Contract Overview
Balance:
0 ETH
ETH Value:
$0.00
My Name Tag:
Not Available
Txn Hash | Method |
Block
|
From
|
To
|
Value | [Txn Fee] | |||
---|---|---|---|---|---|---|---|---|---|
0x14d8117f6c260576fb98d93004e70797a7e349f324cda148ac927233e6eb4e83 | 0x61010060 | 25976880 | 137 days 12 hrs ago | 0xa67d0c1180e0e183f482304a9b5436a3478f0674 | IN | Create: Accounting | 0 ETH | 0.00029925 |
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Name:
Accounting
Compiler Version
v0.8.14+commit.80d49f37
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMathUD60x18.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; import "./tokens/ERC20.sol"; import "./libraries/OptionsCompute.sol"; import "./interfaces/IAccounting.sol"; import "./interfaces/ILiquidityPool.sol"; /** * @title Modular contract used by the liquidity pool to conducting accounting logic */ contract Accounting is IAccounting { using PRBMathSD59x18 for int256; using PRBMathUD60x18 for uint256; /////////////////////////// /// immutable variables /// /////////////////////////// // the liquidity pool address ILiquidityPool public immutable liquidityPool; // asset that denominates the strike price address public immutable strikeAsset; // asset that is used as the reference asset address public immutable underlyingAsset; // asset that is used for collateral asset address public immutable collateralAsset; // MAX_BPS uint256 private constant MAX_BPS = 10000; constructor(address _liquidityPool) { liquidityPool = ILiquidityPool(_liquidityPool); strikeAsset = ILiquidityPool(_liquidityPool).strikeAsset(); underlyingAsset = ILiquidityPool(_liquidityPool).underlyingAsset(); collateralAsset = ILiquidityPool(_liquidityPool).collateralAsset(); } /////////////////////// /// complex getters /// /////////////////////// /** * @notice calculates the USDC value of the Liquidity pool's ERC20 vault share token denominated in e6 * @param totalSupply the total supply of the liquidity pool's erc20 * @param assets the value of assets held by the pool * @param liabilities the value of liabilities held by the pool * @return tokenPrice the value of the token in e6 terms */ function calculateTokenPrice( uint256 totalSupply, uint256 assets, int256 liabilities ) internal view returns (uint256 tokenPrice) { if (int256(assets) < liabilities) { revert CustomErrors.LiabilitiesGreaterThanAssets(); } uint256 NAV = uint256((int256(assets) - liabilities)); tokenPrice = totalSupply > 0 ? (1e18 * (NAV - OptionsCompute.convertFromDecimals( liquidityPool.pendingDeposits(), ERC20(collateralAsset).decimals() ))) / totalSupply : 1e18; } /** * @notice logic for adding liquidity to the options liquidity pool * @param depositor the address making the deposit * @param _amount amount of the collateral asset to deposit * @return depositAmount the amount to deposit from the round * @return unredeemedShares number of shares held in the deposit receipt that havent been redeemed */ function deposit(address depositor, uint256 _amount) external view returns (uint256 depositAmount, uint256 unredeemedShares) { uint256 collateralCap = liquidityPool.collateralCap(); uint256 currentEpoch = liquidityPool.depositEpoch(); // check the total allowed collateral amount isnt surpassed by incrementing the total assets with the amount denominated in e18 uint256 totalAmountWithDeposit = liquidityPool.getAssets() + OptionsCompute.convertFromDecimals(_amount, ERC20(collateralAsset).decimals()); if (totalAmountWithDeposit > collateralCap) { revert CustomErrors.TotalSupplyReached(); } IAccounting.DepositReceipt memory depositReceipt = liquidityPool.depositReceipts(depositor); // check for any unredeemed shares unredeemedShares = uint256(depositReceipt.unredeemedShares); // if there is already a receipt from a previous round then acknowledge and record it if (depositReceipt.epoch != 0 && depositReceipt.epoch < currentEpoch) { unredeemedShares += sharesForAmount( depositReceipt.amount, liquidityPool.depositEpochPricePerShare(depositReceipt.epoch) ); } depositAmount = _amount; // if there is a second deposit in the same round then increment this amount if (currentEpoch == depositReceipt.epoch) { depositAmount += uint256(depositReceipt.amount); } require(depositAmount <= type(uint128).max, "overflow"); } /** * @notice logic for allowing a user to redeem their shares from a previous epoch * @param redeemer the address making the deposit * @param shares amount of the collateral asset to deposit * @return toRedeem the amount to actually redeem * @return depositReceipt the updated deposit receipt after the redeem has completed */ function redeem(address redeemer, uint256 shares) external view returns (uint256 toRedeem, IAccounting.DepositReceipt memory) { IAccounting.DepositReceipt memory depositReceipt = liquidityPool.depositReceipts(redeemer); uint256 currentEpoch = liquidityPool.depositEpoch(); // check for any unredeemed shares uint256 unredeemedShares = uint256(depositReceipt.unredeemedShares); // if there is already a receipt from a previous round then acknowledge and record it if (depositReceipt.epoch != 0 && depositReceipt.epoch < currentEpoch) { unredeemedShares += sharesForAmount( depositReceipt.amount, liquidityPool.depositEpochPricePerShare(depositReceipt.epoch) ); } // if the shares requested are greater than their unredeemedShares then floor to unredeemedShares, otherwise // use their requested share number toRedeem = shares > unredeemedShares ? unredeemedShares : shares; if (toRedeem == 0) { return (0, depositReceipt); } // if the deposit receipt is on this epoch and there are unredeemed shares then we leave amount as is, // if the epoch has past then we set the amount to 0 and take from the unredeemedShares if (depositReceipt.epoch < currentEpoch) { depositReceipt.amount = 0; } depositReceipt.unredeemedShares = uint128(unredeemedShares - toRedeem); return (toRedeem, depositReceipt); } /** * @notice logic for accounting a user to initiate a withdraw request from the pool * @param withdrawer the address carrying out the withdrawal * @param shares the amount of shares to withdraw for * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function initiateWithdraw(address withdrawer, uint256 shares) external view returns (IAccounting.WithdrawalReceipt memory withdrawalReceipt) { if (liquidityPool.balanceOf(withdrawer) < shares) { revert CustomErrors.InsufficientShareBalance(); } uint256 currentEpoch = liquidityPool.withdrawalEpoch(); withdrawalReceipt = liquidityPool.withdrawalReceipts(withdrawer); uint256 existingShares = withdrawalReceipt.shares; uint256 withdrawalShares; // if they already have an initiated withdrawal from this round just increment if (withdrawalReceipt.epoch == currentEpoch) { withdrawalShares = existingShares + shares; } else { // do 100 wei just in case of any rounding issues if (existingShares > 100) { revert CustomErrors.ExistingWithdrawal(); } withdrawalShares = shares; withdrawalReceipt.epoch = uint128(currentEpoch); } withdrawalReceipt.shares = uint128(withdrawalShares); } /** * @notice logic for accounting a user to complete a withdrawal * @param withdrawer the address carrying out the withdrawal * @return withdrawalAmount the amount of collateral to withdraw * @return withdrawalShares the number of shares to withdraw * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function completeWithdraw(address withdrawer) external view returns ( uint256 withdrawalAmount, uint256 withdrawalShares, IAccounting.WithdrawalReceipt memory withdrawalReceipt ) { withdrawalReceipt = liquidityPool.withdrawalReceipts(withdrawer); // cache the storage variables withdrawalShares = withdrawalReceipt.shares; uint256 withdrawalEpoch = withdrawalReceipt.epoch; // make sure there is something to withdraw and make sure the round isnt the current one if (withdrawalShares == 0) { revert CustomErrors.NoExistingWithdrawal(); } if (withdrawalEpoch == liquidityPool.withdrawalEpoch()) { revert CustomErrors.EpochNotClosed(); } // reduced the stored share receipt by the shares requested withdrawalReceipt.shares -= uint128(withdrawalShares); // get the withdrawal amount based on the shares and pps at the epoch withdrawalAmount = amountForShares( withdrawalShares, liquidityPool.withdrawalEpochPricePerShare(withdrawalEpoch) ); if (withdrawalAmount == 0) { revert CustomErrors.InvalidAmount(); } } /** * @notice execute the next epoch * @param totalSupply the total number of share tokens * @param assets the amount of collateral assets * @param liabilities the amount of liabilities of the pool * @return newPricePerShareDeposit the price per share for deposits * @return newPricePerShareWithdrawal the price per share for withdrawals * @return sharesToMint the number of shares to mint this epoch * @return totalWithdrawAmount the amount of collateral to set aside for partitioning * @return amountNeeded the amount needed to reach the total withdraw amount if collateral balance of lp is insufficient */ function executeEpochCalculation( uint256 totalSupply, uint256 assets, int256 liabilities ) external view returns ( uint256 newPricePerShareDeposit, uint256 newPricePerShareWithdrawal, uint256 sharesToMint, uint256 totalWithdrawAmount, uint256 amountNeeded ) { // get the liquidity that can be withdrawn from the pool without hitting the collateral requirement buffer int256 bufferRemaining = liquidityPool.checkBuffer(); newPricePerShareDeposit = newPricePerShareWithdrawal = calculateTokenPrice( totalSupply, assets, liabilities ); sharesToMint = sharesForAmount(liquidityPool.pendingDeposits(), newPricePerShareDeposit); totalWithdrawAmount = amountForShares( liquidityPool.pendingWithdrawals(), newPricePerShareWithdrawal ); if (bufferRemaining > int256(totalWithdrawAmount)) { amountNeeded = 0; } else { // get the extra liquidity that is needed from hedging reactors amountNeeded = uint256(int256(totalWithdrawAmount) - bufferRemaining); } } /** * @notice get the number of shares for a given amount * @param _amount the amount to convert to shares - assumed in collateral decimals * @param assetPerShare the amount of assets received per share * @return shares the number of shares based on the amount - assumed in e18 */ function sharesForAmount(uint256 _amount, uint256 assetPerShare) public view returns (uint256 shares) { uint256 convertedAmount = OptionsCompute.convertFromDecimals( _amount, ERC20(collateralAsset).decimals() ); shares = (convertedAmount * PRBMath.SCALE) / assetPerShare; } /** * @notice get the amount for a given number of shares * @param _shares the shares to convert to amount in e18 * @param _assetPerShare the amount of assets received per share * @return amount the number of amount based on shares in collateral decimals */ function amountForShares(uint256 _shares, uint256 _assetPerShare) public view returns (uint256 amount) { amount = OptionsCompute.convertToDecimals( (_shares * _assetPerShare) / PRBMath.SCALE, ERC20(collateralAsset).decimals() ); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; import { Types } from "../libraries/Types.sol"; import "../interfaces/IOptionRegistry.sol"; import "../interfaces/IAccounting.sol"; import "../interfaces/I_ERC20.sol"; interface ILiquidityPool is I_ERC20 { /////////////////////////// /// immutable variables /// /////////////////////////// function strikeAsset() external view returns (address); function underlyingAsset() external view returns (address); function collateralAsset() external view returns (address); ///////////////////////// /// dynamic variables /// ///////////////////////// function collateralAllocated() external view returns (uint256); function ephemeralLiabilities() external view returns (int256); function ephemeralDelta() external view returns (int256); function depositEpoch() external view returns (uint256); function withdrawalEpoch() external view returns (uint256); function depositEpochPricePerShare(uint256 epoch) external view returns (uint256 price); function withdrawalEpochPricePerShare(uint256 epoch) external view returns (uint256 price); function depositReceipts(address depositor) external view returns (IAccounting.DepositReceipt memory); function withdrawalReceipts(address withdrawer) external view returns (IAccounting.WithdrawalReceipt memory); function pendingDeposits() external view returns (uint256); function pendingWithdrawals() external view returns (uint256); function partitionedFunds() external view returns (uint256); ///////////////////////////////////// /// governance settable variables /// ///////////////////////////////////// function bufferPercentage() external view returns (uint256); function collateralCap() external view returns (uint256); ///////////////// /// functions /// ///////////////// function handlerIssue(Types.OptionSeries memory optionSeries) external returns (address); function resetEphemeralValues() external; function getAssets() external view returns (uint256); function redeem(uint256) external returns (uint256); function handlerWriteOption( Types.OptionSeries memory optionSeries, address seriesAddress, uint256 amount, IOptionRegistry optionRegistry, uint256 premium, int256 delta, address recipient ) external returns (uint256); function handlerBuybackOption( Types.OptionSeries memory optionSeries, uint256 amount, IOptionRegistry optionRegistry, address seriesAddress, uint256 premium, int256 delta, address seller ) external returns (uint256); function handlerIssueAndWriteOption( Types.OptionSeries memory optionSeries, uint256 amount, uint256 premium, int256 delta, address recipient ) external returns (uint256, address); function getPortfolioDelta() external view returns (int256); function quotePriceWithUtilizationGreeks( Types.OptionSeries memory optionSeries, uint256 amount, bool toBuy ) external view returns (uint256 quote, int256 delta); function checkBuffer() external view returns (int256 bufferRemaining); function getBalance(address asset) external view returns (uint256); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*/////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*/////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*/////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*/////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*/////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*/////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*/////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*/////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; /// @title Accounting contract to calculate the dhv token value and handle deposit/withdraw mechanics interface IAccounting { struct DepositReceipt { uint128 epoch; uint128 amount; // collateral decimals uint256 unredeemedShares; // e18 } struct WithdrawalReceipt { uint128 epoch; uint128 shares; // e18 } /** * @notice logic for adding liquidity to the options liquidity pool * @param depositor the address making the deposit * @param _amount amount of the collateral asset to deposit * @return depositAmount the amount to deposit from the round * @return unredeemedShares number of shares held in the deposit receipt that havent been redeemed */ function deposit(address depositor, uint256 _amount) external returns (uint256 depositAmount, uint256 unredeemedShares); /** * @notice logic for allowing a user to redeem their shares from a previous epoch * @param redeemer the address making the deposit * @param shares amount of the collateral asset to deposit * @return toRedeem the amount to actually redeem * @return depositReceipt the updated deposit receipt after the redeem has completed */ function redeem(address redeemer, uint256 shares) external returns (uint256 toRedeem, DepositReceipt memory depositReceipt); /** * @notice logic for accounting a user to initiate a withdraw request from the pool * @param withdrawer the address carrying out the withdrawal * @param shares the amount of shares to withdraw for * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function initiateWithdraw(address withdrawer, uint256 shares) external returns (WithdrawalReceipt memory withdrawalReceipt); /** * @notice logic for accounting a user to complete a withdrawal * @param withdrawer the address carrying out the withdrawal * @return withdrawalAmount the amount of collateral to withdraw * @return withdrawalShares the number of shares to withdraw * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function completeWithdraw(address withdrawer) external returns ( uint256 withdrawalAmount, uint256 withdrawalShares, WithdrawalReceipt memory withdrawalReceipt ); /** * @notice execute the next epoch * @param totalSupply the total number of share tokens * @param assets the amount of collateral assets * @param liabilities the amount of liabilities of the pool * @return newPricePerShareDeposit the price per share for deposits * @return newPricePerShareWithdrawal the price per share for withdrawals * @return sharesToMint the number of shares to mint this epoch * @return totalWithdrawAmount the amount of collateral to set aside for partitioning * @return amountNeeded the amount needed to reach the total withdraw amount if collateral balance of lp is insufficient */ function executeEpochCalculation( uint256 totalSupply, uint256 assets, int256 liabilities ) external view returns ( uint256 newPricePerShareDeposit, uint256 newPricePerShareWithdrawal, uint256 sharesToMint, uint256 totalWithdrawAmount, uint256 amountNeeded ); /** * @notice get the number of shares for a given amount * @param _amount the amount to convert to shares - assumed in collateral decimals * @param assetPerShare the amount of assets received per share * @return shares the number of shares based on the amount - assumed in e18 */ function sharesForAmount(uint256 _amount, uint256 assetPerShare) external view returns (uint256 shares); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./Types.sol"; import "./CustomErrors.sol"; import "./BlackScholes.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; /** * @title Library used for various helper functionality for the Liquidity Pool */ library OptionsCompute { using PRBMathUD60x18 for uint256; using PRBMathSD59x18 for int256; uint8 private constant SCALE_DECIMALS = 18; /// @dev assumes decimals are coming in as e18 function convertToDecimals(uint256 value, uint256 decimals) internal pure returns (uint256) { if (decimals > SCALE_DECIMALS) { revert(); } uint256 difference = SCALE_DECIMALS - decimals; return value / (10**difference); } /// @dev converts from specified decimals to e18 function convertFromDecimals(uint256 value, uint256 decimals) internal pure returns (uint256) { if (decimals > SCALE_DECIMALS) { revert(); } uint256 difference = SCALE_DECIMALS - decimals; return value * (10**difference); } // doesnt allow for interest bearing collateral function convertToCollateralDenominated( uint256 quote, uint256 underlyingPrice, Types.OptionSeries memory optionSeries ) internal pure returns (uint256 convertedQuote) { if (optionSeries.strikeAsset != optionSeries.collateral) { // convert value from strike asset to collateral asset return (quote * 1e18) / underlyingPrice; } else { return quote; } } /** * @dev computes the percentage change between two integers * @param n new value in e18 * @param o old value in e18 * @return pC uint256 the percentage change in e18 */ function calculatePercentageChange(uint256 n, uint256 o) internal pure returns (uint256 pC) { // if new > old then its a percentage increase so do: // ((new - old) * 1e18) / old // if new < old then its a percentage decrease so do: // ((old - new) * 1e18) / old if (n > o) { pC = (n - o).div(o); } else { pC = (o - n).div(o); } } /** * @notice get the latest oracle fed portfolio values and check when they were last updated and make sure this is within a reasonable window in * terms of price and time */ function validatePortfolioValues( uint256 spotPrice, Types.PortfolioValues memory portfolioValues, uint256 maxTimeDeviationThreshold, uint256 maxPriceDeviationThreshold ) public view { uint256 timeDelta = block.timestamp - portfolioValues.timestamp; // If too much time has passed we want to prevent a possible oracle attack if (timeDelta > maxTimeDeviationThreshold) { revert CustomErrors.TimeDeltaExceedsThreshold(timeDelta); } uint256 priceDelta = calculatePercentageChange(spotPrice, portfolioValues.spotPrice); // If price has deviated too much we want to prevent a possible oracle attack if (priceDelta > maxPriceDeviationThreshold) { revert CustomErrors.PriceDeltaExceedsThreshold(priceDelta); } } /** * @notice calculates the utilization price of an option using the liquidity pool's utilisation skew algorithm */ function getUtilizationPrice( uint256 _utilizationBefore, uint256 _utilizationAfter, uint256 _totalOptionPrice, uint256 _utilizationFunctionThreshold, uint256 _belowThresholdGradient, uint256 _aboveThresholdGradient, uint256 _aboveThresholdYIntercept ) internal pure returns (uint256 utilizationPrice) { if ( _utilizationBefore <= _utilizationFunctionThreshold && _utilizationAfter <= _utilizationFunctionThreshold ) { // linear function up to threshold utilization // take average of before and after utilization and multiply the average by belowThresholdGradient uint256 multiplicationFactor = (_utilizationBefore + _utilizationAfter) .mul(_belowThresholdGradient) .div(2e18); return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } else if ( _utilizationBefore >= _utilizationFunctionThreshold && _utilizationAfter >= _utilizationFunctionThreshold ) { // over threshold utilization the skew factor will follow a steeper line uint256 multiplicationFactor = _aboveThresholdGradient .mul(_utilizationBefore + _utilizationAfter) .div(2e18) - _aboveThresholdYIntercept; return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } else { // in this case the utilization after is above the threshold and // utilization before is below it. // _utilizationAfter will always be greater than _utilizationBefore // finds the ratio of the distance below the threshold to the distance above the threshold uint256 weightingRatio = (_utilizationFunctionThreshold - _utilizationBefore).div( _utilizationAfter - _utilizationFunctionThreshold ); // finds the average y value on the part of the function below threshold uint256 averageFactorBelow = (_utilizationFunctionThreshold + _utilizationBefore).div(2e18).mul( _belowThresholdGradient ); // finds average y value on part of the function above threshold uint256 averageFactorAbove = (_utilizationAfter + _utilizationFunctionThreshold).div(2e18).mul( _aboveThresholdGradient ) - _aboveThresholdYIntercept; // finds the weighted average of the two above averaged to find the average utilization skew over the range of utilization uint256 multiplicationFactor = (weightingRatio.mul(averageFactorBelow) + averageFactorAbove).div( 1e18 + weightingRatio ); return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } } /** * @notice get the greeks of a quotePrice for a given optionSeries * @param optionSeries Types.OptionSeries struct for describing the option to price greeks - strike in e18 * @return quote Quote price of the option - in e18 * @return delta delta of the option being priced - in e18 */ function quotePriceGreeks( Types.OptionSeries memory optionSeries, bool isBuying, uint256 bidAskIVSpread, uint256 riskFreeRate, uint256 iv, uint256 underlyingPrice ) internal view returns (uint256 quote, int256 delta) { if (iv == 0) { revert CustomErrors.IVNotFound(); } // reduce IV by a factor of bidAskIVSpread if we are buying the options if (isBuying) { iv = (iv * (1e18 - (bidAskIVSpread))) / 1e18; } // revert CustomErrors.if the expiry is in the past if (optionSeries.expiration <= block.timestamp) { revert CustomErrors.OptionExpiryInvalid(); } (quote, delta) = BlackScholes.blackScholesCalcGreeks( underlyingPrice, optionSeries.strike, optionSeries.expiration, iv, riskFreeRate, optionSeries.isPut ); } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant LOG2_E = 1_442695040888963407; /// @dev Half the SCALE number. int256 internal constant HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev The minimum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev How many trailing decimals can be represented. int256 internal constant SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than MIN_SD59x18. /// /// @param x The number to calculate the absolute value for. /// @param result The absolute value of x. function abs(int256 x) internal pure returns (int256 result) { unchecked { if (x == MIN_SD59x18) { revert PRBMathSD59x18__AbsInputTooSmall(); } result = x < 0 ? -x : x; } } /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number. function avg(int256 x, int256 y) internal pure returns (int256 result) { // The operations can never overflow. unchecked { int256 sum = (x >> 1) + (y >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the // right rounds down to infinity. assembly { result := add(sum, and(or(x, y), 1)) } } else { // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5 // remainder gets truncated twice. result = sum + (x & y & 1); } } } /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number. function ceil(int256 x) internal pure returns (int256 result) { if (x > MAX_WHOLE_SD59x18) { revert PRBMathSD59x18__CeilOverflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x > 0) { result += SCALE; } } } } /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - All from "PRBMath.mulDiv". /// - None of the inputs can be MIN_SD59x18. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from "PRBMath.mulDiv". /// /// @param x The numerator as a signed 59.18-decimal fixed-point number. /// @param y The denominator as a signed 59.18-decimal fixed-point number. /// @param result The quotient as a signed 59.18-decimal fixed-point number. function div(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__DivInputTooSmall(); } // Get hold of the absolute values of x and y. uint256 ax; uint256 ay; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); } // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256. uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__DivOverflow(rAbs); } // Get the signs of x and y. uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result // should be positive. Otherwise, it should be negative. result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (int256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from "exp2". /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59.794705707972522261. if (x < -41_446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathSD59x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^(-x) = 1/2^x. if (x < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (x < -59_794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathSD59x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 192. result = int256(PRBMath.exp2(x192x64)); } } } /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to MIN_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number. function floor(int256 x) internal pure returns (int256 result) { if (x < MIN_WHOLE_SD59x18) { revert PRBMathSD59x18__FloorUnderflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x < 0) { result -= SCALE; } } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number. function frac(int256 x) internal pure returns (int256 result) { unchecked { result = x % SCALE; } } /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE. /// - x must be less than or equal to MAX_SD59x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in signed 59.18-decimal fixed-point representation. function fromInt(int256 x) internal pure returns (int256 result) { unchecked { if (x < MIN_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntUnderflow(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_SD59x18, lest it overflows. /// - x * y cannot be negative. /// /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function gm(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. int256 xy = x * y; if (xy / x != y) { revert PRBMathSD59x18__GmOverflow(x, y); } // The product cannot be negative. if (xy < 0) { revert PRBMathSD59x18__GmNegativeProduct(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = int256(PRBMath.sqrt(uint256(xy))); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as a signed 59.18-decimal fixed-point number. function inv(int256 x) internal pure returns (int256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number. function ln(int256 x) internal pure returns (int256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as a signed 59.18-decimal fixed-point number. function log10(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } default { result := MAX_SD59x18 } } if (result == MAX_SD59x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number. function log2(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } unchecked { // This works because log2(x) = -log2(1/x). int256 sign; if (x >= SCALE) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. assembly { x := div(1000000000000000000000000000000000000, x) } } // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE)); // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1. result = int256(n) * SCALE; // This is y = x * 2^(-n). int256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result * sign; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result *= sign; } } /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal /// fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is /// always 1e18. /// /// Requirements: /// - All from "PRBMath.mulDivFixedPoint". /// - None of the inputs can be MIN_SD59x18 /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// /// @param x The multiplicand as a signed 59.18-decimal fixed-point number. /// @param y The multiplier as a signed 59.18-decimal fixed-point number. /// @return result The product as a signed 59.18-decimal fixed-point number. function mul(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__MulInputTooSmall(); } unchecked { uint256 ax; uint256 ay; ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__MulOverflow(rAbs); } uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } } /// @notice Returns PI as a signed 59.18-decimal fixed-point number. function pi() internal pure returns (int256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// - z cannot be zero. /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number. /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number. /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number. function pow(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { result = y == 0 ? SCALE : int256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from "abs" and "PRBMath.mulDivFixedPoint". /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - All from "PRBMath.mulDivFixedPoint". /// - Assumes 0^0 is 1. /// /// @param x The base as a signed 59.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as a signed 59.18-decimal fixed-point number. function powu(int256 x, uint256 y) internal pure returns (int256 result) { uint256 xAbs = uint256(abs(x)); // Calculate the first iteration of the loop in advance. uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs); } } // The result must fit within the 59.18-decimal fixed-point representation. if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__PowuOverflow(rAbs); } // Is the base negative and the exponent an odd number? bool isNegative = x < 0 && y & 1 == 1; result = isNegative ? -int256(rAbs) : int256(rAbs); } /// @notice Returns 1 as a signed 59.18-decimal fixed-point number. function scale() internal pure returns (int256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative. /// - x must be less than MAX_SD59x18 / SCALE. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as a signed 59.18-decimal fixed-point . function sqrt(int256 x) internal pure returns (int256 result) { unchecked { if (x < 0) { revert PRBMathSD59x18__SqrtNegativeInput(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = int256(PRBMath.sqrt(uint256(x * SCALE))); } } /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The signed 59.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toInt(int256 x) internal pure returns (int256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; library Types { struct OptionSeries { uint64 expiration; uint128 strike; bool isPut; address underlying; address strikeAsset; address collateral; } struct PortfolioValues { int256 delta; int256 gamma; int256 vega; int256 theta; int256 callPutsValue; uint256 timestamp; uint256 spotPrice; } struct Order { OptionSeries optionSeries; uint256 amount; uint256 price; uint256 orderExpiry; address buyer; address seriesAddress; uint128 lowerSpotMovementRange; uint128 upperSpotMovementRange; bool isBuyBack; } // strike and expiry date range for options struct OptionParams { uint128 minCallStrikePrice; uint128 maxCallStrikePrice; uint128 minPutStrikePrice; uint128 maxPutStrikePrice; uint128 minExpiry; uint128 maxExpiry; } struct UtilizationState { uint256 totalOptionPrice; //e18 int256 totalDelta; // e18 uint256 collateralToAllocate; //collateral decimals uint256 utilizationBefore; // e18 uint256 utilizationAfter; //e18 uint256 utilizationPrice; //e18 bool isDecreased; uint256 deltaTiltAmount; //e18 uint256 underlyingPrice; // strike asset decimals uint256 iv; // e18 } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface I_ERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; import { Types } from "../libraries/Types.sol"; interface IOptionRegistry { ////////////////////////////////////////////////////// /// access-controlled state changing functionality /// ////////////////////////////////////////////////////// /** * @notice Either retrieves the option token if it already exists, or deploy it * @param optionSeries option series to issue * @return the address of the option */ function issue(Types.OptionSeries memory optionSeries) external returns (address); /** * @notice Open an options contract using collateral from the liquidity pool * @param _series the address of the option token to be created * @param amount the amount of options to deploy * @param collateralAmount the collateral required for the option * @dev only callable by the liquidityPool * @return if the transaction succeeded * @return the amount of collateral taken from the liquidityPool */ function open( address _series, uint256 amount, uint256 collateralAmount ) external returns (bool, uint256); /** * @notice Close an options contract (oToken) before it has expired * @param _series the address of the option token to be burnt * @param amount the amount of options to burn * @dev only callable by the liquidityPool * @return if the transaction succeeded */ function close(address _series, uint256 amount) external returns (bool, uint256); ///////////////////////////////////////////// /// external state changing functionality /// ///////////////////////////////////////////// /** * @notice Settle an options vault * @param _series the address of the option token to be burnt * @return success if the transaction succeeded * @return collatReturned the amount of collateral returned from the vault * @return collatLost the amount of collateral used to pay ITM options on vault settle * @return amountShort number of oTokens that the vault was short * @dev callable by anyone but returns funds to the liquidityPool */ function settle(address _series) external returns ( bool success, uint256 collatReturned, uint256 collatLost, uint256 amountShort ); /////////////////////// /// complex getters /// /////////////////////// /** * @notice Send collateral funds for an option to be minted * @dev series.strike should be scaled by 1e8. * @param series details of the option series * @param amount amount of options to mint * @return amount transferred */ function getCollateral(Types.OptionSeries memory series, uint256 amount) external view returns (uint256); /** * @notice Retrieves the option token if it exists * @param underlying is the address of the underlying asset of the option * @param strikeAsset is the address of the collateral asset of the option * @param expiration is the expiry timestamp of the option * @param isPut the type of option * @param strike is the strike price of the option - 1e18 format * @param collateral is the address of the asset to collateralize the option with * @return the address of the option */ function getOtoken( address underlying, address strikeAsset, uint256 expiration, bool isPut, uint256 strike, address collateral ) external view returns (address); /////////////////////////// /// non-complex getters /// /////////////////////////// function getSeriesInfo(address series) external view returns (Types.OptionSeries memory); function vaultIds(address series) external view returns (uint256); function gammaController() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface CustomErrors { error NotKeeper(); error IVNotFound(); error NotHandler(); error VaultExpired(); error InvalidInput(); error InvalidPrice(); error InvalidBuyer(); error InvalidOrder(); error OrderExpired(); error InvalidAmount(); error TradingPaused(); error InvalidAddress(); error IssuanceFailed(); error EpochNotClosed(); error InvalidDecimals(); error TradingNotPaused(); error NotLiquidityPool(); error DeltaNotDecreased(); error NonExistentOtoken(); error OrderExpiryTooLong(); error InvalidShareAmount(); error ExistingWithdrawal(); error TotalSupplyReached(); error StrikeAssetInvalid(); error OptionStrikeInvalid(); error OptionExpiryInvalid(); error NoExistingWithdrawal(); error SpotMovedBeyondRange(); error ReactorAlreadyExists(); error CollateralAssetInvalid(); error UnderlyingAssetInvalid(); error CollateralAmountInvalid(); error WithdrawExceedsLiquidity(); error InsufficientShareBalance(); error MaxLiquidityBufferReached(); error LiabilitiesGreaterThanAssets(); error CustomOrderInsufficientPrice(); error CustomOrderInvalidDeltaValue(); error DeltaQuoteError(uint256 quote, int256 delta); error TimeDeltaExceedsThreshold(uint256 timeDelta); error PriceDeltaExceedsThreshold(uint256 priceDelta); error StrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeLiquidity); error MinStrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeAmountMin); error UnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingLiquidity); error MinUnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingAmountMin); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMathSD59x18.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; import { NormalDist } from "./NormalDist.sol"; /** * @title Library used to calculate an option price using Black Scholes */ library BlackScholes { using PRBMathSD59x18 for int256; using PRBMathSD59x18 for int8; using PRBMathUD60x18 for uint256; uint256 private constant ONE_YEAR_SECONDS = 31557600; uint256 private constant ONE = 1000000000000000000; uint256 private constant TWO = 2000000000000000000; struct Intermediates { uint256 d1Denominator; int256 d1; int256 eToNegRT; } function callOptionPrice( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256) { int256 d2 = d1 - d1Denominator; int256 cdfD1 = NormalDist.cdf(d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(priceCdf >= strikeBy); return uint256(priceCdf - strikeBy); } function callOptionPriceGreeks( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256 quote, int256 delta) { int256 d2 = d1 - d1Denominator; int256 cdfD1 = NormalDist.cdf(d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(priceCdf >= strikeBy); quote = uint256(priceCdf - strikeBy); delta = cdfD1; } function putOptionPriceGreeks( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256 quote, int256 delta) { int256 d2 = d1Denominator - d1; int256 cdfD1 = NormalDist.cdf(-d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(strikeBy >= priceCdf); quote = uint256(strikeBy - priceCdf); delta = -cdfD1; } function putOptionPrice( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256) { int256 d2 = d1Denominator - d1; int256 cdfD1 = NormalDist.cdf(-d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(strikeBy >= priceCdf); return uint256(strikeBy - priceCdf); } function getTimeStamp() private view returns (uint256) { return block.timestamp; } function getD1( uint256 price, uint256 strike, uint256 time, uint256 vol, uint256 rfr ) private pure returns (int256 d1, uint256 d1Denominator) { uint256 d1Right = (vol.mul(vol).div(TWO) + rfr).mul(time); int256 d1Left = int256(price.div(strike)).ln(); int256 d1Numerator = d1Left + int256(d1Right); d1Denominator = vol.mul(time.sqrt()); d1 = d1Numerator.div(int256(d1Denominator)); } function getIntermediates( uint256 price, uint256 strike, uint256 time, uint256 vol, uint256 rfr ) private pure returns (Intermediates memory) { (int256 d1, uint256 d1Denominator) = getD1(price, strike, time, vol, rfr); return Intermediates({ d1Denominator: d1Denominator, d1: d1, eToNegRT: (int256(rfr).mul(int256(time)).mul(-int256(ONE))).exp() }); } function blackScholesCalc( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (uint256) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); Intermediates memory i = getIntermediates(price, strike, time, vol, rfr); if (!isPut) { return callOptionPrice( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } else { return putOptionPrice( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } } function blackScholesCalcGreeks( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (uint256 quote, int256 delta) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); Intermediates memory i = getIntermediates(price, strike, time, vol, rfr); if (!isPut) { return callOptionPriceGreeks( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } else { return putOptionPriceGreeks( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } } function getDelta( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (int256) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); (int256 d1, ) = getD1(price, strike, time, vol, rfr); if (!isPut) { return NormalDist.cdf(d1); } else { return -NormalDist.cdf(-d1); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMathSD59x18.sol"; /** * @title Library used for approximating a normal distribution */ library NormalDist { using PRBMathSD59x18 for int256; int256 private constant ONE = 1000000000000000000; int256 private constant ONE_HALF = 500000000000000000; int256 private constant SQRT_TWO = 1414213562373095048; // z-scores // A1 0.254829592 int256 private constant A1 = 254829592000000000; // A2 -0.284496736 int256 private constant A2 = -284496736000000000; // A3 1.421413741 int256 private constant A3 = 1421413741000000000; // A4 -1.453152027 int256 private constant A4 = -1453152027000000000; // A5 1.061405429 int256 private constant A5 = 1061405429000000000; // P 0.3275911 int256 private constant P = 327591100000000000; function cdf(int256 x) public pure returns (int256) { int256 phiParam = x.div(SQRT_TWO); int256 onePlusPhi = ONE + (phi(phiParam)); return ONE_HALF.mul(onePlusPhi); } function phi(int256 x) public pure returns (int256) { int256 sign = x >= 0 ? ONE : -ONE; int256 abs = x.abs(); // A&S formula 7.1.26 int256 t = ONE.div(ONE + (P.mul(abs))); int256 scoresByT = getScoresFromT(t); int256 eToXs = abs.mul(-ONE).mul(abs).exp(); int256 y = ONE - (scoresByT.mul(eToXs)); return sign.mul(y); } function getScoresFromT(int256 t) public pure returns (int256) { int256 byA5T = A5.mul(t); int256 byA4T = (byA5T + A4).mul(t); int256 byA3T = (byA4T + A3).mul(t); int256 byA2T = (byA3T + A2).mul(t); int256 byA1T = (byA2T + A1).mul(t); return byA1T; } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_liquidityPool","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EpochNotClosed","type":"error"},{"inputs":[],"name":"ExistingWithdrawal","type":"error"},{"inputs":[],"name":"InsufficientShareBalance","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"LiabilitiesGreaterThanAssets","type":"error"},{"inputs":[],"name":"NoExistingWithdrawal","type":"error"},{"inputs":[],"name":"TotalSupplyReached","type":"error"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"uint256","name":"_assetPerShare","type":"uint256"}],"name":"amountForShares","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collateralAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"withdrawer","type":"address"}],"name":"completeWithdraw","outputs":[{"internalType":"uint256","name":"withdrawalAmount","type":"uint256"},{"internalType":"uint256","name":"withdrawalShares","type":"uint256"},{"components":[{"internalType":"uint128","name":"epoch","type":"uint128"},{"internalType":"uint128","name":"shares","type":"uint128"}],"internalType":"struct IAccounting.WithdrawalReceipt","name":"withdrawalReceipt","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"depositAmount","type":"uint256"},{"internalType":"uint256","name":"unredeemedShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"int256","name":"liabilities","type":"int256"}],"name":"executeEpochCalculation","outputs":[{"internalType":"uint256","name":"newPricePerShareDeposit","type":"uint256"},{"internalType":"uint256","name":"newPricePerShareWithdrawal","type":"uint256"},{"internalType":"uint256","name":"sharesToMint","type":"uint256"},{"internalType":"uint256","name":"totalWithdrawAmount","type":"uint256"},{"internalType":"uint256","name":"amountNeeded","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"withdrawer","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"initiateWithdraw","outputs":[{"components":[{"internalType":"uint128","name":"epoch","type":"uint128"},{"internalType":"uint128","name":"shares","type":"uint128"}],"internalType":"struct IAccounting.WithdrawalReceipt","name":"withdrawalReceipt","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPool","outputs":[{"internalType":"contract ILiquidityPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"redeemer","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"toRedeem","type":"uint256"},{"components":[{"internalType":"uint128","name":"epoch","type":"uint128"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint256","name":"unredeemedShares","type":"uint256"}],"internalType":"struct IAccounting.DepositReceipt","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"assetPerShare","type":"uint256"}],"name":"sharesForAmount","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"strikeAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlyingAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6101006040523480156200001257600080fd5b5060405162001994380380620019948339810160408190526200003591620001b5565b6001600160a01b0381166080819052604080516302fad37960e31b815290516317d69bc8916004808201926020929091908290030181865afa15801562000080573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620000a69190620001b5565b6001600160a01b031660a0816001600160a01b031681525050806001600160a01b0316637158da7c6040518163ffffffff1660e01b8152600401602060405180830381865afa158015620000fe573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620001249190620001b5565b6001600160a01b031660c0816001600160a01b031681525050806001600160a01b031663aabaecd66040518163ffffffff1660e01b8152600401602060405180830381865afa1580156200017c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620001a29190620001b5565b6001600160a01b031660e05250620001e7565b600060208284031215620001c857600080fd5b81516001600160a01b0381168114620001e057600080fd5b9392505050565b60805160a05160c05160e0516116da620002ba6000396000818161022301528181610508015281816105db015281816107810152611207015260006101fc0152600060b30152600081816101d5015281816102c5015281816103380152818161041701528181610671015281816106f7015281816107df015281816108ae0152818161097c01528181610a4b01528181610ae201528181610b6f01528181610c5901528181610cff01528181610dd801528181610ea901528181610f3901528181610fdb015261118501526116da6000f3fe608060405234801561001057600080fd5b50600436106100a95760003560e01c806355676bad1161007157806355676bad14610195578063665a11ca146101d05780637158da7c146101f7578063aabaecd61461021e578063bf3b826b14610245578063c4bf09361461026757600080fd5b806317d69bc8146100ae5780631e9a6950146100f257806332afc309146101395780634513576e1461015a57806347e7ef241461016d575b600080fd5b6100d57f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b6101056101003660046112ae565b610287565b6040805192835281516001600160801b039081166020808601919091528301511683820152015160608201526080016100e9565b61014c6101473660046112d8565b6104ff565b6040519081526020016100e9565b61014c6101683660046112d8565b6105b7565b61018061017b3660046112ae565b61066a565b604080519283526020830191909152016100e9565b6101a86101a33660046112fa565b610a40565b604080519586526020860194909452928401919091526060830152608082015260a0016100e9565b6100d57f000000000000000000000000000000000000000000000000000000000000000081565b6100d57f000000000000000000000000000000000000000000000000000000000000000081565b6100d57f000000000000000000000000000000000000000000000000000000000000000081565b610258610253366004611326565b610c21565b6040516100e993929190611341565b61027a6102753660046112ae565b610e76565b6040516100e99190611371565b6040805160608101825260008082526020820181905291810182905260405163338cd97760e11b81526001600160a01b0385811660048301526000917f000000000000000000000000000000000000000000000000000000000000000090911690636719b2ee90602401606060405180830381865afa15801561030e573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061033291906113ac565b905060007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663dc1bee0d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610394573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103b89190611422565b60408301518351919250906001600160801b0316158015906103e3575082516001600160801b031682115b15610498576020830151835160405163274a961360e11b81526001600160801b03918216600482015261048b9291909116907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690634e952c26906024015b602060405180830381865afa158015610467573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101479190611422565b6104959082611451565b90505b8086116104a557856104a7565b805b9450846000036104c057600083945094505050506104f8565b82516001600160801b03168211156104da57600060208401525b6104e48582611469565b6001600160801b0316604084015250909150505b9250929050565b600080610590847f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610564573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105889190611480565b60ff166110ca565b9050826105a5670de0b6b3a7640000836114a3565b6105af91906114c2565b949350505050565b6000610663670de0b6b3a76400006105cf84866114a3565b6105d991906114c2565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610637573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061065b9190611480565b60ff16611104565b9392505050565b60008060007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663d2bb18e96040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106cd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106f19190611422565b905060007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663dc1bee0d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610753573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107779190611422565b905060006107dd867f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610564573d6000803e3d6000fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166367e4ac2c6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561083b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061085f9190611422565b6108699190611451565b90508281111561088c57604051637be9badb60e01b815260040160405180910390fd5b60405163338cd97760e11b81526001600160a01b0388811660048301526000917f000000000000000000000000000000000000000000000000000000000000000090911690636719b2ee90602401606060405180830381865afa1580156108f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061091b91906113ac565b604081015181519096509091506001600160801b031615801590610948575080516001600160801b031683115b156109c0576020810151815160405163274a961360e11b81526001600160801b0391821660048201526109b39291909116907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690634e952c269060240161044a565b6109bd9086611451565b94505b80518796506001600160801b031683036109ef5760208101516109ec906001600160801b031687611451565b95505b6001600160801b03861115610a355760405162461bcd60e51b81526020600482015260086024820152676f766572666c6f7760c01b604482015260640160405180910390fd5b505050509250929050565b6000806000806000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663cda2dd9a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610aa7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610acb9190611422565b9050610ad8898989611138565b9450849550610b687f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316635c074f446040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b3e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b629190611422565b876104ff565b9350610bf57f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663beca03d56040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bcb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bef9190611422565b866105b7565b925082811315610c085760009150610c15565b610c1281846114e4565b91505b50939792965093509350565b60408051808201909152600080825260208201819052908190604051634b24d85160e11b81526001600160a01b0385811660048301527f00000000000000000000000000000000000000000000000000000000000000001690639649b0a2906024016040805180830381865afa158015610c9f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cc39190611523565b602081015181516001600160801b039182169450919250166000839003610cfd5760405163e3c0287b60e01b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663802aaa5f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d5b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d7f9190611422565b8103610d9e576040516339c1569960e01b815260040160405180910390fd5b8282602001818151610db0919061158c565b6001600160801b0316905250604051630a67daad60e01b815260048101829052610e4b9084907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690630a67daad90602401602060405180830381865afa158015610e27573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101689190611422565b935083600003610e6e5760405163162908e360e11b815260040160405180910390fd5b509193909250565b6040805180820182526000808252602082015290516370a0823160e01b81526001600160a01b03848116600483015283917f0000000000000000000000000000000000000000000000000000000000000000909116906370a0823190602401602060405180830381865afa158015610ef2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f169190611422565b1015610f355760405163af4e51c760e01b815260040160405180910390fd5b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663802aaa5f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f95573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fb99190611422565b604051634b24d85160e11b81526001600160a01b0386811660048301529192507f000000000000000000000000000000000000000000000000000000000000000090911690639649b0a2906024016040805180830381865afa158015611023573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110479190611523565b9150600082602001516001600160801b0316905060008284600001516001600160801b0316036110825761107b8583611451565b90506110b3565b60648211156110a45760405163029ceadb60e21b815260040160405180910390fd5b506001600160801b0382168352835b6001600160801b0316602084015250909392505050565b600060128211156110da57600080fd5b60006110e7836012611469565b90506110f481600a611698565b6105af90856114a3565b92915050565b6000601282111561111457600080fd5b6000611121836012611469565b905061112e81600a611698565b6105af90856114c2565b60008183121561115b576040516307e42e3b60e21b815260040160405180910390fd5b600061116783856114e4565b90506000851161117f57670de0b6b3a7640000611289565b846112637f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316635c074f446040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111e1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112059190611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610564573d6000803e3d6000fd5b61126d9083611469565b61127f90670de0b6b3a76400006114a3565b61128991906114c2565b95945050505050565b80356001600160a01b03811681146112a957600080fd5b919050565b600080604083850312156112c157600080fd5b6112ca83611292565b946020939093013593505050565b600080604083850312156112eb57600080fd5b50508035926020909101359150565b60008060006060848603121561130f57600080fd5b505081359360208301359350604090920135919050565b60006020828403121561133857600080fd5b61066382611292565b838152602080820184905282516001600160801b03908116604084015290830151166060820152608081016105af565b604081016110fe828480516001600160801b03908116835260209182015116910152565b80516001600160801b03811681146112a957600080fd5b6000606082840312156113be57600080fd5b6040516060810181811067ffffffffffffffff821117156113ef57634e487b7160e01b600052604160045260246000fd5b6040526113fb83611395565b815261140960208401611395565b6020820152604083015160408201528091505092915050565b60006020828403121561143457600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b600082198211156114645761146461143b565b500190565b60008282101561147b5761147b61143b565b500390565b60006020828403121561149257600080fd5b815160ff8116811461066357600080fd5b60008160001904831182151516156114bd576114bd61143b565b500290565b6000826114df57634e487b7160e01b600052601260045260246000fd5b500490565b60008083128015600160ff1b8501841216156115025761150261143b565b6001600160ff1b038401831381161561151d5761151d61143b565b50500390565b60006040828403121561153557600080fd5b6040516040810181811067ffffffffffffffff8211171561156657634e487b7160e01b600052604160045260246000fd5b60405261157283611395565b815261158060208401611395565b60208201529392505050565b60006001600160801b03838116908316818110156115ac576115ac61143b565b039392505050565b600181815b808511156115ef5781600019048211156115d5576115d561143b565b808516156115e257918102915b93841c93908002906115b9565b509250929050565b600082611606575060016110fe565b81611613575060006110fe565b816001811461162957600281146116335761164f565b60019150506110fe565b60ff8411156116445761164461143b565b50506001821b6110fe565b5060208310610133831016604e8410600b8410161715611672575081810a6110fe565b61167c83836115b4565b80600019048211156116905761169061143b565b029392505050565b600061066383836115f756fea26469706673582212201cad2685a22956d28915ce9a89d29e1ec7f0808ee306170fe96fc68035165ead64736f6c634300080e0033000000000000000000000000c10b976c671ce9bff0723611f01422acbae100a5
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000c10b976c671ce9bff0723611f01422acbae100a5
-----Decoded View---------------
Arg [0] : _liquidityPool (address): 0xc10b976c671ce9bff0723611f01422acbae100a5
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000c10b976c671ce9bff0723611f01422acbae100a5
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.