Contract Diff Checker

Contract Name:
TokenManager

Contract Source Code:

//SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "../libraries/math/SafeMath.sol";
import "../libraries/token/IERC20.sol";
import "../libraries/token/ERC721/IERC721.sol";
import "../libraries/utils/ReentrancyGuard.sol";

import "../peripherals/interfaces/ITimelock.sol";

contract TokenManager is ReentrancyGuard {
    using SafeMath for uint256;

    bool public isInitialized;

    uint256 public actionsNonce;
    uint256 public minAuthorizations;

    address public admin;

    address[] public signers;
    mapping(address => bool) public isSigner;
    mapping(bytes32 => bool) public pendingActions;
    mapping(address => mapping(bytes32 => bool)) public signedActions;

    event SignalApprove(address token, address spender, uint256 amount, bytes32 action, uint256 nonce);
    event SignalApproveNFT(address token, address spender, uint256 tokenId, bytes32 action, uint256 nonce);
    event SignalApproveNFTs(address token, address spender, uint256[] tokenIds, bytes32 action, uint256 nonce);
    event SignalSetAdmin(address target, address admin, bytes32 action, uint256 nonce);
    event SignalSetGov(address timelock, address target, address gov, bytes32 action, uint256 nonce);
    event SignalPendingAction(bytes32 action, uint256 nonce);
    event SignAction(bytes32 action, uint256 nonce);
    event ClearAction(bytes32 action, uint256 nonce);

    constructor(uint256 _minAuthorizations) public {
        admin = msg.sender;
        minAuthorizations = _minAuthorizations;
    }

    modifier onlyAdmin() {
        require(msg.sender == admin, "TokenManager: forbidden");
        _;
    }

    modifier onlySigner() {
        require(isSigner[msg.sender], "TokenManager: forbidden");
        _;
    }

    function initialize(address[] memory _signers) public virtual onlyAdmin {
        require(!isInitialized, "TokenManager: already initialized");
        isInitialized = true;

        signers = _signers;
        for (uint256 i = 0; i < _signers.length; i++) {
            address signer = _signers[i];
            isSigner[signer] = true;
        }
    }

    function signersLength() public view returns (uint256) {
        return signers.length;
    }

    function signalApprove(
        address _token,
        address _spender,
        uint256 _amount
    ) external nonReentrant onlyAdmin {
        actionsNonce++;
        uint256 nonce = actionsNonce;
        bytes32 action = keccak256(abi.encodePacked("approve", _token, _spender, _amount, nonce));
        _setPendingAction(action, nonce);
        emit SignalApprove(_token, _spender, _amount, action, nonce);
    }

    function signApprove(
        address _token,
        address _spender,
        uint256 _amount,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("approve", _token, _spender, _amount, _nonce));
        _validateAction(action);
        require(!signedActions[msg.sender][action], "TokenManager: already signed");
        signedActions[msg.sender][action] = true;
        emit SignAction(action, _nonce);
    }

    function approve(
        address _token,
        address _spender,
        uint256 _amount,
        uint256 _nonce
    ) external nonReentrant onlyAdmin {
        bytes32 action = keccak256(abi.encodePacked("approve", _token, _spender, _amount, _nonce));
        _validateAction(action);
        _validateAuthorization(action);

        IERC20(_token).approve(_spender, _amount);
        _clearAction(action, _nonce);
    }

    function signalApproveNFT(
        address _token,
        address _spender,
        uint256 _tokenId
    ) external nonReentrant onlyAdmin {
        actionsNonce++;
        uint256 nonce = actionsNonce;
        bytes32 action = keccak256(abi.encodePacked("approveNFT", _token, _spender, _tokenId, nonce));
        _setPendingAction(action, nonce);
        emit SignalApproveNFT(_token, _spender, _tokenId, action, nonce);
    }

    function signApproveNFT(
        address _token,
        address _spender,
        uint256 _tokenId,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("approveNFT", _token, _spender, _tokenId, _nonce));
        _validateAction(action);
        require(!signedActions[msg.sender][action], "TokenManager: already signed");
        signedActions[msg.sender][action] = true;
        emit SignAction(action, _nonce);
    }

    function approveNFT(
        address _token,
        address _spender,
        uint256 _tokenId,
        uint256 _nonce
    ) external nonReentrant onlyAdmin {
        bytes32 action = keccak256(abi.encodePacked("approveNFT", _token, _spender, _tokenId, _nonce));
        _validateAction(action);
        _validateAuthorization(action);

        IERC721(_token).approve(_spender, _tokenId);
        _clearAction(action, _nonce);
    }

    function signalApproveNFTs(
        address _token,
        address _spender,
        uint256[] memory _tokenIds
    ) external nonReentrant onlyAdmin {
        actionsNonce++;
        uint256 nonce = actionsNonce;
        bytes32 action = keccak256(abi.encodePacked("approveNFTs", _token, _spender, _tokenIds, nonce));
        _setPendingAction(action, nonce);
        emit SignalApproveNFTs(_token, _spender, _tokenIds, action, nonce);
    }

    function signApproveNFTs(
        address _token,
        address _spender,
        uint256[] memory _tokenIds,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("approveNFTs", _token, _spender, _tokenIds, _nonce));
        _validateAction(action);
        require(!signedActions[msg.sender][action], "TokenManager: already signed");
        signedActions[msg.sender][action] = true;
        emit SignAction(action, _nonce);
    }

    function approveNFTs(
        address _token,
        address _spender,
        uint256[] memory _tokenIds,
        uint256 _nonce
    ) external nonReentrant onlyAdmin {
        bytes32 action = keccak256(abi.encodePacked("approveNFTs", _token, _spender, _tokenIds, _nonce));
        _validateAction(action);
        _validateAuthorization(action);

        for (uint256 i = 0; i < _tokenIds.length; i++) {
            IERC721(_token).approve(_spender, _tokenIds[i]);
        }
        _clearAction(action, _nonce);
    }

    function signalSetAdmin(address _target, address _admin) external nonReentrant onlySigner {
        actionsNonce++;
        uint256 nonce = actionsNonce;
        bytes32 action = keccak256(abi.encodePacked("setAdmin", _target, _admin, nonce));
        _setPendingAction(action, nonce);
        signedActions[msg.sender][action] = true;
        emit SignalSetAdmin(_target, _admin, action, nonce);
    }

    function signSetAdmin(
        address _target,
        address _admin,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("setAdmin", _target, _admin, _nonce));
        _validateAction(action);
        require(!signedActions[msg.sender][action], "TokenManager: already signed");
        signedActions[msg.sender][action] = true;
        emit SignAction(action, _nonce);
    }

    function setAdmin(
        address _target,
        address _admin,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("setAdmin", _target, _admin, _nonce));
        _validateAction(action);
        _validateAuthorization(action);

        ITimelock(_target).setAdmin(_admin);
        _clearAction(action, _nonce);
    }

    function signalSetGov(
        address _timelock,
        address _target,
        address _gov
    ) external nonReentrant onlyAdmin {
        actionsNonce++;
        uint256 nonce = actionsNonce;
        bytes32 action = keccak256(abi.encodePacked("signalSetGov", _timelock, _target, _gov, nonce));
        _setPendingAction(action, nonce);
        signedActions[msg.sender][action] = true;
        emit SignalSetGov(_timelock, _target, _gov, action, nonce);
    }

    function signSetGov(
        address _timelock,
        address _target,
        address _gov,
        uint256 _nonce
    ) external nonReentrant onlySigner {
        bytes32 action = keccak256(abi.encodePacked("signalSetGov", _timelock, _target, _gov, _nonce));
        _validateAction(action);
        require(!signedActions[msg.sender][action], "TokenManager: already signed");
        signedActions[msg.sender][action] = true;
        emit SignAction(action, _nonce);
    }

    function setGov(
        address _timelock,
        address _target,
        address _gov,
        uint256 _nonce
    ) external nonReentrant onlyAdmin {
        bytes32 action = keccak256(abi.encodePacked("signalSetGov", _timelock, _target, _gov, _nonce));
        _validateAction(action);
        _validateAuthorization(action);

        ITimelock(_timelock).signalSetGov(_target, _gov);
        _clearAction(action, _nonce);
    }

    function _setPendingAction(bytes32 _action, uint256 _nonce) private {
        pendingActions[_action] = true;
        emit SignalPendingAction(_action, _nonce);
    }

    function _validateAction(bytes32 _action) private view {
        require(pendingActions[_action], "TokenManager: action not signalled");
    }

    function _validateAuthorization(bytes32 _action) private view {
        uint256 count = 0;
        for (uint256 i = 0; i < signers.length; i++) {
            address signer = signers[i];
            if (signedActions[signer][_action]) {
                count++;
            }
        }

        if (count == 0) {
            revert("TokenManager: action not authorized");
        }
        require(count >= minAuthorizations, "TokenManager: insufficient authorization");
    }

    function _clearAction(bytes32 _action, uint256 _nonce) private {
        require(pendingActions[_action], "TokenManager: invalid _action");
        delete pendingActions[_action];
        emit ClearAction(_action, _nonce);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.2;

import "../../introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() internal {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

interface ITimelock {
    function setAdmin(address _admin) external;

    function enableLeverage(address _vault) external;

    function disableLeverage(address _vault) external;

    function setIsLeverageEnabled(address _vault, bool _isLeverageEnabled) external;

    function signalSetGov(address _target, address _gov) external;

    function managedSetHandler(
        address _target,
        address _handler,
        bool _isActive
    ) external;

    function managedSetMinter(
        address _target,
        address _minter,
        bool _isActive
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):