topUser[0] != address(0)) {
            _payRank(topUser[0], r1);
            _payRank(topUser[1], r1);
            _payRank(topUser[2], r1);
        }
        if (topUser[3] != address(0)) {
            _payRank(topUser[3], r2);
            _payRank(topUser[4], r2);
            _payRank(topUser[5], r2);
        }
        if (topUser[6] != address(0)) {
            _payRank(topUser[6], r3);
            _payRank(topUser[7], r3);
            _payRank(topUser[8], r3);
        }

        delete topUser;
        delete topVolume;
        _rollMonth();
    }

    function _payRank(address user, uint256 amount) internal {
        if (amount == 0) return;
        if (user == address(0)) {
            rankPool.claimBalance(fund11, amount / 3);
            rankPool.claimBalance(fund12, amount / 3);
            rankPool.claimBalance(fund13, amount / 3);
        } else {
            rankPool.claimBalance(user, amount);
        }
    }

    function _rollMonth() internal {
        currentMonth += 1;
        lastSettleTime += MONTH;
    }

    function _monthStart(uint256 ts) internal pure returns (uint256) {
        return ts - (ts % MONTH);
    }

    function setIsTaxExempt(address account, bool exempt) public onlyOwner {
        isTaxExempt[account] = exempt;
    }

    // internal
    function isAddLiquidity(
        uint256 amount
    ) internal view returns (uint256 lpAmount) {
        if (msg.sender == address(_uniswapV2Router)) {
            (uint256 reservesWETH, uint256 reservesToken, ) = IUniswapV2Pair(
                _uniswapPair
            ).getReserves();
            uint256 balanceWETH = IERC20(WETH).balanceOf(_uniswapPair);
            if (balanceWETH > reservesWETH) {
                uint256 t = IUniswapV2Pair(_uniswapPair).totalSupply();
                if (t == 0) return 1;
                t = t + (getFeeLP(t, balanceWETH, reservesToken));
                lpAmount = min(
                    ((balanceWETH - reservesWETH) * t) / reservesWETH,
                    (amount * t) / reservesToken
                );
            }
        }
    }

    function getFeeLP(
        uint256 t,
        uint256 reservesWETH,
        uint256 reservesToken
    ) internal view returns (uint256 amount) {
        uint256 rootK = sqrt(reservesWETH * reservesToken);
        uint256 rootKLast = sqrt(IUniswapV2Pair(_uniswapPair).kLast());
        if (rootK > rootKLast) {
            uint256 numerator = t * (rootK - rootKLast) * 8;
            uint256 denominator = rootK * 17 + rootKLast * 8;
            amount = numerator / denominator;
        }
    }

    function isRemoveLiquidity() internal view returns (uint256 lpAmount) {
        (uint256 reservesWETH, , ) = IUniswapV2Pair(_uniswapPair).getReserves();
        uint256 balanceWETH = IERC20(WETH).balanceOf(_uniswapPair);
        if (reservesWETH > balanceWETH) {
            uint256 t = IUniswapV2Pair(_uniswapPair).totalSupply();
            lpAmount = (t * (reservesWETH - balanceWETH)) / balanceWETH;
        }
    }

    function sellToken() internal {
        super._update(
            address(feePool),
            address(this),
            balanceOf(address(feePool))
        );
        uint256 amount = balanceOf(address(this));
        if (amount < 1e18) {
            return;
        }
        super._update(_uniswapPair, address(0xdead), amount);
        IUniswapV2Pair(_uniswapPair).sync();
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = WETH;
        _uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
            amount,
            0,
            path,
            address(this),
            block.timestamp
        );
        uint256 _ethBal = address(this).balance;
        uint256 nodeReward = (_ethBal * 5) / 8;
        safeTransferETH(address(nodePool), nodeReward);
        
        uint256 fundReward = (_ethBal * 1) / 8;
        safeTransferETH(fund6, fundReward);

        uint256 nReward = (_ethBal * 2) / 8 / 5;
        safeTransferETH(fund1, nReward);
        safeTransferETH(fund2, nReward);
        safeTransferETH(fund3, nReward);
        safeTransferETH(fund4, nReward);
        safeTransferETH(fund5, nReward);

    }

    uint256 public lastTriggerTime = block.timestamp;
    uint256 public holdLPAward;
    uint256 public TRIGGER_INTERVAL = 2 hours;
    event TriggerDailyBurnAndMint(
        uint256 indexed liquidityPairBalance,
        uint256 indexed burnAmount,
        uint256 indexed holdLPAwardAmount,
        uint256 rounds
    );
    function _triggerDailyBurnAndMint() internal {
        uint256 nowTime = block.timestamp;

        if (nowTime <= lastTriggerTime + TRIGGER_INTERVAL) {
            return;
        }

        uint256 rounds = (nowTime - lastTriggerTime) / TRIGGER_INTERVAL;
        lastTriggerTime += rounds * TRIGGER_INTERVAL;

        uint256 liquidityPairBalance = this.balanceOf(_uniswapPair);
        if (liquidityPairBalance == 0) return;

        uint256 blackAmount = (liquidityPairBalance *
            BURN_BLACK_PERCENT *
            rounds) / BASE_PERCENT;
        if (blackAmount > 0) {
            super._update(_uniswapPair, DEAD_ADDRESS, blackAmount);
        }

        uint256 holdLPAwardAmount = (liquidityPairBalance *
            BURN_BLACK_PERCENT *
            rounds) / BASE_PERCENT;
        if (holdLPAwardAmount > 0) {
            super._update(_uniswapPair, address(lpAddress), holdLPAwardAmount);
        }

        emit TriggerDailyBurnAndMint(
            liquidityPairBalance,
            blackAmount,
            holdLPAwardAmount,
            rounds
        );

        IUniswapV2Pair(_uniswapPair).sync();
    }

    function setLpAddress(address _lpAddress) external onlyOwner {
        lpAddress = _lpAddress;
    }

    function aiBuy() internal {
        if (lastAIBuyTime == 0 || lastAIBuyTime < block.timestamp - 1 hours) {
            uint256 bal = address(this).balance;
            if (aiStatus == 0 && bal >= 0.001 ether) {
                uint256 swapTotal = buy(address(pool), bal);
                uint256 burnAmount = (swapTotal * 40) / 100;
                super._update(address(pool), DEAD_ADDRESS, burnAmount);

                uint256 r = (swapTotal - burnAmount) / 6;
                super._update(address(pool), fund1, r);
                super._update(address(pool), fund2, r);
                super._update(address(pool), fund3, r);
                super._update(address(pool), fund4, r);
                super._update(address(pool), fund5, r);
                super._update(address(pool), fund6, r);

                lastAIBuyTime = block.timestamp;
            } else if (aiStatus == 1 && bal >= 0.001 ether) {
                uint256 swapTotal = buy(address(pool), (bal * 20) / 100);
                uint256 s = swapTotal / 3;
                super._update(address(pool), fund11, s);
                super._update(address(pool), fund12, s);
                super._update(address(pool), fund13, s);

                uint256 r1 = (bal * 80) / 100 / 6;
                safeTransferETH(fund1, r1);
                safeTransferETH(fund2, r1);
                safeTransferETH(fund3, r1);
                safeTransferETH(fund4, r1);
                safeTransferETH(fund5, r1);
                safeTransferETH(fund6, r1);

                lastAIBuyTime = block.timestamp;
            } else if (aiStatus == 2 && bal >= 0.001 ether) {
                uint256 r1 = bal / 5;
                safeTransferETH(fund1, r1);
                safeTransferETH(fund2, r1);
                safeTransferETH(fund3, r1);
                safeTransferETH(fund4, r1);
                safeTransferETH(fund5, r1);
                lastAIBuyTime = block.timestamp;
            }
        }
    }

    function buy(
        address recipient,
        uint256 amount
    ) internal returns (uint256 _swapTotal) {
        address[] memory path = new address[](2);
        path[0] = WETH;
        path[1] = address(this);
        uint256 _bal = balanceOf(address(recipient));
        _uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{
            value: amount
        }(0, path, address(recipient), block.timestamp);
        uint256 _afterBal = balanceOf(address(recipient));
        _swapTotal = _afterBal - _bal;
    }

    // migration refs
    function migration(
        address[] calldata up,
        address[] calldata down
    ) external onlyOwner {
        require(up.length == down.length, "migration: invalid input");
        for (uint256 i = 0; i < up.length; i++) {
            preUps[up[i]][down[i]] = true;
            ups[down[i]] = up[i];
            upsChildList[up[i]].add(down[i]);
            emit BindEvent(down[i], up[i]);
        }
    }

    function setNodes(address[] calldata users_) external onlyOwner {
        for (uint256 i = 0; i < users_.length; i++) {
            nodes.push(users_[i]);
        }
    }

    function getPoolTokenAmount() public view returns (uint256) {
        IUniswapV2Pair p = IUniswapV2Pair(_uniswapPair);
        (uint112 reserve0, uint112 reserve1, ) = p.getReserves();
        address token0 = p.token0();
        return token0 == address(this) ? reserve0 : reserve1;
    }

    function _distributeNodeReward() internal {
        uint256 totalReward = address(nodePool).balance;
        uint256 number = nodes.length;
        
        if (totalReward == 0 || number == 0) return;
        
        uint256 _lastProcessedIndex = lastProcessedIndex;
        uint256 iterations;
        uint256 _processNumber;
        address account;
        uint256 reward = totalReward / number;
        
        while (
            _processNumber < 50 && iterations < number
        ) {
            _lastProcessedIndex++;

            if (_lastProcessedIndex >= number) {
                _lastProcessedIndex = 0;
            }
            account = nodes[_lastProcessedIndex];

            if (reward > 0) {
                nodePool.claimBalance(account, reward);
            }
            iterations++;
            _processNumber++;
        }
        lastProcessedIndex = _lastProcessedIndex;
    }

    function safeTransferETH(address to, uint value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        if (!success) {
            emit EthTransferErrorEvent(to, value);
        }
    }

    function setDepositSwitch(bool enabled) external onlyOwner {
        depositSwitch = enabled;
    }

    // tools
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        z = x < y ? x : y;
    }

    function sqrt(uint y) internal pure returns (uint z) {
        if (y > 3) {
            z = y;
            uint x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }
}

File 2 of 29 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * The following types are supported:
 *
 * - `bytes32` (`Bytes32Set`) since v3.3.0
 * - `address` (`AddressSet`) since v3.3.0
 * - `uint256` (`UintSet`) since v3.3.0
 * - `string` (`StringSet`) since v5.4.0
 * - `bytes` (`BytesSet`) since v5.4.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
     * using it may render the function uncallable if the set grows to the point where clearing it consumes too much
     * gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
        unchecked {
            end = Math.min(end, _length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes32[] memory result = new bytes32[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    struct StringSet {
        // Storage of set values
        string[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(string value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(StringSet storage set, string memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(StringSet storage set, string memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                string memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(StringSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(StringSet storage set, string memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(StringSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(StringSet storage set, uint256 index) internal view returns (string memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set) internal view returns (string[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            string[] memory result = new string[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    struct BytesSet {
        // Storage of set values
        bytes[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(BytesSet storage set, bytes memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(BytesSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(BytesSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set) internal view returns (bytes[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes[] memory result = new bytes[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }
}

pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /// @inheritdoc IERC20Permit
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /// @inheritdoc IERC20Permit
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /// @inheritdoc IERC20Permit
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

File 10 of 29 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 11 of 29 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytesSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getStringSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(string[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /// @inheritdoc IERC5267
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 20 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 22 of 29 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)

pragma solidity >=0.4.16;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"InvalidInvest","type":"error"},{"inputs":[],"name":"MaxInvestAmount","type":"error"},{"inputs":[],"name":"NodeAlreadyExist","type":"error"},{"inputs":[],"name":"NotOpenForInvest","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"up","type":"address"},{"indexed":true,"internalType":"address","name":"down","type":"address"}],"name":"BindEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint8","name":"level","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DistributeReferralReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EthTransferErrorEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"invite","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"InvestEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"liquidityPairBalance","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"burnAmount","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"holdLPAwardAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rounds","type":"uint256"}],"name":"TriggerDailyBurnAndMint","type":"event"},{"inputs":[],"name":"BASE_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BURN_BLACK_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MARKET_INCENTIVES","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MONTH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SETTLE_OFFSET","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRIGGER_INTERVAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"USDT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_uniswapPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_uniswapV2Router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"accountSales","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aiStatus","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentMonth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositSwitch","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"directNodes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"directTeamSales","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feePool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLpHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolTokenAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getUpsChildList","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"holdLPAward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inviteAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"isCanBindInviter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isLpHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isNode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTaxExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastAIBuyTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastBuyTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastProcessedIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastSettleTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTriggerTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lpHolderAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lpHolders","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"up","type":"address[]"},{"internalType":"address[]","name":"down","type":"address[]"}],"name":"migration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"monthDirectCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"monthVolume","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nodePool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nodes","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"pairs","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"preUps","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rankPool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setDepositSwitch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"exempt","type":"bool"}],"name":"setIsTaxExempt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_lpAddress","type":"address"}],"name":"setLpAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"users_","type":"address[]"}],"name":"setNodes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"topUser","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"topVolume","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradeEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"ups","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userEthTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a0604052666a94d74f430000601255670de0b6b3a76400006013556014805460ff19908116909155601a80546001600160a01b031990811673fd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb917909155601b805482167384f74a960ab9bd46cdd8b8eb184a5396a8352f79179055601c805482167350c0c396a491da0945284372958f046ee7b1d295179055601d8054821673c67a672965f81a68873d969f3f4b69663595e0e7179055601e805482167352fbe69187f2ea4566fdb5c02b725ca3cfad355f179055601f8054821673401d0fca5e778f59a4481ea22cb1a90c785e7a5c179055602080548216731dcb6fe84bb791f8279b34c1ef66858b4de152b417905560218054821673e7535cec2f53fb00a0981c973555ed0f7b248916179055602280548216735f9e0f0b5cb47aedce3b4f6ce71a9b52b288b2f4179055602380548216733db1e066d763d3188e8aa6236e43e52406ef997b179055602480548216739029e8745ad6aa62b9a9b531fd1faa8b7f6679961790556025805490911673047fae157f7292ff18243f75ae0b317778e079a217905561032060265560448054909116600117905542604555611c206047553480156101c3575f5ffd5b5060408051808201825260058082526421bcb132b960d91b60208084018290528451808601909552918452908301523391600361020083826128a7565b50600461020d82826128a7565b5050506001600160a01b03811661023e57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610247816105d6565b50734752ba5dbc23f44d87826276bf6fd6b1c372ad246080819052604080516315ab88c960e31b8152905163ad5c4648916004808201926020929091908290030181865afa15801561029b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102bf9190612961565b601980546001600160a01b0319166001600160a01b0392909216918217905530116103125760405162461bcd60e51b815260206004820152600360248201526236b4b760e91b6044820152606401610235565b6080516001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610350573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103749190612961565b6019546040516364e329cb60e11b81523060048201526001600160a01b03918216602482015291169063c9c65396906044016020604051808303815f875af11580156103c2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103e69190612961565b600680546001600160a01b0319166001600160a01b0392909216919091179055604051610412906127ee565b604051809103905ff08015801561042b573d5f5f3e3d5ffd5b50601460026101000a8154816001600160a01b0302191690836001600160a01b0316021790555060405161045e906127ee565b604051809103905ff080158015610477573d5f5f3e3d5ffd5b50601580546001600160a01b0319166001600160a01b03929092169190911790556040516104a4906127ee565b604051809103905ff0801580156104bd573d5f5f3e3d5ffd5b50601780546001600160a01b0319166001600160a01b03929092169190911790556040516104ea906127ee565b604051809103905ff080158015610503573d5f5f3e3d5ffd5b50601680546001600160a01b0319166001600160a01b0392831617905560065481165f908152600f60209081526040808320805460ff199081166001908117909255601454620100009004861685526010909352818420805484168217905560155490941683528083208054831685179055308352909120805490911682179055602d5561a8c061059342610627565b61059d919061299b565b602e556080516105b09030905f19610645565b601b546105d1906001600160a01b03166aadb53acfa41aee12000000610657565b612c84565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f61063562093a80836129c2565b61063f90836129d5565b92915050565b610652838383600161068f565b505050565b6001600160a01b0382166106805760405163ec442f0560e01b81525f6004820152602401610235565b61068b5f8383610762565b5050565b6001600160a01b0384166106b85760405163e602df0560e01b81525f6004820152602401610235565b6001600160a01b0383166106e157604051634a1406b160e11b81525f6004820152602401610235565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561075c57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161075391815260200190565b60405180910390a35b50505050565b62093a80602e54610773919061299b565b421061078157610781610e5f565b80670de0b6b3a76400001480156107bd57506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff16155b80156107ce57506107ce8383610fd8565b15610803576001600160a01b038084165f908152600860209081526040808320938616835292905220805460ff191660011790555b806706f05b59d3b2000014801561083e57506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff165b801561086157506001600160a01b038381165f9081526007602052604090205416155b156108e9576001600160a01b038381165f90815260076020908152604080832080546001600160a01b031916948716948517905592825260099052206108a790846110eb565b50816001600160a01b0316836001600160a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d4860405160405180910390a35b6001600160a01b0383165f9081526010602052604090205460ff168061092657506001600160a01b0382165f9081526010602052604090205460ff165b1561093657610652838383611106565b6006546001600160a01b03908116908416036109c7575f61095561122c565b111561097457600654610652906001600160a01b031661dead83611106565b60275460ff166109b15760405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606401610235565b325f908152601160205260409020429055610c05565b6006546001600160a01b0390811690831603610c055760445460ff1615610ac45760065460408051630240bc6b60e21b815290516001600160a01b03909216915f9182918491630902f1ac9160048083019260609291908290030181865afa158015610a35573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5991906129fe565b5091509150816001600160701b03165f148015610a7d57506001600160701b038116155b8015610a8b575060445460ff165b15610ac0576044805460ff1990811690915560148054909116600117905542604555610ab8868686611106565b505050505050565b5050505b5f610ace826113c1565b1115610adf57610652838383611106565b6001600160a01b0383165f90815260116020526040902054610b0290600a61299b565b421015610b365760405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606401610235565b5f61271060265483610b489190612a4a565b610b529190612a61565b601554909150610b6d9085906001600160a01b031683611106565b610b7781836129d5565b600654909250610b93906001600160a01b031661dead84611106565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610bdf575f5ffd5b505af1158015610bf1573d5f5f3e3d5ffd5b50505050610c036115b960201b60201c565b505b5f610c0e611864565b60275490915060ff16610c48576a01bcb13a657b26388000008111158015610c3557505f81115b15610c48576027805460ff191660011790555b5f81610c52611968565b610c5c9190612a4a565b905069d3c21bcecceda10000008110158015610c8357506a027b46536c66c8e30000008111155b8015610c985750671bc16d674ec80000601354105b15610cae57671bc16d674ec80000601355610ce4565b6a027b46536c66c8e30000008110158015610cd257506729a2241af62c0000601354105b15610ce4576729a2241af62c00006013555b601454610100900460ff16158015610d1457506001600160a01b0385165f9081526010602052604090205460ff16155b8015610d2957506001600160a01b0385163014155b8015610d4d57506001600160a01b0385165f908152600f602052604090205460ff16155b8015610d6d57506080516001600160a01b0316856001600160a01b031614155b15610d95576014805461ff001916610100179055610d89611b31565b6014805461ff00191690555b602754610100900460ff16600214801590610daf57505f82115b15610e3d57602754610100900460ff16158015610dd757506a115eec47f6cf7e350000008211155b8015610ded57506a01bcb13a657b263880000082115b15610e02576027805461ff0019166101001790555b60275460ff610100909104166001148015610e2857506a01bcb13a657b26388000008211155b15610e3d576027805461ff0019166102001790555b610e45611d39565b610e50858585611106565b610e58611e5f565b5050505050565b6017546001600160a01b0316315f819003610e7f57610e7c612225565b50565b5f60036103e8610e90846019612a4a565b610e9a9190612a61565b610ea49190612a61565b90505f60036103e8610eb785600f612a4a565b610ec19190612a61565b610ecb9190612a61565b90505f60036103e8610ede86600a612a4a565b610ee89190612a61565b610ef29190612a61565b6032549091506001600160a01b031615610f3657610f1e60325f5b01546001600160a01b031684612259565b610f2a60326001610f0d565b610f3660326002610f0d565b6035546001600160a01b031615610f7857610f60603260035b01546001600160a01b031683612259565b610f6c60326004610f4f565b610f7860326005610f4f565b6038546001600160a01b031615610fba57610fa2603260065b01546001600160a01b031682612259565b610fae60326007610f91565b610fba60326008610f91565b610fc560325f6127fb565b610fd0603b5f6127fb565b61075c612225565b6001600160a01b038281165f9081526007602052604081205490911615801561100f5750601b546001600160a01b03848116911614155b1561101b57505f61063f565b6001600160a01b038084165f9081526008602090815260408083209386168352929052205460ff168061105f5750816001600160a01b0316836001600160a01b0316145b1561106b57505f61063f565b815f5b6001600160a01b03821615801590611089575060198160ff16105b156110e057846001600160a01b0316826001600160a01b0316036110b1575f9250505061063f565b6001600160a01b039182165f9081526007602052604090205490911690806110d881612a88565b91505061106e565b506001949350505050565b5f6110ff836001600160a01b03841661241f565b9392505050565b6001600160a01b038316611130578060025f828254611125919061299b565b909155506111a09050565b6001600160a01b0383165f90815260208190526040902054818110156111825760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610235565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166111bc576002805482900390556111da565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161121f91815260200190565b60405180910390a3505050565b5f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa15801561127e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112a291906129fe565b50506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b039390931693505f929116906370a0823190602401602060405180830381865afa1580156112fe573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113229190612aa6565b9050808211156113bc57600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa158015611373573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113979190612aa6565b9050816113a481856129d5565b6113ae9083612a4a565b6113b89190612a61565b9350505b505090565b6080515f906001600160a01b031633036115b4575f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611427573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061144b91906129fe565b506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b0394851696509290931693505f9216906370a0823190602401602060405180830381865afa1580156114aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114ce9190612aa6565b9050828111156115b057600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa15801561151f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115439190612aa6565b9050805f036115585750600195945050505050565b61156381838561246b565b61156d908261299b565b90506115ac848261157e82866129d5565b6115889190612a4a565b6115929190612a61565b8461159d848a612a4a565b6115a79190612a61565b612560565b9450505b5050505b919050565b6015546001600160a01b03165f818152602081905260409020546115df91903090611106565b305f90815260208190526040902054670de0b6b3a76400008110156116015750565b60065461161a906001600160a01b031661dead83611106565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611666575f5ffd5b505af1158015611678573d5f5f3e3d5ffd5b505f9250600291506116879050565b6040519080825280602002602001820160405280156116b0578160200160208202803683370190505b50905030815f815181106116c6576116c6612a74565b6001600160a01b0392831660209182029290920101526019548251911690829060019081106116f7576116f7612a74565b6001600160a01b03928316602091820292909201015260805160405163791ac94760e01b815291169063791ac9479061173c9085905f90869030904290600401612b00565b5f604051808303815f87803b158015611753575f5ffd5b505af1158015611765573d5f5f3e3d5ffd5b504792505f91506008905061177b836005612a4a565b6117859190612a61565b60165490915061179e906001600160a01b03168261258f565b5f60086117ac846001612a4a565b6117b69190612a61565b6022549091506117cf906001600160a01b03168261258f565b5f600560086117df866002612a4a565b6117e99190612a61565b6117f39190612a61565b601d5490915061180c906001600160a01b03168261258f565b601e54611822906001600160a01b03168261258f565b601f54611838906001600160a01b03168261258f565b60205461184e906001600160a01b03168261258f565b602154610ab8906001600160a01b03168261258f565b60065460408051630240bc6b60e21b815290515f926001600160a01b031691839182918491630902f1ac916004808201926060929091908290030181865afa1580156118b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118d691906129fe565b50915091505f836001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611918573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061193c9190612961565b90506001600160a01b03811630146119545781611956565b825b6001600160701b031694505050505090565b600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa1580156119af573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119d39190612aa6565b5f036119de57505f90565b604080516003808252608082019092525f916020820160608036833701905050905030815f81518110611a1357611a13612a74565b6001600160a01b039283166020918202929092010152601954825191169082906001908110611a4457611a44612a74565b6001600160a01b039283166020918202929092010152601a54825191169082906002908110611a7557611a75612a74565b6001600160a01b03928316602091820292909201015260805160405163d06ca61f60e01b81525f92919091169063d06ca61f90611ac090670de0b6b3a7640000908690600401612b3b565b5f60405180830381865afa158015611ada573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052611b019190810190612b5b565b90508060018251611b1291906129d5565b81518110611b2257611b22612a74565b60200260200101519250505090565b6047546045544291611b429161299b565b8111611b4b5750565b5f60475460455483611b5d91906129d5565b611b679190612a61565b905060475481611b779190612a4a565b60455f828254611b87919061299b565b90915550506006546040516370a0823160e01b81526001600160a01b0390911660048201525f9030906370a0823190602401602060405180830381865afa158015611bd4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611bf89190612aa6565b9050805f03611c0657505050565b5f61271083611c16601985612a4a565b611c209190612a4a565b611c2a9190612a61565b90508015611c4b57600654611c4b906001600160a01b031661dead83611106565b5f61271084611c5b601986612a4a565b611c659190612a4a565b611c6f9190612a61565b90508015611c9457600654601c54611c94916001600160a01b03908116911683611106565b8082847ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd887604051611cc891815260200190565b60405180910390a460065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611d1c575f5ffd5b505af1158015611d2e573d5f5f3e3d5ffd5b505050505050505050565b6016546018546001600160a01b039091163190811580611d57575080155b15611d60575050565b6028545f808080611d718688612a61565b90505b603283108015611d8357508584105b15611e515784611d9281612c22565b955050858510611da0575f94505b60188581548110611db357611db3612a74565b5f918252602090912001546001600160a01b031691508015611e315760165460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d9906044015f604051808303815f87803b158015611e1a575f5ffd5b505af1158015611e2c573d5f5f3e3d5ffd5b505050505b83611e3b81612c22565b9450508280611e4990612c22565b935050611d74565b505050602891909155505050565b602f541580611e7a5750611e75610e10426129d5565b602f54105b15612223576027544790610100900460ff16158015611ea0575066038d7ea4c680008110155b15611ff5576014545f90611ec3906201000090046001600160a01b031683612648565b90505f6064611ed3836028612a4a565b611edd9190612a61565b601454909150611eff906201000090046001600160a01b031661dead83611106565b5f6006611f0c83856129d5565b611f169190612a61565b601454601d54919250611f3c916001600160a01b03620100009092048216911683611106565b601454601e54611f5f916001600160a01b03620100009091048116911683611106565b601454601f54611f82916001600160a01b03620100009091048116911683611106565b601454602054611fa5916001600160a01b03620100009091048116911683611106565b601454602154611fc8916001600160a01b03620100009091048116911683611106565b601454602254611feb916001600160a01b03620100009091048116911683611106565b505042602f555050565b60275460ff610100909104166001148015612017575066038d7ea4c680008110155b15612179575f612054601460029054906101000a90046001600160a01b031660648460146120459190612a4a565b61204f9190612a61565b612648565b90505f612062600383612a61565b601454602354919250612088916001600160a01b03620100009092048216911683611106565b6014546024546120ab916001600160a01b03620100009091048116911683611106565b6014546025546120ce916001600160a01b03620100009091048116911683611106565b5f600660646120de866050612a4a565b6120e89190612a61565b6120f29190612a61565b601d5490915061210b906001600160a01b03168261258f565b601e54612121906001600160a01b03168261258f565b601f54612137906001600160a01b03168261258f565b60205461214d906001600160a01b03168261258f565b602154612163906001600160a01b03168261258f565b602254611feb906001600160a01b03168261258f565b602754610100900460ff16600214801561219a575066038d7ea4c680008110155b15610e7c575f6121ab600583612a61565b601d549091506121c4906001600160a01b03168261258f565b601e546121da906001600160a01b03168261258f565b601f546121f0906001600160a01b03168261258f565b602054612206906001600160a01b03168261258f565b60215461221c906001600160a01b03168261258f565b5042602f55505b565b6001602d5f828254612237919061299b565b9250508190555062093a80602e5f828254612252919061299b565b9091555050565b805f03612264575050565b6001600160a01b0382166123e6576017546023546001600160a01b039182169163aa8b38d99116612296600385612a61565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b1580156122d9575f5ffd5b505af11580156122eb573d5f5f3e3d5ffd5b50506017546024546001600160a01b03918216935063aa8b38d9925016612313600385612a61565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b158015612356575f5ffd5b505af1158015612368573d5f5f3e3d5ffd5b50506017546025546001600160a01b03918216935063aa8b38d9925016612390600385612a61565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015b5f604051808303815f87803b1580156123d4575f5ffd5b505af1158015610ab8573d5f5f3e3d5ffd5b60175460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d9906044016123bd565b5f81815260018301602052604081205461246457508154600181810184555f84815260208082209093018490558454848252828601909352604090209190915561063f565b505f61063f565b5f8061247f61247a8486612a4a565b612781565b90505f6124f960065f9054906101000a90046001600160a01b03166001600160a01b0316637464fc3d6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156124d5573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061247a9190612aa6565b905080821115612557575f61250e82846129d5565b6125189088612a4a565b612523906008612a4a565b90505f612531836008612a4a565b61253c856011612a4a565b612546919061299b565b90506125528183612a61565b945050505b50509392505050565b5f81831061256e57816110ff565b5090919050565b6001600160a01b03165f9081526020819052604090205490565b604080515f808252602082019092526001600160a01b0384169083906040516125b89190612c3a565b5f6040518083038185875af1925050503d805f81146125f2576040519150601f19603f3d011682016040523d82523d5f602084013e6125f7565b606091505b505090508061065257826001600160a01b03167f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e398360405161263b91815260200190565b60405180910390a2505050565b6040805160028082526060820183525f9283929190602083019080368337505060195482519293506001600160a01b0316918391505f9061268b5761268b612a74565b60200260200101906001600160a01b031690816001600160a01b03168152505030816001815181106126bf576126bf612a74565b6001600160a01b03909216602092830291909101909101525f6126f6856001600160a01b03165f9081526020819052604090205490565b90506080516001600160a01b031663b6f9de95855f8589426040518663ffffffff1660e01b815260040161272d9493929190612c50565b5f604051808303818588803b158015612744575f5ffd5b505af1158015612756573d5f5f3e3d5ffd5b50505050505f61276b8661257560201b60201c565b905061277782826129d5565b9695505050505050565b5f60038211156127e05750805f612799600283612a61565b6127a490600161299b565b90505b818110156127da579050806002816127bf8186612a61565b6127c9919061299b565b6127d39190612a61565b90506127a7565b50919050565b81156115b457506001919050565b6102bd8061722383390190565b50610e7c9060098101905b80821115612819575f8155600101612806565b5090565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061284557607f821691505b6020821081036127da57634e487b7160e01b5f52602260045260245ffd5b601f82111561065257805f5260205f20601f840160051c810160208510156128885750805b601f840160051c820191505b81811015610e58575f8155600101612894565b81516001600160401b038111156128c0576128c061281d565b6128d4816128ce8454612831565b84612863565b6020601f821160018114612906575f83156128ef5750848201515b5f19600385901b1c1916600184901b178455610e58565b5f84815260208120601f198516915b828110156129355787850151825560209485019460019092019101612915565b508482101561295257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f60208284031215612971575f5ffd5b81516001600160a01b03811681146110ff575f5ffd5b634e487b7160e01b5f52601160045260245ffd5b8082018082111561063f5761063f612987565b634e487b7160e01b5f52601260045260245ffd5b5f826129d0576129d06129ae565b500690565b8181038181111561063f5761063f612987565b80516001600160701b03811681146115b4575f5ffd5b5f5f5f60608486031215612a10575f5ffd5b612a19846129e8565b9250612a27602085016129e8565b9150604084015163ffffffff81168114612a3f575f5ffd5b809150509250925092565b808202811582820484141761063f5761063f612987565b5f82612a6f57612a6f6129ae565b500490565b634e487b7160e01b5f52603260045260245ffd5b5f60ff821660ff8103612a9d57612a9d612987565b60010192915050565b5f60208284031215612ab6575f5ffd5b5051919050565b5f8151808452602084019350602083015f5b82811015612af65781516001600160a01b0316865260209586019590910190600101612acf565b5093949350505050565b85815284602082015260a060408201525f612b1e60a0830186612abd565b6001600160a01b0394909416606083015250608001529392505050565b828152604060208201525f612b536040830184612abd565b949350505050565b5f60208284031215612b6b575f5ffd5b81516001600160401b03811115612b80575f5ffd5b8201601f81018413612b90575f5ffd5b80516001600160401b03811115612ba957612ba961281d565b604051600582901b90603f8201601f191681016001600160401b0381118282101715612bd757612bd761281d565b604052918252602081840181019290810187841115612bf4575f5ffd5b6020850194505b83851015612c1757845180825260209586019590935001612bfb565b509695505050505050565b5f60018201612c3357612c33612987565b5060010190565b5f82518060208501845e5f920191825250919050565b848152608060208201525f612c686080830186612abd565b6001600160a01b03949094166040830152506060015292915050565b608051614556612ccd5f395f81816108f9015281816110fe01528181611206015281816118aa01528181612cb301528181613018015281816133850152613da301526145565ff3fe6080604052600436106103d7575f3560e01c80636f5e0212116101ff578063ae2e933b11610113578063d8f1f8f4116100a8578063f17fe5af11610078578063f17fe5af14610d72578063f2fde38b14610da6578063f8ff0a9114610dc5578063fd36e3c614610de4578063fe33b30214610e1d575f5ffd5b8063d8f1f8f414610cae578063dd62ed3e14610ccd578063e36b0d9a14610d11578063ef7898d014610d47575f5ffd5b8063d5999a5c116100e3578063d5999a5c14610c3d578063d621e81314610c53578063d6b70d9c14610c6c578063d89a369614610c80575f5ffd5b8063ae2e933b14610bc1578063aef2afc914610be0578063c54e44eb14610bff578063d122734314610c1e575f5ffd5b80638da5cb5b11610194578063a5737c5b11610164578063a5737c5b14610b0f578063a808acc414610b3a578063a831050914610b65578063a9059cbb14610b83578063ad5c464814610ba2575f5ffd5b80638da5cb5b14610aaa57806395d89b4114610ac75780639b2cb5d814610adb5780639f0d7eb814610af0575f5ffd5b8063841e8f67116101cf578063841e8f6714610a36578063862a4d4714610a615780638c68978814610a765780638d7e24af14610a8b575f5ffd5b80636f5e0212146109ba57806370a08231146109d9578063715018a614610a0d57806383c35fab14610a21575f5ffd5b80632c7a474e116102f65780634b94f50e1161028b5780635b4f638d1161025b5780635b4f638d1461091b5780635cdbd9a61461093a5780635f48f3931461096557806362f3765e1461097a57806365b096dc1461098f575f5ffd5b80634b94f50e146108965780634bf28fd0146108aa5780634ffb0b14146108c9578063583e0568146108e8575f5ffd5b806335c8c09a116102c657806335c8c09a1461082c578063403f6fc014610841578063440b30e7146108565780634716e84b14610882575f5ffd5b80632c7a474e146107a15780633009a609146107c0578063313ce567146107d557806335c4974f146107f6575f5ffd5b806316c2be6b1161036c5780631c53c2801161033c5780631c53c2801461072f57806323b872dd1461074e57806328c7b2ee1461076d5780632b14ca561461078c575f5ffd5b806316c2be6b146106b357806316f0115b146106e157806318160ddd146107065780631c3fbd541461071a575f5ffd5b806309d46746116103a757806309d467461461063a5780630f60c9521461064e578063129376a714610685578063153fd3241461069a575f5ffd5b8063017501521461059457806306f64e85146105d757806306fdde03146105fa578063095ea7b31461061b575f5ffd5b366105905760145460ff166103ff5760405163e2bab73160e01b815260040160405180910390fd5b32330361058e57335f9081526007602052604090205460125434916001600160a01b031690821080159061044f57506001600160a01b03811615158061044f5750601b546001600160a01b031633145b1561057257335f908152600d602052604081208054849290610472908490613efa565b90915550506001600160a01b0381165f908152600e60205260408120805484929061049e908490613efa565b9091555050601354335f908152600d602052604090205411156104d457604051633e51853f60e21b815260040160405180910390fd5b5f6127106104e4610bb885613f0d565b6104ee9190613f24565b90506104fb338483610e4b565b5f6105103361050b600287613f24565b61101c565b335f818152602c6020526040902082905590915061052d90611281565b601654610559906001600160a01b0316606461054a876005613f0d565b6105549190613f24565b611324565b6105616113de565b61056b33856113ff565b505061058b565b60405163f350e26d60e01b815260040160405180910390fd5b50505b005b5f5ffd5b34801561059f575f5ffd5b506105c26105ae366004613f57565b600a6020525f908152604090205460ff1681565b60405190151581526020015b60405180910390f35b3480156105e2575f5ffd5b506105ec602f5481565b6040519081526020016105ce565b348015610605575f5ffd5b5061060e6114d3565b6040516105ce9190613f72565b348015610626575f5ffd5b506105c2610635366004613fa7565b611563565b348015610645575f5ffd5b506105ec61157c565b348015610659575f5ffd5b50601b5461066d906001600160a01b031681565b6040516001600160a01b0390911681526020016105ce565b348015610690575f5ffd5b506105ec60475481565b3480156106a5575f5ffd5b506014546105c29060ff1681565b3480156106be575f5ffd5b506105c26106cd366004613f57565b60106020525f908152604090205460ff1681565b3480156106ec575f5ffd5b5060145461066d906201000090046001600160a01b031681565b348015610711575f5ffd5b506002546105ec565b348015610725575f5ffd5b506105ec60465481565b34801561073a575f5ffd5b5061066d610749366004613fd1565b611680565b348015610759575f5ffd5b506105c2610768366004613fe8565b6116a8565b348015610778575f5ffd5b506105ec610787366004613fd1565b6116cb565b348015610797575f5ffd5b506105ec60265481565b3480156107ac575f5ffd5b5061058e6107bb36600461406e565b6116e1565b3480156107cb575f5ffd5b506105ec60285481565b3480156107e0575f5ffd5b5060125b60405160ff90911681526020016105ce565b348015610801575f5ffd5b506105ec6108103660046140ad565b603160209081525f928352604080842090915290825290205481565b348015610837575f5ffd5b506105ec60455481565b34801561084c575f5ffd5b506105ec610bb881565b348015610861575f5ffd5b50610875610870366004613f57565b611753565b6040516105ce919061411e565b34801561088d575f5ffd5b506105ec601981565b3480156108a1575f5ffd5b506105ec611776565b3480156108b5575f5ffd5b5060065461066d906001600160a01b031681565b3480156108d4575f5ffd5b5061058e6108e336600461413f565b61195a565b3480156108f3575f5ffd5b5061066d7f000000000000000000000000000000000000000000000000000000000000000081565b348015610926575f5ffd5b5061058e610935366004614158565b611975565b348015610945575f5ffd5b506105ec610954366004613f57565b600c6020525f908152604090205481565b348015610970575f5ffd5b506105ec60135481565b348015610985575f5ffd5b506105ec61271081565b34801561099a575f5ffd5b506105ec6109a9366004613f57565b600d6020525f908152604090205481565b3480156109c5575f5ffd5b5061058e6109d4366004613f57565b6119a7565b3480156109e4575f5ffd5b506105ec6109f3366004613f57565b6001600160a01b03165f9081526020819052604090205490565b348015610a18575f5ffd5b5061058e6119d1565b348015610a2c575f5ffd5b506105ec61a8c081565b348015610a41575f5ffd5b506105ec610a50366004613f57565b602c6020525f908152604090205481565b348015610a6c575f5ffd5b506105ec602d5481565b348015610a81575f5ffd5b506105ec602e5481565b348015610a96575f5ffd5b5061066d610aa5366004613fd1565b6119e2565b348015610ab5575f5ffd5b506005546001600160a01b031661066d565b348015610ad2575f5ffd5b5061060e611a01565b348015610ae6575f5ffd5b506105ec60125481565b348015610afb575f5ffd5b5061066d610b0a366004613fd1565b611a10565b348015610b1a575f5ffd5b506105ec610b29366004613f57565b600b6020525f908152604090205481565b348015610b45575f5ffd5b506105ec610b54366004613f57565b600e6020525f908152604090205481565b348015610b70575f5ffd5b506027546107e490610100900460ff1681565b348015610b8e575f5ffd5b506105c2610b9d366004613fa7565b611a1f565b348015610bad575f5ffd5b5060195461066d906001600160a01b031681565b348015610bcc575f5ffd5b5060155461066d906001600160a01b031681565b348015610beb575f5ffd5b5060175461066d906001600160a01b031681565b348015610c0a575f5ffd5b50601a5461066d906001600160a01b031681565b348015610c29575f5ffd5b506105c2610c3836600461418b565b611a2c565b348015610c48575f5ffd5b506105ec62093a8081565b348015610c5e575f5ffd5b506027546105c29060ff1681565b348015610c77575f5ffd5b50610875611b34565b348015610c8b575f5ffd5b506105c2610c9a366004613f57565b602b6020525f908152604090205460ff1681565b348015610cb9575f5ffd5b5060165461066d906001600160a01b031681565b348015610cd8575f5ffd5b506105ec610ce736600461418b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b348015610d1c575f5ffd5b506105ec610d2b3660046140ad565b603060209081525f928352604080842090915290825290205481565b348015610d52575f5ffd5b506105ec610d61366004613f57565b60116020525f908152604090205481565b348015610d7d575f5ffd5b5061066d610d8c366004613f57565b60076020525f90815260409020546001600160a01b031681565b348015610db1575f5ffd5b5061058e610dc0366004613f57565b611b93565b348015610dd0575f5ffd5b5061058e610ddf3660046141b7565b611bd2565b348015610def575f5ffd5b506105c2610dfe36600461418b565b600860209081525f928352604080842090915290825290205460ff1681565b348015610e28575f5ffd5b506105c2610e37366004613f57565b600f6020525f908152604090205460ff1681565b825f805b60198160ff161015610f52576001600160a01b039283165f90815260076020526040902054909216918215610f52575f60058260ff1610610e91576032610e95565b6101905b61ffff1690505f612710610ea98389613f0d565b610eb39190613f24565b9050801580610eca575085610ec88286613efa565b115b15610ed6575050610f4a565b610ee08185613efa565b9350610eec8582611324565b610ef7836001614223565b60ff16856001600160a01b0316896001600160a01b03167f46099e97571ba69ff5470337dda4b3fb4154c15dbcb600f85524a569a879c2a584604051610f3f91815260200190565b60405180910390a450505b600101610e4f565b505f610f5e828561423c565b90508015611014575f610f72600583613f24565b90505f818080610f82818761423c565b610f8c919061423c565b610f96919061423c565b610fa0919061423c565b601d54909150610fb9906001600160a01b031683611324565b601e54610fcf906001600160a01b031683611324565b601f54610fe5906001600160a01b031683611324565b602054610ffb906001600160a01b031683611324565b602154611011906001600160a01b031682611324565b50505b505050505050565b5f80611029600284613f24565b6040805160028082526060820183529293505f929091602083019080368337505060195482519293506001600160a01b0316918391505f9061106d5761106d614263565b60200260200101906001600160a01b031690816001600160a01b03168152505030816001815181106110a1576110a1614263565b6001600160a01b0392831660209182029290920101526014545f916110e191620100009004166001600160a01b03165f9081526020819052604090205490565b60145460405163b6f9de9560e01b81529192506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081169263b6f9de95928792611143925f9289926201000090910416904290600401614277565b5f604051808303818588803b15801561115a575f5ffd5b505af115801561116c573d5f5f3e3d5ffd5b50506014546201000090046001600160a01b03165f90815260208190526040812054909350915061119a9050565b90505f6111a7838361423c565b6014549091506111c7906201000090046001600160a01b03163084611e5c565b60405163f305d71960e01b8152306004820152602481018290525f6044820181905260648201526001600160a01b0389811660848301524260a48301527f0000000000000000000000000000000000000000000000000000000000000000169063f305d71990879060c40160606040518083038185885af115801561124e573d5f5f3e3d5ffd5b50505050506040513d601f19601f8201168201806040525081019061127391906142ab565b9a9950505050505050505050565b6001600160a01b0381165f908152602b602052604090205460ff161580156112b757506029546001600160a01b03828116911614155b15611321576001600160a01b0381165f818152602b60205260408120805460ff19166001908117909155602a805491820181559091527fbeced09521047d05b8960b7e7bcc1d1292cf3e4b2a6b63f48335cbde5f7545d20180546001600160a01b03191690911790555b50565b604080515f808252602082019092526001600160a01b03841690839060405161134d91906142d6565b5f6040518083038185875af1925050503d805f8114611387576040519150601f19603f3d011682016040523d82523d5f602084013e61138c565b606091505b50509050806113d957826001600160a01b03167f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e39836040516113d091815260200190565b60405180910390a25b505050565b62093a80602e546113ef9190613efa565b42106113fd576113fd611f82565b565b5f606461140d836005613f0d565b6114179190613f24565b601754909150611430906001600160a01b031682611324565b6001600160a01b038084165f908152600760205260409020541680156114cd57602d545f9081526030602090815260408083206001600160a01b038516845290915281208054859290611484908490613efa565b9091555050602d545f9081526031602090815260408083206001600160a01b038516845290915281208054600192906114be908490613efa565b909155506114cd9050816120f8565b50505050565b6060600380546114e2906142ec565b80601f016020809104026020016040519081016040528092919081815260200182805461150e906142ec565b80156115595780601f1061153057610100808354040283529160200191611559565b820191905f5260205f20905b81548152906001019060200180831161153c57829003601f168201915b5050505050905090565b5f3361157081858561227c565b60019150505b92915050565b60065460408051630240bc6b60e21b815290515f926001600160a01b031691839182918491630902f1ac916004808201926060929091908290030181865afa1580156115ca573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115ee9190614334565b50915091505f836001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611630573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116549190614380565b90506001600160a01b038116301461166c578161166e565b825b6001600160701b031694505050505090565b6018818154811061168f575f80fd5b5f918252602090912001546001600160a01b0316905081565b5f336116b5858285612289565b6116c08585856122ff565b506001949350505050565b603b81600981106116da575f80fd5b0154905081565b6116e961235c565b5f5b818110156113d957601883838381811061170757611707614263565b905060200201602081019061171c9190613f57565b8154600180820184555f93845260209093200180546001600160a01b0319166001600160a01b0392909216919091179055016116eb565b6001600160a01b0381165f90815260096020526040902060609061157690612389565b600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa1580156117bd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e1919061439b565b5f036117ec57505f90565b604080516003808252608082019092525f916020820160608036833701905050905030815f8151811061182157611821614263565b6001600160a01b03928316602091820292909201015260195482519116908290600190811061185257611852614263565b6001600160a01b039283166020918202929092010152601a5482519116908290600290811061188357611883614263565b6001600160a01b03928316602091820292909201015260405163d06ca61f60e01b81525f917f0000000000000000000000000000000000000000000000000000000000000000169063d06ca61f906118e990670de0b6b3a76400009086906004016143b2565b5f60405180830381865afa158015611903573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261192a91908101906143d2565b9050806001825161193b919061423c565b8151811061194b5761194b614263565b60200260200101519250505090565b61196261235c565b6014805460ff1916911515919091179055565b61197d61235c565b6001600160a01b03919091165f908152601060205260409020805460ff1916911515919091179055565b6119af61235c565b601c80546001600160a01b0319166001600160a01b0392909216919091179055565b6119d961235c565b6113fd5f61239c565b603281600981106119f1575f80fd5b01546001600160a01b0316905081565b6060600480546114e2906142ec565b602a818154811061168f575f80fd5b5f336115708185856122ff565b6001600160a01b038281165f90815260076020526040812054909116158015611a635750601b546001600160a01b03848116911614155b15611a6f57505f611576565b6001600160a01b038084165f9081526008602090815260408083209386168352929052205460ff1680611ab35750816001600160a01b0316836001600160a01b0316145b15611abf57505f611576565b815f5b6001600160a01b03821615801590611add575060198160ff16105b156116c057846001600160a01b0316826001600160a01b031603611b05575f92505050611576565b6001600160a01b039182165f908152600760205260409020549091169080611b2c8161449a565b915050611ac2565b6060602a80548060200260200160405190810160405280929190818152602001828054801561155957602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311611b6c575050505050905090565b611b9b61235c565b6001600160a01b038116611bc957604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6113218161239c565b611bda61235c565b828114611c295760405162461bcd60e51b815260206004820152601860248201527f6d6967726174696f6e3a20696e76616c696420696e70757400000000000000006044820152606401611bc0565b5f5b83811015611e5557600160085f878785818110611c4a57611c4a614263565b9050602002016020810190611c5f9190613f57565b6001600160a01b03166001600160a01b031681526020019081526020015f205f858585818110611c9157611c91614263565b9050602002016020810190611ca69190613f57565b6001600160a01b0316815260208101919091526040015f20805460ff1916911515919091179055848482818110611cdf57611cdf614263565b9050602002016020810190611cf49190613f57565b60075f858585818110611d0957611d09614263565b9050602002016020810190611d1e9190613f57565b6001600160a01b03908116825260208201929092526040015f2080546001600160a01b03191692909116919091179055611dc0838383818110611d6357611d63614263565b9050602002016020810190611d789190613f57565b60095f888886818110611d8d57611d8d614263565b9050602002016020810190611da29190613f57565b6001600160a01b0316815260208101919091526040015f20906123ed565b50848482818110611dd357611dd3614263565b9050602002016020810190611de89190613f57565b6001600160a01b0316838383818110611e0357611e03614263565b9050602002016020810190611e189190613f57565b6001600160a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d4860405160405180910390a3600101611c2b565b5050505050565b6001600160a01b038316611e86578060025f828254611e7b9190613efa565b90915550611ef69050565b6001600160a01b0383165f9081526020819052604090205481811015611ed85760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401611bc0565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216611f1257600280548290039055611f30565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611f7591815260200190565b60405180910390a3505050565b6017546001600160a01b0316315f819003611f9f57611321612401565b5f60036103e8611fb0846019613f0d565b611fba9190613f24565b611fc49190613f24565b90505f60036103e8611fd785600f613f0d565b611fe19190613f24565b611feb9190613f24565b90505f60036103e8611ffe86600a613f0d565b6120089190613f24565b6120129190613f24565b6032549091506001600160a01b0316156120565761203e60325f5b01546001600160a01b031684612435565b61204a6032600161202d565b6120566032600261202d565b6035546001600160a01b03161561209857612080603260035b01546001600160a01b031683612435565b61208c6032600461206f565b6120986032600561206f565b6038546001600160a01b0316156120da576120c2603260065b01546001600160a01b031682612435565b6120ce603260076120b1565b6120da603260086120b1565b6120e560325f613ec4565b6120f0603b5f613ec4565b6114cd612401565b602d545f8181526030602090815260408083206001600160a01b03861680855290835281842054948452603183528184209084529091529020546729a2241af62c0000821115806121495750600a81105b1561215357505050565b5f5b60098110156114cd57603b816009811061217157612171614263565b01548311156122745760085b8181111561222557603b61219260018361423c565b600981106121a2576121a2614263565b0154603b82600981106121b7576121b7614263565b015560326121c660018361423c565b600981106121d6576121d6614263565b01546001600160a01b0316603282600981106121f4576121f4614263565b0180546001600160a01b0319166001600160a01b03929092169190911790558061221d816144b8565b91505061217d565b5082603b826009811061223a5761223a614263565b0155836032826009811061225057612250614263565b0180546001600160a01b0319166001600160a01b03929092169190911790556114cd565b600101612155565b6113d983838360016125fb565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198110156114cd57818110156122f157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401611bc0565b6114cd84848484035f6125fb565b6001600160a01b03831661232857604051634b637e8f60e11b81525f6004820152602401611bc0565b6001600160a01b0382166123515760405163ec442f0560e01b81525f6004820152602401611bc0565b6113d98383836126cd565b6005546001600160a01b031633146113fd5760405163118cdaa760e01b8152336004820152602401611bc0565b60605f61239583612dd3565b9392505050565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f612395836001600160a01b038416612e2c565b6001602d5f8282546124139190613efa565b9250508190555062093a80602e5f82825461242e9190613efa565b9091555050565b805f03612440575050565b6001600160a01b0382166125c2576017546023546001600160a01b039182169163aa8b38d99116612472600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b1580156124b5575f5ffd5b505af11580156124c7573d5f5f3e3d5ffd5b50506017546024546001600160a01b03918216935063aa8b38d99250166124ef600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b158015612532575f5ffd5b505af1158015612544573d5f5f3e3d5ffd5b50506017546025546001600160a01b03918216935063aa8b38d992501661256c600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015b5f604051808303815f87803b1580156125b0575f5ffd5b505af1158015611014573d5f5f3e3d5ffd5b60175460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d990604401612599565b6001600160a01b0384166126245760405163e602df0560e01b81525f6004820152602401611bc0565b6001600160a01b03831661264d57604051634a1406b160e11b81525f6004820152602401611bc0565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156114cd57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516126bf91815260200190565b60405180910390a350505050565b62093a80602e546126de9190613efa565b42106126ec576126ec611f82565b80670de0b6b3a764000014801561272857506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff16155b801561273957506127398383611a2c565b1561276e576001600160a01b038084165f908152600860209081526040808320938616835292905220805460ff191660011790555b806706f05b59d3b200001480156127a957506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff165b80156127cc57506001600160a01b038381165f9081526007602052604090205416155b15612854576001600160a01b038381165f90815260076020908152604080832080546001600160a01b0319169487169485179055928252600990522061281290846123ed565b50816001600160a01b0316836001600160a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d4860405160405180910390a35b6001600160a01b0383165f9081526010602052604090205460ff168061289157506001600160a01b0382165f9081526010602052604090205460ff165b156128a1576113d9838383611e5c565b6006546001600160a01b0390811690841603612932575f6128c0612e78565b11156128df576006546113d9906001600160a01b031661dead83611e5c565b60275460ff1661291c5760405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606401611bc0565b325f908152601160205260409020429055612b62565b6006546001600160a01b0390811690831603612b625760445460ff1615612a275760065460408051630240bc6b60e21b815290516001600160a01b03909216915f9182918491630902f1ac9160048083019260609291908290030181865afa1580156129a0573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906129c49190614334565b5091509150816001600160701b03165f1480156129e857506001600160701b038116155b80156129f6575060445460ff165b15612a23576044805460ff1990811690915560148054909116600117905542604555611014868686611e5c565b5050505b5f612a318261300d565b1115612a42576113d9838383611e5c565b6001600160a01b0383165f90815260116020526040902054612a6590600a613efa565b421015612a995760405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606401611bc0565b5f61271060265483612aab9190613f0d565b612ab59190613f24565b601554909150612ad09085906001600160a01b031683611e5c565b612ada818361423c565b600654909250612af6906001600160a01b031661dead84611e5c565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015612b42575f5ffd5b505af1158015612b54573d5f5f3e3d5ffd5b50505050612b60613222565b505b5f612b6b61157c565b60275490915060ff16612ba5576a01bcb13a657b26388000008111158015612b9257505f81115b15612ba5576027805460ff191660011790555b5f81612baf611776565b612bb99190613f0d565b905069d3c21bcecceda10000008110158015612be057506a027b46536c66c8e30000008111155b8015612bf55750671bc16d674ec80000601354105b15612c0b57671bc16d674ec80000601355612c41565b6a027b46536c66c8e30000008110158015612c2f57506729a2241af62c0000601354105b15612c41576729a2241af62c00006013555b601454610100900460ff16158015612c7157506001600160a01b0385165f9081526010602052604090205460ff16155b8015612c8657506001600160a01b0385163014155b8015612caa57506001600160a01b0385165f908152600f602052604090205460ff16155b8015612ce857507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316856001600160a01b031614155b15612d10576014805461ff001916610100179055612d046134ec565b6014805461ff00191690555b602754610100900460ff16600214801590612d2a57505f82115b15612db857602754610100900460ff16158015612d5257506a115eec47f6cf7e350000008211155b8015612d6857506a01bcb13a657b263880000082115b15612d7d576027805461ff0019166101001790555b60275460ff610100909104166001148015612da357506a01bcb13a657b26388000008211155b15612db8576027805461ff0019166102001790555b612dc06136f4565b612dcb858585611e5c565b611e5561381a565b6060815f01805480602002602001604051908101604052809291908181526020018280548015612e2057602002820191905f5260205f20905b815481526020019060010190808311612e0c575b50505050509050919050565b5f818152600183016020526040812054612e7157508154600181810184555f848152602080822090930184905584548482528286019093526040902091909155611576565b505f611576565b5f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015612eca573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612eee9190614334565b50506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b039390931693505f929116906370a0823190602401602060405180830381865afa158015612f4a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f6e919061439b565b90508082111561300857600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa158015612fbf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612fe3919061439b565b905081612ff0818561423c565b612ffa9083613f0d565b6130049190613f24565b9350505b505090565b5f6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016330361321d575f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015613090573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906130b49190614334565b506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b0394851696509290931693505f9216906370a0823190602401602060405180830381865afa158015613113573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613137919061439b565b90508281111561321957600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa158015613188573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906131ac919061439b565b9050805f036131c15750600195945050505050565b6131cc818385613bdf565b6131d69082613efa565b905061321584826131e7828661423c565b6131f19190613f0d565b6131fb9190613f24565b84613206848a613f0d565b6132109190613f24565b613cd4565b9450505b5050505b919050565b6015546001600160a01b03165f8181526020819052604090205461324891903090611e5c565b305f90815260208190526040902054670de0b6b3a764000081101561326a5750565b600654613283906001600160a01b031661dead83611e5c565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156132cf575f5ffd5b505af11580156132e1573d5f5f3e3d5ffd5b505f9250600291506132f09050565b604051908082528060200260200182016040528015613319578160200160208202803683370190505b50905030815f8151811061332f5761332f614263565b6001600160a01b03928316602091820292909201015260195482519116908290600190811061336057613360614263565b6001600160a01b03928316602091820292909201015260405163791ac94760e01b81527f00000000000000000000000000000000000000000000000000000000000000009091169063791ac947906133c49085905f908690309042906004016144cd565b5f604051808303815f87803b1580156133db575f5ffd5b505af11580156133ed573d5f5f3e3d5ffd5b504792505f915060089050613403836005613f0d565b61340d9190613f24565b601654909150613426906001600160a01b031682611324565b5f6008613434846001613f0d565b61343e9190613f24565b602254909150613457906001600160a01b031682611324565b5f60056008613467866002613f0d565b6134719190613f24565b61347b9190613f24565b601d54909150613494906001600160a01b031682611324565b601e546134aa906001600160a01b031682611324565b601f546134c0906001600160a01b031682611324565b6020546134d6906001600160a01b031682611324565b602154611014906001600160a01b031682611324565b60475460455442916134fd91613efa565b81116135065750565b5f60475460455483613518919061423c565b6135229190613f24565b9050604754816135329190613f0d565b60455f8282546135429190613efa565b90915550506006546040516370a0823160e01b81526001600160a01b0390911660048201525f9030906370a0823190602401602060405180830381865afa15801561358f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906135b3919061439b565b9050805f036135c157505050565b5f612710836135d1601985613f0d565b6135db9190613f0d565b6135e59190613f24565b9050801561360657600654613606906001600160a01b031661dead83611e5c565b5f61271084613616601986613f0d565b6136209190613f0d565b61362a9190613f24565b9050801561364f57600654601c5461364f916001600160a01b03908116911683611e5c565b8082847ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd88760405161368391815260200190565b60405180910390a460065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156136d7575f5ffd5b505af11580156136e9573d5f5f3e3d5ffd5b505050505050505050565b6016546018546001600160a01b039091163190811580613712575080155b1561371b575050565b6028545f80808061372c8688613f24565b90505b60328310801561373e57508584105b1561380c578461374d81614508565b95505085851061375b575f94505b6018858154811061376e5761376e614263565b5f918252602090912001546001600160a01b0316915080156137ec5760165460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d9906044015f604051808303815f87803b1580156137d5575f5ffd5b505af11580156137e7573d5f5f3e3d5ffd5b505050505b836137f681614508565b945050828061380490614508565b93505061372f565b505050602891909155505050565b602f5415806138355750613830610e104261423c565b602f54105b156113fd576027544790610100900460ff1615801561385b575066038d7ea4c680008110155b156139b0576014545f9061387e906201000090046001600160a01b031683613ce9565b90505f606461388e836028613f0d565b6138989190613f24565b6014549091506138ba906201000090046001600160a01b031661dead83611e5c565b5f60066138c7838561423c565b6138d19190613f24565b601454601d549192506138f7916001600160a01b03620100009092048216911683611e5c565b601454601e5461391a916001600160a01b03620100009091048116911683611e5c565b601454601f5461393d916001600160a01b03620100009091048116911683611e5c565b601454602054613960916001600160a01b03620100009091048116911683611e5c565b601454602154613983916001600160a01b03620100009091048116911683611e5c565b6014546022546139a6916001600160a01b03620100009091048116911683611e5c565b505042602f555050565b60275460ff6101009091041660011480156139d2575066038d7ea4c680008110155b15613b34575f613a0f601460029054906101000a90046001600160a01b03166064846014613a009190613f0d565b613a0a9190613f24565b613ce9565b90505f613a1d600383613f24565b601454602354919250613a43916001600160a01b03620100009092048216911683611e5c565b601454602454613a66916001600160a01b03620100009091048116911683611e5c565b601454602554613a89916001600160a01b03620100009091048116911683611e5c565b5f60066064613a99866050613f0d565b613aa39190613f24565b613aad9190613f24565b601d54909150613ac6906001600160a01b031682611324565b601e54613adc906001600160a01b031682611324565b601f54613af2906001600160a01b031682611324565b602054613b08906001600160a01b031682611324565b602154613b1e906001600160a01b031682611324565b6022546139a6906001600160a01b031682611324565b602754610100900460ff166002148015613b55575066038d7ea4c680008110155b15611321575f613b66600583613f24565b601d54909150613b7f906001600160a01b031682611324565b601e54613b95906001600160a01b031682611324565b601f54613bab906001600160a01b031682611324565b602054613bc1906001600160a01b031682611324565b602154613bd7906001600160a01b031682611324565b5042602f5550565b5f80613bf3613bee8486613f0d565b613e57565b90505f613c6d60065f9054906101000a90046001600160a01b03166001600160a01b0316637464fc3d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015613c49573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613bee919061439b565b905080821115613ccb575f613c82828461423c565b613c8c9088613f0d565b613c97906008613f0d565b90505f613ca5836008613f0d565b613cb0856011613f0d565b613cba9190613efa565b9050613cc68183613f24565b945050505b50509392505050565b5f818310613ce25781612395565b5090919050565b6040805160028082526060820183525f9283929190602083019080368337505060195482519293506001600160a01b0316918391505f90613d2c57613d2c614263565b60200260200101906001600160a01b031690816001600160a01b0316815250503081600181518110613d6057613d60614263565b60200260200101906001600160a01b031690816001600160a01b0316815250505f613d9f856001600160a01b03165f9081526020819052604090205490565b90507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b6f9de95855f8589426040518663ffffffff1660e01b8152600401613df49493929190614277565b5f604051808303818588803b158015613e0b575f5ffd5b505af1158015613e1d573d5f5f3e3d5ffd5b50505050505f613e41866001600160a01b03165f9081526020819052604090205490565b9050613e4d828261423c565b9695505050505050565b5f6003821115613eb65750805f613e6f600283613f24565b613e7a906001613efa565b90505b81811015613eb057905080600281613e958186613f24565b613e9f9190613efa565b613ea99190613f24565b9050613e7d565b50919050565b811561321d57506001919050565b506113219060098101905b80821115613ee2575f8155600101613ecf565b5090565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561157657611576613ee6565b808202811582820484141761157657611576613ee6565b5f82613f3e57634e487b7160e01b5f52601260045260245ffd5b500490565b6001600160a01b0381168114611321575f5ffd5b5f60208284031215613f67575f5ffd5b813561239581613f43565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f5f60408385031215613fb8575f5ffd5b8235613fc381613f43565b946020939093013593505050565b5f60208284031215613fe1575f5ffd5b5035919050565b5f5f5f60608486031215613ffa575f5ffd5b833561400581613f43565b9250602084013561401581613f43565b929592945050506040919091013590565b5f5f83601f840112614036575f5ffd5b50813567ffffffffffffffff81111561404d575f5ffd5b6020830191508360208260051b8501011115614067575f5ffd5b9250929050565b5f5f6020838503121561407f575f5ffd5b823567ffffffffffffffff811115614095575f5ffd5b6140a185828601614026565b90969095509350505050565b5f5f604083850312156140be575f5ffd5b8235915060208301356140d081613f43565b809150509250929050565b5f8151808452602084019350602083015f5b828110156141145781516001600160a01b03168652602095860195909101906001016140ed565b5093949350505050565b602081525f61239560208301846140db565b8035801515811461321d575f5ffd5b5f6020828403121561414f575f5ffd5b61239582614130565b5f5f60408385031215614169575f5ffd5b823561417481613f43565b915061418260208401614130565b90509250929050565b5f5f6040838503121561419c575f5ffd5b82356141a781613f43565b915060208301356140d081613f43565b5f5f5f5f604085870312156141ca575f5ffd5b843567ffffffffffffffff8111156141e0575f5ffd5b6141ec87828801614026565b909550935050602085013567ffffffffffffffff81111561420b575f5ffd5b61421787828801614026565b95989497509550505050565b60ff818116838216019081111561157657611576613ee6565b8181038181111561157657611576613ee6565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b848152608060208201525f61428f60808301866140db565b6001600160a01b03949094166040830152506060015292915050565b5f5f5f606084860312156142bd575f5ffd5b5050815160208301516040909301519094929350919050565b5f82518060208501845e5f920191825250919050565b600181811c9082168061430057607f821691505b602082108103613eb057634e487b7160e01b5f52602260045260245ffd5b80516001600160701b038116811461321d575f5ffd5b5f5f5f60608486031215614346575f5ffd5b61434f8461431e565b925061435d6020850161431e565b9150604084015163ffffffff81168114614375575f5ffd5b809150509250925092565b5f60208284031215614390575f5ffd5b815161239581613f43565b5f602082840312156143ab575f5ffd5b5051919050565b828152604060208201525f6143ca60408301846140db565b949350505050565b5f602082840312156143e2575f5ffd5b815167ffffffffffffffff8111156143f8575f5ffd5b8201601f81018413614408575f5ffd5b805167ffffffffffffffff8111156144225761442261424f565b8060051b604051601f19603f830116810181811067ffffffffffffffff8211171561444f5761444f61424f565b60405291825260208184018101929081018784111561446c575f5ffd5b6020850194505b8385101561448f57845180825260209586019590935001614473565b509695505050505050565b5f60ff821660ff81036144af576144af613ee6565b60010192915050565b5f816144c6576144c6613ee6565b505f190190565b85815284602082015260a060408201525f6144eb60a08301866140db565b6001600160a01b0394909416606083015250608001529392505050565b5f6001820161451957614519613ee6565b506001019056fea264697066735822122092761fb0d0e350ea3a500a80be20ce0d006c38ee80eac13c5c5c4c98b9a71a8764736f6c634300081f00336080604052348015600e575f5ffd5b50335f908152602081905260409020805460ff19166001179055610288806100355f395ff3fe60806040526004361061002b575f3560e01c8063125bfb6614610036578063aa8b38d914610057575f5ffd5b3661003257005b5f5ffd5b348015610041575f5ffd5b506100556100503660046101b4565b610076565b005b348015610062575f5ffd5b506100556100713660046101ee565b610104565b335f9081526020819052604090205460ff16156100ff5760405163a9059cbb60e01b81526001600160a01b0383811660048301526024820183905284169063a9059cbb906044016020604051808303815f875af11580156100d9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100fd9190610216565b505b505050565b335f9081526020819052604090205460ff1615610125576101258282610129565b5050565b604080515f808252602082019092526001600160a01b038416908390604051610152919061023c565b5f6040518083038185875af1925050503d805f811461018c576040519150601f19603f3d011682016040523d82523d5f602084013e610191565b606091505b505050505050565b80356001600160a01b03811681146101af575f5ffd5b919050565b5f5f5f606084860312156101c6575f5ffd5b6101cf84610199565b92506101dd60208501610199565b929592945050506040919091013590565b5f5f604083850312156101ff575f5ffd5b61020883610199565b946020939093013593505050565b5f60208284031215610226575f5ffd5b81518015158114610235575f5ffd5b9392505050565b5f82518060208501845e5f92019182525091905056fea2646970667358221220507c9503a43c01b390429125167a8d655b75f9b6839bb64f5a65c98951b39fdf64736f6c634300081f0033

Deployed Bytecode

0x6080604052600436106103d7575f3560e01c80636f5e0212116101ff578063ae2e933b11610113578063d8f1f8f4116100a8578063f17fe5af11610078578063f17fe5af14610d72578063f2fde38b14610da6578063f8ff0a9114610dc5578063fd36e3c614610de4578063fe33b30214610e1d575f5ffd5b8063d8f1f8f414610cae578063dd62ed3e14610ccd578063e36b0d9a14610d11578063ef7898d014610d47575f5ffd5b8063d5999a5c116100e3578063d5999a5c14610c3d578063d621e81314610c53578063d6b70d9c14610c6c578063d89a369614610c80575f5ffd5b8063ae2e933b14610bc1578063aef2afc914610be0578063c54e44eb14610bff578063d122734314610c1e575f5ffd5b80638da5cb5b11610194578063a5737c5b11610164578063a5737c5b14610b0f578063a808acc414610b3a578063a831050914610b65578063a9059cbb14610b83578063ad5c464814610ba2575f5ffd5b80638da5cb5b14610aaa57806395d89b4114610ac75780639b2cb5d814610adb5780639f0d7eb814610af0575f5ffd5b8063841e8f67116101cf578063841e8f6714610a36578063862a4d4714610a615780638c68978814610a765780638d7e24af14610a8b575f5ffd5b80636f5e0212146109ba57806370a08231146109d9578063715018a614610a0d57806383c35fab14610a21575f5ffd5b80632c7a474e116102f65780634b94f50e1161028b5780635b4f638d1161025b5780635b4f638d1461091b5780635cdbd9a61461093a5780635f48f3931461096557806362f3765e1461097a57806365b096dc1461098f575f5ffd5b80634b94f50e146108965780634bf28fd0146108aa5780634ffb0b14146108c9578063583e0568146108e8575f5ffd5b806335c8c09a116102c657806335c8c09a1461082c578063403f6fc014610841578063440b30e7146108565780634716e84b14610882575f5ffd5b80632c7a474e146107a15780633009a609146107c0578063313ce567146107d557806335c4974f146107f6575f5ffd5b806316c2be6b1161036c5780631c53c2801161033c5780631c53c2801461072f57806323b872dd1461074e57806328c7b2ee1461076d5780632b14ca561461078c575f5ffd5b806316c2be6b146106b357806316f0115b146106e157806318160ddd146107065780631c3fbd541461071a575f5ffd5b806309d46746116103a757806309d467461461063a5780630f60c9521461064e578063129376a714610685578063153fd3241461069a575f5ffd5b8063017501521461059457806306f64e85146105d757806306fdde03146105fa578063095ea7b31461061b575f5ffd5b366105905760145460ff166103ff5760405163e2bab73160e01b815260040160405180910390fd5b32330361058e57335f9081526007602052604090205460125434916001600160a01b031690821080159061044f57506001600160a01b03811615158061044f5750601b546001600160a01b031633145b1561057257335f908152600d602052604081208054849290610472908490613efa565b90915550506001600160a01b0381165f908152600e60205260408120805484929061049e908490613efa565b9091555050601354335f908152600d602052604090205411156104d457604051633e51853f60e21b815260040160405180910390fd5b5f6127106104e4610bb885613f0d565b6104ee9190613f24565b90506104fb338483610e4b565b5f6105103361050b600287613f24565b61101c565b335f818152602c6020526040902082905590915061052d90611281565b601654610559906001600160a01b0316606461054a876005613f0d565b6105549190613f24565b611324565b6105616113de565b61056b33856113ff565b505061058b565b60405163f350e26d60e01b815260040160405180910390fd5b50505b005b5f5ffd5b34801561059f575f5ffd5b506105c26105ae366004613f57565b600a6020525f908152604090205460ff1681565b60405190151581526020015b60405180910390f35b3480156105e2575f5ffd5b506105ec602f5481565b6040519081526020016105ce565b348015610605575f5ffd5b5061060e6114d3565b6040516105ce9190613f72565b348015610626575f5ffd5b506105c2610635366004613fa7565b611563565b348015610645575f5ffd5b506105ec61157c565b348015610659575f5ffd5b50601b5461066d906001600160a01b031681565b6040516001600160a01b0390911681526020016105ce565b348015610690575f5ffd5b506105ec60475481565b3480156106a5575f5ffd5b506014546105c29060ff1681565b3480156106be575f5ffd5b506105c26106cd366004613f57565b60106020525f908152604090205460ff1681565b3480156106ec575f5ffd5b5060145461066d906201000090046001600160a01b031681565b348015610711575f5ffd5b506002546105ec565b348015610725575f5ffd5b506105ec60465481565b34801561073a575f5ffd5b5061066d610749366004613fd1565b611680565b348015610759575f5ffd5b506105c2610768366004613fe8565b6116a8565b348015610778575f5ffd5b506105ec610787366004613fd1565b6116cb565b348015610797575f5ffd5b506105ec60265481565b3480156107ac575f5ffd5b5061058e6107bb36600461406e565b6116e1565b3480156107cb575f5ffd5b506105ec60285481565b3480156107e0575f5ffd5b5060125b60405160ff90911681526020016105ce565b348015610801575f5ffd5b506105ec6108103660046140ad565b603160209081525f928352604080842090915290825290205481565b348015610837575f5ffd5b506105ec60455481565b34801561084c575f5ffd5b506105ec610bb881565b348015610861575f5ffd5b50610875610870366004613f57565b611753565b6040516105ce919061411e565b34801561088d575f5ffd5b506105ec601981565b3480156108a1575f5ffd5b506105ec611776565b3480156108b5575f5ffd5b5060065461066d906001600160a01b031681565b3480156108d4575f5ffd5b5061058e6108e336600461413f565b61195a565b3480156108f3575f5ffd5b5061066d7f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad2481565b348015610926575f5ffd5b5061058e610935366004614158565b611975565b348015610945575f5ffd5b506105ec610954366004613f57565b600c6020525f908152604090205481565b348015610970575f5ffd5b506105ec60135481565b348015610985575f5ffd5b506105ec61271081565b34801561099a575f5ffd5b506105ec6109a9366004613f57565b600d6020525f908152604090205481565b3480156109c5575f5ffd5b5061058e6109d4366004613f57565b6119a7565b3480156109e4575f5ffd5b506105ec6109f3366004613f57565b6001600160a01b03165f9081526020819052604090205490565b348015610a18575f5ffd5b5061058e6119d1565b348015610a2c575f5ffd5b506105ec61a8c081565b348015610a41575f5ffd5b506105ec610a50366004613f57565b602c6020525f908152604090205481565b348015610a6c575f5ffd5b506105ec602d5481565b348015610a81575f5ffd5b506105ec602e5481565b348015610a96575f5ffd5b5061066d610aa5366004613fd1565b6119e2565b348015610ab5575f5ffd5b506005546001600160a01b031661066d565b348015610ad2575f5ffd5b5061060e611a01565b348015610ae6575f5ffd5b506105ec60125481565b348015610afb575f5ffd5b5061066d610b0a366004613fd1565b611a10565b348015610b1a575f5ffd5b506105ec610b29366004613f57565b600b6020525f908152604090205481565b348015610b45575f5ffd5b506105ec610b54366004613f57565b600e6020525f908152604090205481565b348015610b70575f5ffd5b506027546107e490610100900460ff1681565b348015610b8e575f5ffd5b506105c2610b9d366004613fa7565b611a1f565b348015610bad575f5ffd5b5060195461066d906001600160a01b031681565b348015610bcc575f5ffd5b5060155461066d906001600160a01b031681565b348015610beb575f5ffd5b5060175461066d906001600160a01b031681565b348015610c0a575f5ffd5b50601a5461066d906001600160a01b031681565b348015610c29575f5ffd5b506105c2610c3836600461418b565b611a2c565b348015610c48575f5ffd5b506105ec62093a8081565b348015610c5e575f5ffd5b506027546105c29060ff1681565b348015610c77575f5ffd5b50610875611b34565b348015610c8b575f5ffd5b506105c2610c9a366004613f57565b602b6020525f908152604090205460ff1681565b348015610cb9575f5ffd5b5060165461066d906001600160a01b031681565b348015610cd8575f5ffd5b506105ec610ce736600461418b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b348015610d1c575f5ffd5b506105ec610d2b3660046140ad565b603060209081525f928352604080842090915290825290205481565b348015610d52575f5ffd5b506105ec610d61366004613f57565b60116020525f908152604090205481565b348015610d7d575f5ffd5b5061066d610d8c366004613f57565b60076020525f90815260409020546001600160a01b031681565b348015610db1575f5ffd5b5061058e610dc0366004613f57565b611b93565b348015610dd0575f5ffd5b5061058e610ddf3660046141b7565b611bd2565b348015610def575f5ffd5b506105c2610dfe36600461418b565b600860209081525f928352604080842090915290825290205460ff1681565b348015610e28575f5ffd5b506105c2610e37366004613f57565b600f6020525f908152604090205460ff1681565b825f805b60198160ff161015610f52576001600160a01b039283165f90815260076020526040902054909216918215610f52575f60058260ff1610610e91576032610e95565b6101905b61ffff1690505f612710610ea98389613f0d565b610eb39190613f24565b9050801580610eca575085610ec88286613efa565b115b15610ed6575050610f4a565b610ee08185613efa565b9350610eec8582611324565b610ef7836001614223565b60ff16856001600160a01b0316896001600160a01b03167f46099e97571ba69ff5470337dda4b3fb4154c15dbcb600f85524a569a879c2a584604051610f3f91815260200190565b60405180910390a450505b600101610e4f565b505f610f5e828561423c565b90508015611014575f610f72600583613f24565b90505f818080610f82818761423c565b610f8c919061423c565b610f96919061423c565b610fa0919061423c565b601d54909150610fb9906001600160a01b031683611324565b601e54610fcf906001600160a01b031683611324565b601f54610fe5906001600160a01b031683611324565b602054610ffb906001600160a01b031683611324565b602154611011906001600160a01b031682611324565b50505b505050505050565b5f80611029600284613f24565b6040805160028082526060820183529293505f929091602083019080368337505060195482519293506001600160a01b0316918391505f9061106d5761106d614263565b60200260200101906001600160a01b031690816001600160a01b03168152505030816001815181106110a1576110a1614263565b6001600160a01b0392831660209182029290920101526014545f916110e191620100009004166001600160a01b03165f9081526020819052604090205490565b60145460405163b6f9de9560e01b81529192506001600160a01b037f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad2481169263b6f9de95928792611143925f9289926201000090910416904290600401614277565b5f604051808303818588803b15801561115a575f5ffd5b505af115801561116c573d5f5f3e3d5ffd5b50506014546201000090046001600160a01b03165f90815260208190526040812054909350915061119a9050565b90505f6111a7838361423c565b6014549091506111c7906201000090046001600160a01b03163084611e5c565b60405163f305d71960e01b8152306004820152602481018290525f6044820181905260648201526001600160a01b0389811660848301524260a48301527f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad24169063f305d71990879060c40160606040518083038185885af115801561124e573d5f5f3e3d5ffd5b50505050506040513d601f19601f8201168201806040525081019061127391906142ab565b9a9950505050505050505050565b6001600160a01b0381165f908152602b602052604090205460ff161580156112b757506029546001600160a01b03828116911614155b15611321576001600160a01b0381165f818152602b60205260408120805460ff19166001908117909155602a805491820181559091527fbeced09521047d05b8960b7e7bcc1d1292cf3e4b2a6b63f48335cbde5f7545d20180546001600160a01b03191690911790555b50565b604080515f808252602082019092526001600160a01b03841690839060405161134d91906142d6565b5f6040518083038185875af1925050503d805f8114611387576040519150601f19603f3d011682016040523d82523d5f602084013e61138c565b606091505b50509050806113d957826001600160a01b03167f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e39836040516113d091815260200190565b60405180910390a25b505050565b62093a80602e546113ef9190613efa565b42106113fd576113fd611f82565b565b5f606461140d836005613f0d565b6114179190613f24565b601754909150611430906001600160a01b031682611324565b6001600160a01b038084165f908152600760205260409020541680156114cd57602d545f9081526030602090815260408083206001600160a01b038516845290915281208054859290611484908490613efa565b9091555050602d545f9081526031602090815260408083206001600160a01b038516845290915281208054600192906114be908490613efa565b909155506114cd9050816120f8565b50505050565b6060600380546114e2906142ec565b80601f016020809104026020016040519081016040528092919081815260200182805461150e906142ec565b80156115595780601f1061153057610100808354040283529160200191611559565b820191905f5260205f20905b81548152906001019060200180831161153c57829003601f168201915b5050505050905090565b5f3361157081858561227c565b60019150505b92915050565b60065460408051630240bc6b60e21b815290515f926001600160a01b031691839182918491630902f1ac916004808201926060929091908290030181865afa1580156115ca573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115ee9190614334565b50915091505f836001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611630573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116549190614380565b90506001600160a01b038116301461166c578161166e565b825b6001600160701b031694505050505090565b6018818154811061168f575f80fd5b5f918252602090912001546001600160a01b0316905081565b5f336116b5858285612289565b6116c08585856122ff565b506001949350505050565b603b81600981106116da575f80fd5b0154905081565b6116e961235c565b5f5b818110156113d957601883838381811061170757611707614263565b905060200201602081019061171c9190613f57565b8154600180820184555f93845260209093200180546001600160a01b0319166001600160a01b0392909216919091179055016116eb565b6001600160a01b0381165f90815260096020526040902060609061157690612389565b600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa1580156117bd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e1919061439b565b5f036117ec57505f90565b604080516003808252608082019092525f916020820160608036833701905050905030815f8151811061182157611821614263565b6001600160a01b03928316602091820292909201015260195482519116908290600190811061185257611852614263565b6001600160a01b039283166020918202929092010152601a5482519116908290600290811061188357611883614263565b6001600160a01b03928316602091820292909201015260405163d06ca61f60e01b81525f917f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad24169063d06ca61f906118e990670de0b6b3a76400009086906004016143b2565b5f60405180830381865afa158015611903573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261192a91908101906143d2565b9050806001825161193b919061423c565b8151811061194b5761194b614263565b60200260200101519250505090565b61196261235c565b6014805460ff1916911515919091179055565b61197d61235c565b6001600160a01b03919091165f908152601060205260409020805460ff1916911515919091179055565b6119af61235c565b601c80546001600160a01b0319166001600160a01b0392909216919091179055565b6119d961235c565b6113fd5f61239c565b603281600981106119f1575f80fd5b01546001600160a01b0316905081565b6060600480546114e2906142ec565b602a818154811061168f575f80fd5b5f336115708185856122ff565b6001600160a01b038281165f90815260076020526040812054909116158015611a635750601b546001600160a01b03848116911614155b15611a6f57505f611576565b6001600160a01b038084165f9081526008602090815260408083209386168352929052205460ff1680611ab35750816001600160a01b0316836001600160a01b0316145b15611abf57505f611576565b815f5b6001600160a01b03821615801590611add575060198160ff16105b156116c057846001600160a01b0316826001600160a01b031603611b05575f92505050611576565b6001600160a01b039182165f908152600760205260409020549091169080611b2c8161449a565b915050611ac2565b6060602a80548060200260200160405190810160405280929190818152602001828054801561155957602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311611b6c575050505050905090565b611b9b61235c565b6001600160a01b038116611bc957604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6113218161239c565b611bda61235c565b828114611c295760405162461bcd60e51b815260206004820152601860248201527f6d6967726174696f6e3a20696e76616c696420696e70757400000000000000006044820152606401611bc0565b5f5b83811015611e5557600160085f878785818110611c4a57611c4a614263565b9050602002016020810190611c5f9190613f57565b6001600160a01b03166001600160a01b031681526020019081526020015f205f858585818110611c9157611c91614263565b9050602002016020810190611ca69190613f57565b6001600160a01b0316815260208101919091526040015f20805460ff1916911515919091179055848482818110611cdf57611cdf614263565b9050602002016020810190611cf49190613f57565b60075f858585818110611d0957611d09614263565b9050602002016020810190611d1e9190613f57565b6001600160a01b03908116825260208201929092526040015f2080546001600160a01b03191692909116919091179055611dc0838383818110611d6357611d63614263565b9050602002016020810190611d789190613f57565b60095f888886818110611d8d57611d8d614263565b9050602002016020810190611da29190613f57565b6001600160a01b0316815260208101919091526040015f20906123ed565b50848482818110611dd357611dd3614263565b9050602002016020810190611de89190613f57565b6001600160a01b0316838383818110611e0357611e03614263565b9050602002016020810190611e189190613f57565b6001600160a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d4860405160405180910390a3600101611c2b565b5050505050565b6001600160a01b038316611e86578060025f828254611e7b9190613efa565b90915550611ef69050565b6001600160a01b0383165f9081526020819052604090205481811015611ed85760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401611bc0565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216611f1257600280548290039055611f30565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611f7591815260200190565b60405180910390a3505050565b6017546001600160a01b0316315f819003611f9f57611321612401565b5f60036103e8611fb0846019613f0d565b611fba9190613f24565b611fc49190613f24565b90505f60036103e8611fd785600f613f0d565b611fe19190613f24565b611feb9190613f24565b90505f60036103e8611ffe86600a613f0d565b6120089190613f24565b6120129190613f24565b6032549091506001600160a01b0316156120565761203e60325f5b01546001600160a01b031684612435565b61204a6032600161202d565b6120566032600261202d565b6035546001600160a01b03161561209857612080603260035b01546001600160a01b031683612435565b61208c6032600461206f565b6120986032600561206f565b6038546001600160a01b0316156120da576120c2603260065b01546001600160a01b031682612435565b6120ce603260076120b1565b6120da603260086120b1565b6120e560325f613ec4565b6120f0603b5f613ec4565b6114cd612401565b602d545f8181526030602090815260408083206001600160a01b03861680855290835281842054948452603183528184209084529091529020546729a2241af62c0000821115806121495750600a81105b1561215357505050565b5f5b60098110156114cd57603b816009811061217157612171614263565b01548311156122745760085b8181111561222557603b61219260018361423c565b600981106121a2576121a2614263565b0154603b82600981106121b7576121b7614263565b015560326121c660018361423c565b600981106121d6576121d6614263565b01546001600160a01b0316603282600981106121f4576121f4614263565b0180546001600160a01b0319166001600160a01b03929092169190911790558061221d816144b8565b91505061217d565b5082603b826009811061223a5761223a614263565b0155836032826009811061225057612250614263565b0180546001600160a01b0319166001600160a01b03929092169190911790556114cd565b600101612155565b6113d983838360016125fb565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198110156114cd57818110156122f157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401611bc0565b6114cd84848484035f6125fb565b6001600160a01b03831661232857604051634b637e8f60e11b81525f6004820152602401611bc0565b6001600160a01b0382166123515760405163ec442f0560e01b81525f6004820152602401611bc0565b6113d98383836126cd565b6005546001600160a01b031633146113fd5760405163118cdaa760e01b8152336004820152602401611bc0565b60605f61239583612dd3565b9392505050565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f612395836001600160a01b038416612e2c565b6001602d5f8282546124139190613efa565b9250508190555062093a80602e5f82825461242e9190613efa565b9091555050565b805f03612440575050565b6001600160a01b0382166125c2576017546023546001600160a01b039182169163aa8b38d99116612472600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b1580156124b5575f5ffd5b505af11580156124c7573d5f5f3e3d5ffd5b50506017546024546001600160a01b03918216935063aa8b38d99250166124ef600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015f604051808303815f87803b158015612532575f5ffd5b505af1158015612544573d5f5f3e3d5ffd5b50506017546025546001600160a01b03918216935063aa8b38d992501661256c600385613f24565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044015b5f604051808303815f87803b1580156125b0575f5ffd5b505af1158015611014573d5f5f3e3d5ffd5b60175460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d990604401612599565b6001600160a01b0384166126245760405163e602df0560e01b81525f6004820152602401611bc0565b6001600160a01b03831661264d57604051634a1406b160e11b81525f6004820152602401611bc0565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156114cd57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516126bf91815260200190565b60405180910390a350505050565b62093a80602e546126de9190613efa565b42106126ec576126ec611f82565b80670de0b6b3a764000014801561272857506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff16155b801561273957506127398383611a2c565b1561276e576001600160a01b038084165f908152600860209081526040808320938616835292905220805460ff191660011790555b806706f05b59d3b200001480156127a957506001600160a01b038083165f9081526008602090815260408083209387168352929052205460ff165b80156127cc57506001600160a01b038381165f9081526007602052604090205416155b15612854576001600160a01b038381165f90815260076020908152604080832080546001600160a01b0319169487169485179055928252600990522061281290846123ed565b50816001600160a01b0316836001600160a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d4860405160405180910390a35b6001600160a01b0383165f9081526010602052604090205460ff168061289157506001600160a01b0382165f9081526010602052604090205460ff165b156128a1576113d9838383611e5c565b6006546001600160a01b0390811690841603612932575f6128c0612e78565b11156128df576006546113d9906001600160a01b031661dead83611e5c565b60275460ff1661291c5760405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606401611bc0565b325f908152601160205260409020429055612b62565b6006546001600160a01b0390811690831603612b625760445460ff1615612a275760065460408051630240bc6b60e21b815290516001600160a01b03909216915f9182918491630902f1ac9160048083019260609291908290030181865afa1580156129a0573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906129c49190614334565b5091509150816001600160701b03165f1480156129e857506001600160701b038116155b80156129f6575060445460ff165b15612a23576044805460ff1990811690915560148054909116600117905542604555611014868686611e5c565b5050505b5f612a318261300d565b1115612a42576113d9838383611e5c565b6001600160a01b0383165f90815260116020526040902054612a6590600a613efa565b421015612a995760405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606401611bc0565b5f61271060265483612aab9190613f0d565b612ab59190613f24565b601554909150612ad09085906001600160a01b031683611e5c565b612ada818361423c565b600654909250612af6906001600160a01b031661dead84611e5c565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015612b42575f5ffd5b505af1158015612b54573d5f5f3e3d5ffd5b50505050612b60613222565b505b5f612b6b61157c565b60275490915060ff16612ba5576a01bcb13a657b26388000008111158015612b9257505f81115b15612ba5576027805460ff191660011790555b5f81612baf611776565b612bb99190613f0d565b905069d3c21bcecceda10000008110158015612be057506a027b46536c66c8e30000008111155b8015612bf55750671bc16d674ec80000601354105b15612c0b57671bc16d674ec80000601355612c41565b6a027b46536c66c8e30000008110158015612c2f57506729a2241af62c0000601354105b15612c41576729a2241af62c00006013555b601454610100900460ff16158015612c7157506001600160a01b0385165f9081526010602052604090205460ff16155b8015612c8657506001600160a01b0385163014155b8015612caa57506001600160a01b0385165f908152600f602052604090205460ff16155b8015612ce857507f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b0316856001600160a01b031614155b15612d10576014805461ff001916610100179055612d046134ec565b6014805461ff00191690555b602754610100900460ff16600214801590612d2a57505f82115b15612db857602754610100900460ff16158015612d5257506a115eec47f6cf7e350000008211155b8015612d6857506a01bcb13a657b263880000082115b15612d7d576027805461ff0019166101001790555b60275460ff610100909104166001148015612da357506a01bcb13a657b26388000008211155b15612db8576027805461ff0019166102001790555b612dc06136f4565b612dcb858585611e5c565b611e5561381a565b6060815f01805480602002602001604051908101604052809291908181526020018280548015612e2057602002820191905f5260205f20905b815481526020019060010190808311612e0c575b50505050509050919050565b5f818152600183016020526040812054612e7157508154600181810184555f848152602080822090930184905584548482528286019093526040902091909155611576565b505f611576565b5f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015612eca573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612eee9190614334565b50506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b039390931693505f929116906370a0823190602401602060405180830381865afa158015612f4a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f6e919061439b565b90508082111561300857600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa158015612fbf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612fe3919061439b565b905081612ff0818561423c565b612ffa9083613f0d565b6130049190613f24565b9350505b505090565b5f6001600160a01b037f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad2416330361321d575f5f60065f9054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015613090573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906130b49190614334565b506019546006546040516370a0823160e01b81526001600160a01b0391821660048201526001600160701b0394851696509290931693505f9216906370a0823190602401602060405180830381865afa158015613113573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613137919061439b565b90508281111561321957600654604080516318160ddd60e01b815290515f926001600160a01b0316916318160ddd9160048083019260209291908290030181865afa158015613188573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906131ac919061439b565b9050805f036131c15750600195945050505050565b6131cc818385613bdf565b6131d69082613efa565b905061321584826131e7828661423c565b6131f19190613f0d565b6131fb9190613f24565b84613206848a613f0d565b6132109190613f24565b613cd4565b9450505b5050505b919050565b6015546001600160a01b03165f8181526020819052604090205461324891903090611e5c565b305f90815260208190526040902054670de0b6b3a764000081101561326a5750565b600654613283906001600160a01b031661dead83611e5c565b60065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156132cf575f5ffd5b505af11580156132e1573d5f5f3e3d5ffd5b505f9250600291506132f09050565b604051908082528060200260200182016040528015613319578160200160208202803683370190505b50905030815f8151811061332f5761332f614263565b6001600160a01b03928316602091820292909201015260195482519116908290600190811061336057613360614263565b6001600160a01b03928316602091820292909201015260405163791ac94760e01b81527f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad249091169063791ac947906133c49085905f908690309042906004016144cd565b5f604051808303815f87803b1580156133db575f5ffd5b505af11580156133ed573d5f5f3e3d5ffd5b504792505f915060089050613403836005613f0d565b61340d9190613f24565b601654909150613426906001600160a01b031682611324565b5f6008613434846001613f0d565b61343e9190613f24565b602254909150613457906001600160a01b031682611324565b5f60056008613467866002613f0d565b6134719190613f24565b61347b9190613f24565b601d54909150613494906001600160a01b031682611324565b601e546134aa906001600160a01b031682611324565b601f546134c0906001600160a01b031682611324565b6020546134d6906001600160a01b031682611324565b602154611014906001600160a01b031682611324565b60475460455442916134fd91613efa565b81116135065750565b5f60475460455483613518919061423c565b6135229190613f24565b9050604754816135329190613f0d565b60455f8282546135429190613efa565b90915550506006546040516370a0823160e01b81526001600160a01b0390911660048201525f9030906370a0823190602401602060405180830381865afa15801561358f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906135b3919061439b565b9050805f036135c157505050565b5f612710836135d1601985613f0d565b6135db9190613f0d565b6135e59190613f24565b9050801561360657600654613606906001600160a01b031661dead83611e5c565b5f61271084613616601986613f0d565b6136209190613f0d565b61362a9190613f24565b9050801561364f57600654601c5461364f916001600160a01b03908116911683611e5c565b8082847ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd88760405161368391815260200190565b60405180910390a460065f9054906101000a90046001600160a01b03166001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156136d7575f5ffd5b505af11580156136e9573d5f5f3e3d5ffd5b505050505050505050565b6016546018546001600160a01b039091163190811580613712575080155b1561371b575050565b6028545f80808061372c8688613f24565b90505b60328310801561373e57508584105b1561380c578461374d81614508565b95505085851061375b575f94505b6018858154811061376e5761376e614263565b5f918252602090912001546001600160a01b0316915080156137ec5760165460405163aa8b38d960e01b81526001600160a01b038481166004830152602482018490529091169063aa8b38d9906044015f604051808303815f87803b1580156137d5575f5ffd5b505af11580156137e7573d5f5f3e3d5ffd5b505050505b836137f681614508565b945050828061380490614508565b93505061372f565b505050602891909155505050565b602f5415806138355750613830610e104261423c565b602f54105b156113fd576027544790610100900460ff1615801561385b575066038d7ea4c680008110155b156139b0576014545f9061387e906201000090046001600160a01b031683613ce9565b90505f606461388e836028613f0d565b6138989190613f24565b6014549091506138ba906201000090046001600160a01b031661dead83611e5c565b5f60066138c7838561423c565b6138d19190613f24565b601454601d549192506138f7916001600160a01b03620100009092048216911683611e5c565b601454601e5461391a916001600160a01b03620100009091048116911683611e5c565b601454601f5461393d916001600160a01b03620100009091048116911683611e5c565b601454602054613960916001600160a01b03620100009091048116911683611e5c565b601454602154613983916001600160a01b03620100009091048116911683611e5c565b6014546022546139a6916001600160a01b03620100009091048116911683611e5c565b505042602f555050565b60275460ff6101009091041660011480156139d2575066038d7ea4c680008110155b15613b34575f613a0f601460029054906101000a90046001600160a01b03166064846014613a009190613f0d565b613a0a9190613f24565b613ce9565b90505f613a1d600383613f24565b601454602354919250613a43916001600160a01b03620100009092048216911683611e5c565b601454602454613a66916001600160a01b03620100009091048116911683611e5c565b601454602554613a89916001600160a01b03620100009091048116911683611e5c565b5f60066064613a99866050613f0d565b613aa39190613f24565b613aad9190613f24565b601d54909150613ac6906001600160a01b031682611324565b601e54613adc906001600160a01b031682611324565b601f54613af2906001600160a01b031682611324565b602054613b08906001600160a01b031682611324565b602154613b1e906001600160a01b031682611324565b6022546139a6906001600160a01b031682611324565b602754610100900460ff166002148015613b55575066038d7ea4c680008110155b15611321575f613b66600583613f24565b601d54909150613b7f906001600160a01b031682611324565b601e54613b95906001600160a01b031682611324565b601f54613bab906001600160a01b031682611324565b602054613bc1906001600160a01b031682611324565b602154613bd7906001600160a01b031682611324565b5042602f5550565b5f80613bf3613bee8486613f0d565b613e57565b90505f613c6d60065f9054906101000a90046001600160a01b03166001600160a01b0316637464fc3d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015613c49573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613bee919061439b565b905080821115613ccb575f613c82828461423c565b613c8c9088613f0d565b613c97906008613f0d565b90505f613ca5836008613f0d565b613cb0856011613f0d565b613cba9190613efa565b9050613cc68183613f24565b945050505b50509392505050565b5f818310613ce25781612395565b5090919050565b6040805160028082526060820183525f9283929190602083019080368337505060195482519293506001600160a01b0316918391505f90613d2c57613d2c614263565b60200260200101906001600160a01b031690816001600160a01b0316815250503081600181518110613d6057613d60614263565b60200260200101906001600160a01b031690816001600160a01b0316815250505f613d9f856001600160a01b03165f9081526020819052604090205490565b90507f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b031663b6f9de95855f8589426040518663ffffffff1660e01b8152600401613df49493929190614277565b5f604051808303818588803b158015613e0b575f5ffd5b505af1158015613e1d573d5f5f3e3d5ffd5b50505050505f613e41866001600160a01b03165f9081526020819052604090205490565b9050613e4d828261423c565b9695505050505050565b5f6003821115613eb65750805f613e6f600283613f24565b613e7a906001613efa565b90505b81811015613eb057905080600281613e958186613f24565b613e9f9190613efa565b613ea99190613f24565b9050613e7d565b50919050565b811561321d57506001919050565b506113219060098101905b80821115613ee2575f8155600101613ecf565b5090565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561157657611576613ee6565b808202811582820484141761157657611576613ee6565b5f82613f3e57634e487b7160e01b5f52601260045260245ffd5b500490565b6001600160a01b0381168114611321575f5ffd5b5f60208284031215613f67575f5ffd5b813561239581613f43565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f5f60408385031215613fb8575f5ffd5b8235613fc381613f43565b946020939093013593505050565b5f60208284031215613fe1575f5ffd5b5035919050565b5f5f5f60608486031215613ffa575f5ffd5b833561400581613f43565b9250602084013561401581613f43565b929592945050506040919091013590565b5f5f83601f840112614036575f5ffd5b50813567ffffffffffffffff81111561404d575f5ffd5b6020830191508360208260051b8501011115614067575f5ffd5b9250929050565b5f5f6020838503121561407f575f5ffd5b823567ffffffffffffffff811115614095575f5ffd5b6140a185828601614026565b90969095509350505050565b5f5f604083850312156140be575f5ffd5b8235915060208301356140d081613f43565b809150509250929050565b5f8151808452602084019350602083015f5b828110156141145781516001600160a01b03168652602095860195909101906001016140ed565b5093949350505050565b602081525f61239560208301846140db565b8035801515811461321d575f5ffd5b5f6020828403121561414f575f5ffd5b61239582614130565b5f5f60408385031215614169575f5ffd5b823561417481613f43565b915061418260208401614130565b90509250929050565b5f5f6040838503121561419c575f5ffd5b82356141a781613f43565b915060208301356140d081613f43565b5f5f5f5f604085870312156141ca575f5ffd5b843567ffffffffffffffff8111156141e0575f5ffd5b6141ec87828801614026565b909550935050602085013567ffffffffffffffff81111561420b575f5ffd5b61421787828801614026565b95989497509550505050565b60ff818116838216019081111561157657611576613ee6565b8181038181111561157657611576613ee6565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b848152608060208201525f61428f60808301866140db565b6001600160a01b03949094166040830152506060015292915050565b5f5f5f606084860312156142bd575f5ffd5b5050815160208301516040909301519094929350919050565b5f82518060208501845e5f920191825250919050565b600181811c9082168061430057607f821691505b602082108103613eb057634e487b7160e01b5f52602260045260245ffd5b80516001600160701b038116811461321d575f5ffd5b5f5f5f60608486031215614346575f5ffd5b61434f8461431e565b925061435d6020850161431e565b9150604084015163ffffffff81168114614375575f5ffd5b809150509250925092565b5f60208284031215614390575f5ffd5b815161239581613f43565b5f602082840312156143ab575f5ffd5b5051919050565b828152604060208201525f6143ca60408301846140db565b949350505050565b5f602082840312156143e2575f5ffd5b815167ffffffffffffffff8111156143f8575f5ffd5b8201601f81018413614408575f5ffd5b805167ffffffffffffffff8111156144225761442261424f565b8060051b604051601f19603f830116810181811067ffffffffffffffff8211171561444f5761444f61424f565b60405291825260208184018101929081018784111561446c575f5ffd5b6020850194505b8385101561448f57845180825260209586019590935001614473565b509695505050505050565b5f60ff821660ff81036144af576144af613ee6565b60010192915050565b5f816144c6576144c6613ee6565b505f190190565b85815284602082015260a060408201525f6144eb60a08301866140db565b6001600160a01b0394909416606083015250608001529392505050565b5f6001820161451957614519613ee6565b506001019056fea264697066735822122092761fb0d0e350ea3a500a80be20ce0d006c38ee80eac13c5c5c4c98b9a71a8764736f6c634300081f0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.