Contract Name:
ReFiMedLendResolver
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {SchemaResolver} from "@ethereum-attestation-service/contracts/resolver/SchemaResolver.sol";
import {IEAS, Attestation} from "@ethereum-attestation-service/contracts/IEAS.sol";
import {ILendManager} from "./interfaces/ILendManager.sol";
contract ReFiMedLendResolver is SchemaResolver {
address private _lendManager;
constructor(IEAS eas) SchemaResolver(eas) {}
function setLendManager(address lendManager) external {
_lendManager = lendManager;
}
function onAttest(Attestation calldata attestation, uint256 /*value*/ ) internal override returns (bool) {
(uint256 amount, address recipent, uint16 index) = abi.decode(attestation.data, (uint256, address, uint16));
bool success = ILendManager(_lendManager).increaseQuota(recipent, index, attestation.attester, amount);
if (success) {
return true;
}
return false;
}
function onRevoke(Attestation calldata, /*attestation*/ uint256 /*value*/ ) internal pure override returns (bool) {
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import { IEAS, Attestation } from "../IEAS.sol";
import { AccessDenied, InvalidEAS, InvalidLength, uncheckedInc } from "../Common.sol";
import { Semver } from "../Semver.sol";
import { ISchemaResolver } from "./ISchemaResolver.sol";
/// @title SchemaResolver
/// @notice The base schema resolver contract.
abstract contract SchemaResolver is ISchemaResolver, Semver {
error InsufficientValue();
error NotPayable();
// The global EAS contract.
IEAS internal immutable _eas;
/// @dev Creates a new resolver.
/// @param eas The address of the global EAS contract.
constructor(IEAS eas) Semver(1, 3, 0) {
if (address(eas) == address(0)) {
revert InvalidEAS();
}
_eas = eas;
}
/// @dev Ensures that only the EAS contract can make this call.
modifier onlyEAS() {
_onlyEAS();
_;
}
/// @inheritdoc ISchemaResolver
function isPayable() public pure virtual returns (bool) {
return false;
}
/// @dev ETH callback.
receive() external payable virtual {
if (!isPayable()) {
revert NotPayable();
}
}
/// @inheritdoc ISchemaResolver
function attest(Attestation calldata attestation) external payable onlyEAS returns (bool) {
return onAttest(attestation, msg.value);
}
/// @inheritdoc ISchemaResolver
function multiAttest(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable onlyEAS returns (bool) {
uint256 length = attestations.length;
if (length != values.length) {
revert InvalidLength();
}
// We are keeping track of the remaining ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 remainingValue = msg.value;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// Ensure that the attester/revoker doesn't try to spend more than available.
uint256 value = values[i];
if (value > remainingValue) {
revert InsufficientValue();
}
// Forward the attestation to the underlying resolver and return false in case it isn't approved.
if (!onAttest(attestations[i], value)) {
return false;
}
unchecked {
// Subtract the ETH amount, that was provided to this attestation, from the global remaining ETH amount.
remainingValue -= value;
}
}
return true;
}
/// @inheritdoc ISchemaResolver
function revoke(Attestation calldata attestation) external payable onlyEAS returns (bool) {
return onRevoke(attestation, msg.value);
}
/// @inheritdoc ISchemaResolver
function multiRevoke(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable onlyEAS returns (bool) {
uint256 length = attestations.length;
if (length != values.length) {
revert InvalidLength();
}
// We are keeping track of the remaining ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 remainingValue = msg.value;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// Ensure that the attester/revoker doesn't try to spend more than available.
uint256 value = values[i];
if (value > remainingValue) {
revert InsufficientValue();
}
// Forward the revocation to the underlying resolver and return false in case it isn't approved.
if (!onRevoke(attestations[i], value)) {
return false;
}
unchecked {
// Subtract the ETH amount, that was provided to this attestation, from the global remaining ETH amount.
remainingValue -= value;
}
}
return true;
}
/// @notice A resolver callback that should be implemented by child contracts.
/// @param attestation The new attestation.
/// @param value An explicit ETH amount that was sent to the resolver. Please note that this value is verified in
/// both attest() and multiAttest() callbacks EAS-only callbacks and that in case of multi attestations, it'll
/// usually hold that msg.value != value, since msg.value aggregated the sent ETH amounts for all the
/// attestations in the batch.
/// @return Whether the attestation is valid.
function onAttest(Attestation calldata attestation, uint256 value) internal virtual returns (bool);
/// @notice Processes an attestation revocation and verifies if it can be revoked.
/// @param attestation The existing attestation to be revoked.
/// @param value An explicit ETH amount that was sent to the resolver. Please note that this value is verified in
/// both revoke() and multiRevoke() callbacks EAS-only callbacks and that in case of multi attestations, it'll
/// usually hold that msg.value != value, since msg.value aggregated the sent ETH amounts for all the
/// attestations in the batch.
/// @return Whether the attestation can be revoked.
function onRevoke(Attestation calldata attestation, uint256 value) internal virtual returns (bool);
/// @dev Ensures that only the EAS contract can make this call.
function _onlyEAS() private view {
if (msg.sender != address(_eas)) {
revert AccessDenied();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISchemaRegistry } from "./ISchemaRegistry.sol";
import { ISemver } from "./ISemver.sol";
import { Attestation, Signature } from "./Common.sol";
/// @notice A struct representing the arguments of the attestation request.
struct AttestationRequestData {
address recipient; // The recipient of the attestation.
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
bool revocable; // Whether the attestation is revocable.
bytes32 refUID; // The UID of the related attestation.
bytes data; // Custom attestation data.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/// @notice A struct representing the full arguments of the attestation request.
struct AttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
}
/// @notice A struct representing the full arguments of the full delegated attestation request.
struct DelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
Signature signature; // The ECDSA signature data.
address attester; // The attesting account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the full arguments of the multi attestation request.
struct MultiAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation request.
}
/// @notice A struct representing the full arguments of the delegated multi attestation request.
struct MultiDelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation requests.
Signature[] signatures; // The ECDSA signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address attester; // The attesting account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the arguments of the revocation request.
struct RevocationRequestData {
bytes32 uid; // The UID of the attestation to revoke.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/// @notice A struct representing the full arguments of the revocation request.
struct RevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
}
/// @notice A struct representing the arguments of the full delegated revocation request.
struct DelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
Signature signature; // The ECDSA signature data.
address revoker; // The revoking account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the full arguments of the multi revocation request.
struct MultiRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation request.
}
/// @notice A struct representing the full arguments of the delegated multi revocation request.
struct MultiDelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation requests.
Signature[] signatures; // The ECDSA signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address revoker; // The revoking account.
uint64 deadline; // The deadline of the signature/request.
}
/// @title IEAS
/// @notice EAS - Ethereum Attestation Service interface.
interface IEAS is ISemver {
/// @notice Emitted when an attestation has been made.
/// @param recipient The recipient of the attestation.
/// @param attester The attesting account.
/// @param uid The UID the revoked attestation.
/// @param schemaUID The UID of the schema.
event Attested(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schemaUID);
/// @notice Emitted when an attestation has been revoked.
/// @param recipient The recipient of the attestation.
/// @param attester The attesting account.
/// @param schemaUID The UID of the schema.
/// @param uid The UID the revoked attestation.
event Revoked(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schemaUID);
/// @notice Emitted when a data has been timestamped.
/// @param data The data.
/// @param timestamp The timestamp.
event Timestamped(bytes32 indexed data, uint64 indexed timestamp);
/// @notice Emitted when a data has been revoked.
/// @param revoker The address of the revoker.
/// @param data The data.
/// @param timestamp The timestamp.
event RevokedOffchain(address indexed revoker, bytes32 indexed data, uint64 indexed timestamp);
/// @notice Returns the address of the global schema registry.
/// @return The address of the global schema registry.
function getSchemaRegistry() external view returns (ISchemaRegistry);
/// @notice Attests to a specific schema.
/// @param request The arguments of the attestation request.
/// @return The UID of the new attestation.
///
/// Example:
/// attest({
/// schema: "0facc36681cbe2456019c1b0d1e7bedd6d1d40f6f324bf3dd3a4cef2999200a0",
/// data: {
/// recipient: "0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf",
/// expirationTime: 0,
/// revocable: true,
/// refUID: "0x0000000000000000000000000000000000000000000000000000000000000000",
/// data: "0xF00D",
/// value: 0
/// }
/// })
function attest(AttestationRequest calldata request) external payable returns (bytes32);
/// @notice Attests to a specific schema via the provided ECDSA signature.
/// @param delegatedRequest The arguments of the delegated attestation request.
/// @return The UID of the new attestation.
///
/// Example:
/// attestByDelegation({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 0
/// },
/// signature: {
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// attester: '0xc5E8740aD971409492b1A63Db8d83025e0Fc427e',
/// deadline: 1673891048
/// })
function attestByDelegation(
DelegatedAttestationRequest calldata delegatedRequest
) external payable returns (bytes32);
/// @notice Attests to multiple schemas.
/// @param multiRequests The arguments of the multi attestation requests. The requests should be grouped by distinct
/// schema ids to benefit from the best batching optimization.
/// @return The UIDs of the new attestations.
///
/// Example:
/// multiAttest([{
/// schema: '0x33e9094830a5cba5554d1954310e4fbed2ef5f859ec1404619adea4207f391fd',
/// data: [{
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 1000
/// },
/// {
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 0,
/// revocable: false,
/// refUID: '0x480df4a039efc31b11bfdf491b383ca138b6bde160988222a2a3509c02cee174',
/// data: '0x00',
/// value: 0
/// }],
/// },
/// {
/// schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
/// data: [{
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 0,
/// revocable: true,
/// refUID: '0x75bf2ed8dca25a8190c50c52db136664de25b2449535839008ccfdab469b214f',
/// data: '0x12345678',
/// value: 0
/// },
/// }])
function multiAttest(MultiAttestationRequest[] calldata multiRequests) external payable returns (bytes32[] memory);
/// @notice Attests to multiple schemas using via provided ECDSA signatures.
/// @param multiDelegatedRequests The arguments of the delegated multi attestation requests. The requests should be
/// grouped by distinct schema ids to benefit from the best batching optimization.
/// @return The UIDs of the new attestations.
///
/// Example:
/// multiAttestByDelegation([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 0
/// },
/// {
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 0,
/// revocable: false,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x00',
/// value: 0
/// }],
/// signatures: [{
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// {
/// v: 28,
/// r: '0x487s...67bb',
/// s: '0x12ad...2366'
/// }],
/// attester: '0x1D86495b2A7B524D747d2839b3C645Bed32e8CF4',
/// deadline: 1673891048
/// }])
function multiAttestByDelegation(
MultiDelegatedAttestationRequest[] calldata multiDelegatedRequests
) external payable returns (bytes32[] memory);
/// @notice Revokes an existing attestation to a specific schema.
/// @param request The arguments of the revocation request.
///
/// Example:
/// revoke({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// uid: '0x101032e487642ee04ee17049f99a70590c735b8614079fc9275f9dd57c00966d',
/// value: 0
/// }
/// })
function revoke(RevocationRequest calldata request) external payable;
/// @notice Revokes an existing attestation to a specific schema via the provided ECDSA signature.
/// @param delegatedRequest The arguments of the delegated revocation request.
///
/// Example:
/// revokeByDelegation({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// uid: '0xcbbc12102578c642a0f7b34fe7111e41afa25683b6cd7b5a14caf90fa14d24ba',
/// value: 0
/// },
/// signature: {
/// v: 27,
/// r: '0xb593...7142',
/// s: '0x0f5b...2cce'
/// },
/// revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992',
/// deadline: 1673891048
/// })
function revokeByDelegation(DelegatedRevocationRequest calldata delegatedRequest) external payable;
/// @notice Revokes existing attestations to multiple schemas.
/// @param multiRequests The arguments of the multi revocation requests. The requests should be grouped by distinct
/// schema ids to benefit from the best batching optimization.
///
/// Example:
/// multiRevoke([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
/// value: 1000
/// },
/// {
/// uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
/// value: 0
/// }],
/// },
/// {
/// schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
/// data: [{
/// uid: '0x053d42abce1fd7c8fcddfae21845ad34dae287b2c326220b03ba241bc5a8f019',
/// value: 0
/// },
/// }])
function multiRevoke(MultiRevocationRequest[] calldata multiRequests) external payable;
/// @notice Revokes existing attestations to multiple schemas via provided ECDSA signatures.
/// @param multiDelegatedRequests The arguments of the delegated multi revocation attestation requests. The requests
/// should be grouped by distinct schema ids to benefit from the best batching optimization.
///
/// Example:
/// multiRevokeByDelegation([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
/// value: 1000
/// },
/// {
/// uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
/// value: 0
/// }],
/// signatures: [{
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// {
/// v: 28,
/// r: '0x487s...67bb',
/// s: '0x12ad...2366'
/// }],
/// revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992',
/// deadline: 1673891048
/// }])
function multiRevokeByDelegation(
MultiDelegatedRevocationRequest[] calldata multiDelegatedRequests
) external payable;
/// @notice Timestamps the specified bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was timestamped with.
function timestamp(bytes32 data) external returns (uint64);
/// @notice Timestamps the specified multiple bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was timestamped with.
function multiTimestamp(bytes32[] calldata data) external returns (uint64);
/// @notice Revokes the specified bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was revoked with.
function revokeOffchain(bytes32 data) external returns (uint64);
/// @notice Revokes the specified multiple bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was revoked with.
function multiRevokeOffchain(bytes32[] calldata data) external returns (uint64);
/// @notice Returns an existing attestation by UID.
/// @param uid The UID of the attestation to retrieve.
/// @return The attestation data members.
function getAttestation(bytes32 uid) external view returns (Attestation memory);
/// @notice Checks whether an attestation exists.
/// @param uid The UID of the attestation to retrieve.
/// @return Whether an attestation exists.
function isAttestationValid(bytes32 uid) external view returns (bool);
/// @notice Returns the timestamp that the specified data was timestamped with.
/// @param data The data to query.
/// @return The timestamp the data was timestamped with.
function getTimestamp(bytes32 data) external view returns (uint64);
/// @notice Returns the timestamp that the specified data was timestamped with.
/// @param data The data to query.
/// @return The timestamp the data was timestamped with.
function getRevokeOffchain(address revoker, bytes32 data) external view returns (uint64);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
interface ILendManager {
// Eventos
event Funded(address indexed funder, uint256 amount, address indexed token, uint8 decimals);
event Withdraw(
address indexed withdrawer, uint256 amount, uint256 interests, address indexed token, uint8 decimals
);
event DelayedWithdraw(address indexed withdrawer, uint256 amount, address indexed token, uint8 decimals);
event Lending(address indexed lender, uint256 amount, address indexed token, uint8 decimals);
event UserQuotaIncreaseRequest(
address indexed caller, address indexed recipient, uint256 amount, address[] signers
);
event UserQuotaIncreased(address indexed caller, address indexed recipient, uint256 amount);
event UserQuotaSigned(address indexed signer, address indexed recipient, uint256 amount);
// Error
error UnavailableAmount();
// Funciones
function fund(uint256 amount, address token) external;
function requestWithdraw(uint256 amount, address token) external;
function claimDelayedWithdraw(uint256 amount, address token, uint256 timestamp) external;
function requestLend(uint256 amount, address token, uint256 paymentDue) external;
function requestIncreaseQuota(address recipient, uint256 amount, address[] calldata signers) external;
function increaseQuota(address recipient, uint16 index, address caller, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// A representation of an empty/uninitialized UID.
bytes32 constant EMPTY_UID = 0;
// A zero expiration represents an non-expiring attestation.
uint64 constant NO_EXPIRATION_TIME = 0;
error AccessDenied();
error DeadlineExpired();
error InvalidEAS();
error InvalidLength();
error InvalidSignature();
error NotFound();
/// @notice A struct representing ECDSA signature data.
struct Signature {
uint8 v; // The recovery ID.
bytes32 r; // The x-coordinate of the nonce R.
bytes32 s; // The signature data.
}
/// @notice A struct representing a single attestation.
struct Attestation {
bytes32 uid; // A unique identifier of the attestation.
bytes32 schema; // The unique identifier of the schema.
uint64 time; // The time when the attestation was created (Unix timestamp).
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
uint64 revocationTime; // The time when the attestation was revoked (Unix timestamp).
bytes32 refUID; // The UID of the related attestation.
address recipient; // The recipient of the attestation.
address attester; // The attester/sender of the attestation.
bool revocable; // Whether the attestation is revocable.
bytes data; // Custom attestation data.
}
/// @notice A helper function to work with unchecked iterators in loops.
function uncheckedInc(uint256 i) pure returns (uint256 j) {
unchecked {
j = i + 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { ISemver } from "./ISemver.sol";
/// @title Semver
/// @notice A simple contract for managing contract versions.
contract Semver is ISemver {
// Contract's major version number.
uint256 private immutable _major;
// Contract's minor version number.
uint256 private immutable _minor;
// Contract's patch version number.
uint256 private immutable _patch;
/// @dev Create a new Semver instance.
/// @param major Major version number.
/// @param minor Minor version number.
/// @param patch Patch version number.
constructor(uint256 major, uint256 minor, uint256 patch) {
_major = major;
_minor = minor;
_patch = patch;
}
/// @notice Returns the full semver contract version.
/// @return Semver contract version as a string.
function version() external view returns (string memory) {
return
string(
abi.encodePacked(Strings.toString(_major), ".", Strings.toString(_minor), ".", Strings.toString(_patch))
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISemver } from "../ISemver.sol";
import { Attestation } from "../Common.sol";
/// @title ISchemaResolver
/// @notice The interface of an optional schema resolver.
interface ISchemaResolver is ISemver {
/// @notice Checks if the resolver can be sent ETH.
/// @return Whether the resolver supports ETH transfers.
function isPayable() external pure returns (bool);
/// @notice Processes an attestation and verifies whether it's valid.
/// @param attestation The new attestation.
/// @return Whether the attestation is valid.
function attest(Attestation calldata attestation) external payable returns (bool);
/// @notice Processes multiple attestations and verifies whether they are valid.
/// @param attestations The new attestations.
/// @param values Explicit ETH amounts which were sent with each attestation.
/// @return Whether all the attestations are valid.
function multiAttest(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
/// @notice Processes an attestation revocation and verifies if it can be revoked.
/// @param attestation The existing attestation to be revoked.
/// @return Whether the attestation can be revoked.
function revoke(Attestation calldata attestation) external payable returns (bool);
/// @notice Processes revocation of multiple attestation and verifies they can be revoked.
/// @param attestations The existing attestations to be revoked.
/// @param values Explicit ETH amounts which were sent with each revocation.
/// @return Whether the attestations can be revoked.
function multiRevoke(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISemver } from "./ISemver.sol";
import { ISchemaResolver } from "./resolver/ISchemaResolver.sol";
/// @notice A struct representing a record for a submitted schema.
struct SchemaRecord {
bytes32 uid; // The unique identifier of the schema.
ISchemaResolver resolver; // Optional schema resolver.
bool revocable; // Whether the schema allows revocations explicitly.
string schema; // Custom specification of the schema (e.g., an ABI).
}
/// @title ISchemaRegistry
/// @notice The interface of global attestation schemas for the Ethereum Attestation Service protocol.
interface ISchemaRegistry is ISemver {
/// @notice Emitted when a new schema has been registered
/// @param uid The schema UID.
/// @param registerer The address of the account used to register the schema.
/// @param schema The schema data.
event Registered(bytes32 indexed uid, address indexed registerer, SchemaRecord schema);
/// @notice Submits and reserves a new schema
/// @param schema The schema data schema.
/// @param resolver An optional schema resolver.
/// @param revocable Whether the schema allows revocations explicitly.
/// @return The UID of the new schema.
function register(string calldata schema, ISchemaResolver resolver, bool revocable) external returns (bytes32);
/// @notice Returns an existing schema by UID
/// @param uid The UID of the schema to retrieve.
/// @return The schema data members.
function getSchema(bytes32 uid) external view returns (SchemaRecord memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice A semver interface.
interface ISemver {
/// @notice Returns the full semver contract version.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}