Contract Diff Checker

Contract Name:
SperaxTokenL2

Contract Source Code:

File 1 of 1 : SperaxTokenL2

/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * ////IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

////import "./Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor () internal {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

////import "../../utils/Context.sol";
////import "./IERC20.sol";
////import "../../math/SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.12;

////import "@openzeppelin/contracts/utils/Context.sol";

contract MintPausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event MintPaused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event MintUnpaused(address account);

    bool private _mintPaused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() internal {
        _mintPaused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function mintPaused() public view returns (bool) {
        return _mintPaused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenMintNotPaused() {
        require(!_mintPaused, "MintPausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenMintPaused() {
        require(_mintPaused, "MintPausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _mintPause() internal whenMintNotPaused {
        _mintPaused = true;
        emit MintPaused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _mintUnpause() internal whenMintPaused {
        _mintPaused = false;
        emit MintUnpaused(_msgSender());
    }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: Apache-2.0

/*
 * Copyright 2020, Offchain Labs, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @title Minimum expected interface for L2 token that interacts with the L2 token bridge (this is the interface necessary
 * for a custom token that interacts with the bridge, see TestArbCustomToken.sol for an example implementation).
 */
pragma solidity ^0.6.11;

interface IArbToken {
    /**
     * @notice should increase token supply by amount, and should (probably) only be callable by the L1 bridge.
     */
    function bridgeMint(address account, uint256 amount) external;

    /**
     * @notice should decrease token supply by amount, and should (probably) only be callable by the L1 bridge.
     */
    function bridgeBurn(address account, uint256 amount) external;

    /**
     * @return address of layer 1 token
     */
    function l1Address() external view returns (address);
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

////import "./ERC20.sol";
////import "../../utils/Pausable.sol";

/**
 * @dev ERC20 token with pausable token transfers, minting and burning.
 *
 * Useful for scenarios such as preventing trades until the end of an evaluation
 * period, or having an emergency switch for freezing all token transfers in the
 * event of a large bug.
 */
abstract contract ERC20Pausable is ERC20, Pausable {
    /**
     * @dev See {ERC20-_beforeTokenTransfer}.
     *
     * Requirements:
     *
     * - the contract must not be paused.
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        require(!paused(), "ERC20Pausable: token transfer while paused");
    }
}




/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/
            
////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT

pragma solidity >=0.6.0 <0.8.0;

////import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}


/** 
 *  SourceUnit: /Users/dan/Sperax/USDs/contracts/token/SperaxTokenL2.sol
*/

////// SPDX-License-Identifier-FLATTEN-SUPPRESS-WARNING: MIT
pragma solidity >=0.6.12;

////import "@openzeppelin/contracts/access/Ownable.sol";
////import "@openzeppelin/contracts/token/ERC20/ERC20Pausable.sol";
////import "arb-bridge-peripherals/contracts/tokenbridge/arbitrum/IArbToken.sol";
////import "../utils/MintPausable.sol";

/**
 * @title SPA Token Contract on Arbitrum (L2)
 * @author Sperax Foundation
 */
contract SperaxTokenL2 is ERC20Pausable, MintPausable, Ownable, IArbToken {
    event BlockTransfer(address indexed account);
    event AllowTransfer(address indexed account);
    /**
    * @dev Emitted when an account is set mintabl
    */
    event Mintable(address account);
    /**
     * @dev Emitted when an account is set unmintable
     */
    event Unmintable(address account);
    event ArbitrumGatewayL1TokenChanged(address gateway, address l1token);


    modifier onlyMintableGroup() {
        require(mintableGroup[_msgSender()], "SPA: not in mintable group");
        _;
    }


    struct TimeLock {
        uint256 releaseTime;
        uint256 amount;
    }
    mapping(address => TimeLock) private _timelock;
    // @dev mintable group
    mapping(address => bool) public mintableGroup;
    // @dev record mintable accounts
    address [] public mintableAccounts;

    // Arbitrum Bridge
    address public l2Gateway;
    address public override l1Address;

    /**
     * @dev Initialize the contract give all tokens to the deployer
     * @param _l2Gateway address of Arbitrum custom L2 Gateway
     * @param _l2Gateway address of SperaxTokenL1 on L1
     */
    constructor(string memory _name, string memory _symbol, address _l2Gateway, address _l1Address)
        ERC20(_name, _symbol) public {
        l2Gateway = _l2Gateway;
        l1Address = _l1Address;
    }

    /**
     * @dev set or remove address to mintable group
     */
    function setMintable(address account, bool allow) public onlyOwner {
        mintableGroup[account] = allow;
        mintableAccounts.push(account);

        if (allow) {
            emit Mintable(account);
        }  else {
            emit Unmintable(account);
        }
    }

    /**
     * @dev remove all mintable account
     */
    function revokeAllMintable() public onlyOwner {
        uint n = mintableAccounts.length;
        for (uint i=0;i<n;i++) {
            delete mintableGroup[mintableAccounts[i]];
        }
        delete mintableAccounts;
    }


    /**
     * @dev mint SPA when USDs is burnt
     */
    function mintForUSDs(address account, uint256 amount) whenMintNotPaused onlyMintableGroup external {
        _mint(account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) public {
        uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "SperaxToken: burn amount exceeds allowance");

        _approve(account, _msgSender(), decreasedAllowance);
        _burn(account, amount);
    }


    /**
     * @dev View `account` locked information
     */
    function timelockOf(address account) public view returns(uint256 releaseTime, uint256 amount) {
        TimeLock memory timelock = _timelock[account];
        return (timelock.releaseTime, timelock.amount);
    }

    /**
     * @dev Transfer to the "recipient" some specified 'amount' that is locked until "releaseTime"
     * @notice only Owner call
     */
    function transferWithLock(address recipient, uint256 amount, uint256 releaseTime) public onlyOwner returns (bool) {
        require(recipient != address(0), "SperaxToken: transferWithLock to zero address");
        require(releaseTime > block.timestamp, "SperaxToken: release time before lock time");
        require(_timelock[recipient].releaseTime == 0, "SperaxToken: already locked");

        TimeLock memory timelock = TimeLock({
            releaseTime : releaseTime,
            amount      : amount
        });
        _timelock[recipient] = timelock;

        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev Release the specified `amount` of locked amount
     * @notice only Owner call
     */
    function release(address account, uint256 releaseAmount) public onlyOwner {
        require(account != address(0), "SperaxToken: release zero address");

        TimeLock storage timelock = _timelock[account];
        timelock.amount = timelock.amount.sub(releaseAmount);
        if(timelock.amount == 0) {
            timelock.releaseTime = 0;
        }
    }

    /**
     * @dev Triggers stopped state.
     * @notice only Owner call
     */
    function pause() public onlyOwner {
        _pause();
    }

    /**
     * @dev Returns to normal state.
     * @notice only Owner call
     */
    function unpause() public onlyOwner {
        _unpause();
    }

    /**
     * @dev Triggers stopped state of mint.
     * @notice only Owner call
     */
    function mintPause() public onlyOwner {
        _mintPause();
    }

    /**
     * @dev Returns to normal state of mint.
     * @notice only Owner call
     */
    function mintUnpause() public onlyOwner {
        _mintUnpause();
    }

    /**
     * @dev Batch transfer amount to recipient
     * @notice that excessive gas consumption causes transaction revert
     */
    function batchTransfer(address[] memory recipients, uint256[] memory amounts) public {
        require(recipients.length > 0, "SperaxToken: least one recipient address");
        require(recipients.length == amounts.length, "SperaxToken: number of recipient addresses does not match the number of tokens");

        for(uint256 i = 0; i < recipients.length; ++i) {
            _transfer(_msgSender(), recipients[i], amounts[i]);
        }
    }

    /**
     * @dev See {ERC20-_beforeTokenTransfer}.
     *
     * Requirements:
     *
     * - the contract must not be paused.
     * - accounts must not trigger the locked `amount` during the locked period.
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
        require(!paused(), "SperaxToken: token transfer while paused");

        // Check whether the locked amount is triggered
        TimeLock storage timelock = _timelock[from];
        if(timelock.releaseTime != 0 && balanceOf(from).sub(amount) < timelock.amount) {
            require(block.timestamp >= timelock.releaseTime, "SperaxToken: current time is before from account release time");

            // Update the locked `amount` if the current time reaches the release time
            timelock.amount = 0;
            if(timelock.amount == 0) {
                timelock.releaseTime = 0;
            }
        }

        super._beforeTokenTransfer(from, to, amount);
    }

    // Arbitrum Bridge

    /**
     * @notice change the arbitrum bridge address and corresponding L1 token address
     * @dev normally this function should not be called
     * @param newL2Gateway the new bridge address
     * @param newL1Address the new router address
     */
    function changeArbToken(address newL2Gateway, address newL1Address) external onlyOwner {
        l2Gateway = newL2Gateway;
        l1Address = newL1Address;
        emit ArbitrumGatewayL1TokenChanged(l2Gateway, l1Address);
    }

    modifier onlyGateway() {
        require(msg.sender == l2Gateway, "ONLY_l2GATEWAY");
        _;
    }

    function bridgeMint(address account, uint256 amount) external override onlyGateway {
        _mint(account, amount);
    }

    function bridgeBurn(address account, uint256 amount) external override onlyGateway {
        _burn(account, amount);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):