Contract Diff Checker

Contract Name:
ZigZagExchange

Contract Source Code:

//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import './LibOrder.sol';
import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import { EIP712 } from '@openzeppelin/contracts/utils/cryptography/EIP712.sol';
import { SignatureChecker } from '@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol';

// import "hardhat/console.sol";

interface IWETH9 {
  function depositTo(address) external payable;

  function withdrawTo(address, uint256) external;

  function balanceOf(address) external view returns (uint256);
}

contract ZigZagExchange is EIP712 {
  event Swap(
    address maker,
    address indexed taker,
    address indexed makerSellToken,
    address indexed takerSellToken,
    uint256 makerSellAmount,
    uint256 takerSellAmount,
    uint256 makerVolumeFee,
    uint256 takerVolumeFee
  );

  event CancelOrder(bytes32 indexed orderHash);
  event OrderStatus(bytes32 indexed orderHash, uint filled, uint remaining);

  mapping(bytes32 => uint256) public filled;

  mapping(bytes32 => bool) public cancelled;

  // fees
  address immutable FEE_ADDRESS;
  address immutable WETH_ADDRESS;
  address immutable EXCHANGE_ADDRESS;
  address constant ETH_ADDRESS = address(0);

  uint256 maker_fee_numerator = 0;
  uint256 maker_fee_denominator = 10000;
  uint256 taker_fee_numerator = 5;
  uint256 taker_fee_denominator = 10000;

  // initialize fee address
  constructor(string memory name, string memory version, address fee_address, address weth_address) EIP712(name, version) {
    FEE_ADDRESS = fee_address;
    WETH_ADDRESS = weth_address;
    EXCHANGE_ADDRESS = address(this);
  }

  receive() external payable {}

  /// @notice Cancel an order so it can no longer be filled
  /// @param order order that should get cancelled
  function cancelOrder(LibOrder.Order calldata order) public {
    require(msg.sender == order.user, 'only user may cancel order');
    bytes32 orderHash = LibOrder.getOrderHash(order);
    require(filled[orderHash] < order.sellAmount, 'order already filled');
    cancelled[orderHash] = true;
    emit CancelOrder(orderHash);
  }

  function fillOrderRouteETH(
    LibOrder.Order[] calldata makerOrder,
    bytes[] calldata makerSignature,
    uint takerAmount,
    bool fillAvailable
  ) public payable returns (bool) {
    require(makerOrder.length == makerSignature.length, 'Length of makerOrders and makerSignatures does not match');
    require(makerOrder.length > 0, 'Length of makerOrders can not be 0');

    if (makerOrder.length == 1) {
      return fillOrderExactInputETH(makerOrder[0], makerSignature[0], takerAmount, fillAvailable);
    }

    uint256 n = makerOrder.length - 1;
    for (uint i = 0; i <= n; i++) {
      require(i == 0 || makerOrder[i - 1].sellToken == makerOrder[i].buyToken, 'Tokens on route do not match');

      // takerAmountOut = takerAmountIn * price
      takerAmount = (takerAmount * makerOrder[i].sellAmount) / makerOrder[i].buyAmount;

      // first or last tx might need to (un-)wrap ETH
      if (i == 0 && makerOrder[0].buyToken == WETH_ADDRESS) {
        _fillOrderETH(makerOrder[0], makerSignature[0], msg.sender, EXCHANGE_ADDRESS, takerAmount, fillAvailable);
      } else if (i == n && makerOrder[n].sellToken == WETH_ADDRESS) {
        _fillOrderETH(makerOrder[n], makerSignature[n], EXCHANGE_ADDRESS, msg.sender, takerAmount, fillAvailable);
      } else {
        _fillOrder(
          makerOrder[i],
          makerSignature[i],
          i == 0 ? msg.sender : EXCHANGE_ADDRESS,
          i == n ? msg.sender : EXCHANGE_ADDRESS,
          makerOrder[i].sellToken,
          makerOrder[i].buyToken,
          takerAmount,
          fillAvailable
        );
      }

      // adjust the takerAmountOut by the tx fee paid by the taker
      takerAmount = takerAmount - (takerAmount * taker_fee_numerator) / taker_fee_denominator;
    }

    _refundETH();
    return true;
  }

  function fillOrderRoute(
    LibOrder.Order[] calldata makerOrder,
    bytes[] calldata makerSignature,
    uint takerAmount,
    bool fillAvailable
  ) public payable returns (bool) {
    require(makerOrder.length == makerSignature.length, 'Length of makerOrders and makerSignatures does not match');
    require(makerOrder.length > 0, 'Length of makerOrders can not be 0');

    if (makerOrder.length == 1) {
      return fillOrderExactInput(makerOrder[0], makerSignature[0], takerAmount, fillAvailable);
    }

    uint256 n = makerOrder.length - 1;
    for (uint i = 0; i <= n; i++) {
      require(i == 0 || makerOrder[i - 1].sellToken == makerOrder[i].buyToken, 'Tokens on route do not match');

      // takerAmountOut = takerAmountIn * price
      takerAmount = (takerAmount * makerOrder[i].sellAmount) / makerOrder[i].buyAmount;

      _fillOrder(
        makerOrder[i],
        makerSignature[i],
        i == 0 ? msg.sender : EXCHANGE_ADDRESS,
        i == n ? msg.sender : EXCHANGE_ADDRESS,
        makerOrder[i].sellToken,
        makerOrder[i].buyToken,
        takerAmount,
        fillAvailable
      );

      // adjust the takerAmountOut by the tx fee paid by the taker
      takerAmount = takerAmount - (takerAmount * taker_fee_numerator) / taker_fee_denominator;
    }

    return true;
  }

  /// @notice Fills an order with an exact amount to sell, taking or returning ETH
  /// @param makerOrder Order that will be used to make this swap, buyToken or sellToken must be WETH
  /// @param makerSignature  Signature for the order used
  /// @param takerSellAmount amount send from the sender to the maker
  /// @return returns true if successfull
  function fillOrderExactInputETH(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    uint takerSellAmount,
    bool fillAvailable
  ) public payable returns (bool) {
    uint takerBuyAmount = (takerSellAmount * makerOrder.sellAmount) / makerOrder.buyAmount;
    _fillOrderETH(makerOrder, makerSignature, msg.sender, msg.sender, takerBuyAmount, fillAvailable);
    _refundETH();
    return true;
  }

  /// @notice Fills an order with an exact amount to buy, taking or returning ETH
  /// @param makerOrder Order that will be used to make this swap, buyToken or sellToken must be WETH
  /// @param makerSignature  Signature for the order used
  /// @param takerBuyAmount amount send to the sender from the maker
  /// @param fillAvailable Should the maximum buyAmount possible be used
  /// @return returns true if successfull
  function fillOrderExactOutputETH(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    uint takerBuyAmount,
    bool fillAvailable
  ) public payable returns (bool) {
    // add the takerFee to the buy amount to recive the exact amount after fees
    takerBuyAmount = (takerBuyAmount * taker_fee_denominator) / (taker_fee_denominator - taker_fee_numerator);
    _fillOrderETH(makerOrder, makerSignature, msg.sender, msg.sender, takerBuyAmount, fillAvailable);
    _refundETH();
    return true;
  }

  function _fillOrderETH(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    address taker,
    address takerReciver,
    uint takerBuyAmountAdjusted,
    bool fillAvailable
  ) internal {
    require(makerOrder.buyToken == WETH_ADDRESS || makerOrder.sellToken == WETH_ADDRESS, 'Either buy or sell token should be WETH');

    if (makerOrder.buyToken == WETH_ADDRESS) {
      _fillOrder(makerOrder, makerSignature, taker, takerReciver, makerOrder.sellToken, ETH_ADDRESS, takerBuyAmountAdjusted, fillAvailable);
    } else {
      _fillOrder(makerOrder, makerSignature, taker, takerReciver, ETH_ADDRESS, makerOrder.buyToken, takerBuyAmountAdjusted, fillAvailable);
    }
  }

  /// @notice Fills an order with an exact amount to sell
  /// @param makerOrder Order that will be used to make this swap
  /// @param makerSignature  Signature for the order used
  /// @param takerSellAmount amount send from the sender to the maker
  /// @return returns true if successfull
  function fillOrderExactInput(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    uint takerSellAmount,
    bool fillAvailable
  ) public returns (bool) {
    uint takerBuyAmount = (takerSellAmount * makerOrder.sellAmount) / makerOrder.buyAmount;
    _fillOrder(
      makerOrder,
      makerSignature,
      msg.sender,
      msg.sender,
      makerOrder.sellToken,
      makerOrder.buyToken,
      takerBuyAmount,
      fillAvailable
    );
    return true;
  }

  /// @notice Fills an order with an exact amount to buy
  /// @param makerOrder Order that will be used to make this swap
  /// @param makerSignature  Signature for the order used
  /// @param takerBuyAmount amount send to the sender from the maker
  /// @param fillAvailable Should the maximum buyAmount possible be used
  /// @return returns true if successfull
  function fillOrderExactOutput(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    uint takerBuyAmount,
    bool fillAvailable
  ) public returns (bool) {
    // add the takerFee to the buy amount to recive the exact amount after fees
    takerBuyAmount = (takerBuyAmount * taker_fee_denominator) / (taker_fee_denominator - taker_fee_numerator);
    _fillOrder(
      makerOrder,
      makerSignature,
      msg.sender,
      msg.sender,
      makerOrder.sellToken,
      makerOrder.buyToken,
      takerBuyAmount,
      fillAvailable
    );
    return true;
  }

  function _fillOrder(
    LibOrder.Order calldata makerOrder,
    bytes calldata makerSignature,
    address taker,
    address takerReciver,
    address sellToken,
    address buyToken,
    uint takerBuyAmountAdjusted,
    bool fillAvailable
  ) internal {
    require(takerReciver != ETH_ADDRESS, "Can't recive to zero address");

    //validate signature
    LibOrder.OrderInfo memory makerOrderInfo = getOpenOrder(makerOrder);
    require(_isValidSignatureHash(makerOrder.user, makerOrderInfo.orderHash, makerSignature), 'invalid maker signature');

    uint takerSellAmount;
    {
      // prevent Stack too deep
      uint availableTakerSellSize = makerOrder.sellAmount - makerOrderInfo.orderSellFilledAmount;
      if (fillAvailable && availableTakerSellSize < takerBuyAmountAdjusted) takerBuyAmountAdjusted = availableTakerSellSize;
      takerSellAmount = (takerBuyAmountAdjusted * makerOrder.buyAmount) / makerOrder.sellAmount;
      require(takerBuyAmountAdjusted <= availableTakerSellSize, 'amount exceeds available size');
    }

    // mark fills in storage
    uint makerOrderFilled = makerOrderInfo.orderSellFilledAmount + takerBuyAmountAdjusted;
    filled[makerOrderInfo.orderHash] = makerOrderFilled;

    // The fee gets subtracted from the buy amounts so they deduct from the total instead of adding on to it
    // The maker fee comes out of the taker sell quantity, so the maker ends up with less
    // The taker fee comes out of the maker sell quantity, so the taker ends up with less
    // makerFee = (takerSellAmount * maker_fee_numerator) / maker_fee_denominator
    // takerFee = (takerBuyAmountAdjusted * taker_fee_numerator) / taker_fee_denominator

    _settleMatchedOrders(
      makerOrder.user,
      taker,
      takerReciver,
      sellToken,
      buyToken,
      takerBuyAmountAdjusted,
      takerSellAmount,
      (takerSellAmount * maker_fee_numerator) / maker_fee_denominator,
      (takerBuyAmountAdjusted * taker_fee_numerator) / taker_fee_denominator
    );

    emit OrderStatus(makerOrderInfo.orderHash, makerOrderFilled, makerOrder.sellAmount - makerOrderFilled);
  }

  function _settleMatchedOrders(
    address maker,
    address taker,
    address takerReciver,
    address makerSellToken,
    address takerSellToken,
    uint makerSellAmount,
    uint takerSellAmount,
    uint makerFee,
    uint takerFee
  ) internal {
    if (takerSellToken == ETH_ADDRESS) {
      require(msg.value >= takerSellAmount, 'msg value not high enough');
    } else if (taker != EXCHANGE_ADDRESS) {
      require(IERC20(takerSellToken).balanceOf(taker) >= takerSellAmount, 'taker order not enough balance');
      require(IERC20(takerSellToken).allowance(taker, EXCHANGE_ADDRESS) >= takerSellAmount, 'taker order not enough allowance');
    }

    if (makerSellToken == ETH_ADDRESS) {
      require(IERC20(WETH_ADDRESS).balanceOf(maker) >= makerSellAmount, 'maker order not enough balance');
      require(IERC20(WETH_ADDRESS).allowance(maker, EXCHANGE_ADDRESS) >= makerSellAmount, 'maker order not enough allowance');
    } else {
      require(IERC20(makerSellToken).balanceOf(maker) >= makerSellAmount, 'maker order not enough balance');
      require(IERC20(makerSellToken).allowance(maker, EXCHANGE_ADDRESS) >= makerSellAmount, 'maker order not enough allowance');
    }

    // Taker fee -> fee recipient
    // taker fee is collected in takerBuyToken
    if (takerFee > 0) {
      if (makerSellToken == ETH_ADDRESS) {
        IERC20(WETH_ADDRESS).transferFrom(maker, FEE_ADDRESS, takerFee);
      } else {
        IERC20(makerSellToken).transferFrom(maker, FEE_ADDRESS, takerFee);
      }
    }

    // Maker fee -> fee recipient
    // Maker fee is collected in makerBuyToken
    if (makerFee > 0) {
      if (takerSellToken == ETH_ADDRESS) {
        IWETH9(WETH_ADDRESS).depositTo{ value: makerFee }(FEE_ADDRESS);
      } else if (taker == EXCHANGE_ADDRESS) {
        IERC20(takerSellToken).transfer(FEE_ADDRESS, makerFee);
      } else {
        IERC20(takerSellToken).transferFrom(taker, FEE_ADDRESS, makerFee);
      }
    }

    // taker -> maker
    if (takerSellToken == ETH_ADDRESS) {
      IWETH9(WETH_ADDRESS).depositTo{ value: takerSellAmount - makerFee }(maker);
    } else if (taker == EXCHANGE_ADDRESS) {
      IERC20(takerSellToken).transfer(maker, takerSellAmount - makerFee);
    } else {
      IERC20(takerSellToken).transferFrom(taker, maker, takerSellAmount - makerFee);
    }

    // maker -> taker
    if (makerSellToken == ETH_ADDRESS) {
      IERC20(WETH_ADDRESS).transferFrom(maker, EXCHANGE_ADDRESS, makerSellAmount - takerFee);
      IWETH9(WETH_ADDRESS).withdrawTo(takerReciver, makerSellAmount - takerFee);
    } else {
      IERC20(makerSellToken).transferFrom(maker, takerReciver, makerSellAmount - takerFee);
    }
    
    emit Swap(maker, taker, makerSellToken, takerSellToken, makerSellAmount, takerSellAmount, makerFee, takerFee);
  }

  function getOpenOrder(LibOrder.Order calldata order) public view returns (LibOrder.OrderInfo memory orderInfo) {
    orderInfo.orderHash = LibOrder.getOrderHash(order);
    orderInfo.orderSellFilledAmount = filled[orderInfo.orderHash];

    require(orderInfo.orderSellFilledAmount < order.sellAmount, 'order is filled');
    require(block.timestamp <= order.expirationTimeSeconds, 'order expired');
    require(!cancelled[orderInfo.orderHash], 'order canceled');
  }

  function isValidOrderSignature(LibOrder.Order calldata order, bytes calldata signature) public view returns (bool) {
    bytes32 orderHash = LibOrder.getOrderHash(order);
    return _isValidSignatureHash(order.user, orderHash, signature);
  }

  // hash can be an order hash or a cancel order hash
  function _isValidSignatureHash(address user, bytes32 hash, bytes calldata signature) private view returns (bool) {
    bytes32 digest = _hashTypedDataV4(hash);
    return SignatureChecker.isValidSignatureNow(user, digest, signature);
  }

  function _refundETH() internal {
    if (address(this).balance > 0) {
      (bool success, ) = msg.sender.call{ value: address(this).balance }(new bytes(0));
      require(success, 'ETH transfer failed');
    }
  }
}

//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

library LibOrder {
  //keccak256("Order(address user,address sellToken,address buyToken,uint256 sellAmount,uint256 buyAmount,uint256 expirationTimeSeconds)")
  bytes32 internal constant _EIP712_ORDER_SCHEMA_HASH = 0x68d868c8698fc31da3a36bb7a184a4af099797794701bae97bea3de7ebe6e399;

  struct Order {
    address user; //address of the Order Creator making the sale
    address sellToken; // address of the Token the Order Creator wants to sell
    address buyToken; // address of the Token the Order Creator wants to receive in return
    uint256 sellAmount; // amount of Token that the Order Creator wants to sell
    uint256 buyAmount; // amount of Token that the Order Creator wants to receive in return
    uint256 expirationTimeSeconds; //time after which the order is no longer valid
  }

  struct OrderInfo {
    bytes32 orderHash; // EIP712 typed data hash of the order (see LibOrder.getTypedDataHash).
    uint256 orderSellFilledAmount; // Amount of order that has already been filled.
  }

  // https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct
  function getOrderHash(Order memory order) internal pure returns (bytes32 orderHash) {
    orderHash = keccak256(
      abi.encode(_EIP712_ORDER_SCHEMA_HASH, order.user, order.sellToken, order.buyToken, order.sellAmount, order.buyAmount, order.expirationTimeSeconds)
    );
  }

}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";
import "../Address.sol";
import "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Gnosis Safe.
 *
 * _Available since v4.1._
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
        if (error == ECDSA.RecoverError.NoError && recovered == signer) {
            return true;
        }

        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
        );
        return (success &&
            result.length == 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):