Source Code
More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 333 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Approve | 424776770 | 36 hrs ago | IN | 0 ETH | 0.00000115 | ||||
| Transfer | 424706349 | 41 hrs ago | IN | 0 ETH | 0.00000317 | ||||
| Transfer | 424579066 | 2 days ago | IN | 0 ETH | 0.00000352 | ||||
| Approve | 424560040 | 2 days ago | IN | 0 ETH | 0.00000092 | ||||
| Transfer | 424487497 | 2 days ago | IN | 0 ETH | 0.00000224 | ||||
| Approve | 424485237 | 2 days ago | IN | 0 ETH | 0.00000094 | ||||
| Approve | 424477075 | 2 days ago | IN | 0 ETH | 0.00000093 | ||||
| Approve | 424476054 | 2 days ago | IN | 0 ETH | 0.00000093 | ||||
| Transfer | 424410647 | 2 days ago | IN | 0 ETH | 0.0000031 | ||||
| Transfer | 424372718 | 2 days ago | IN | 0 ETH | 0.00000238 | ||||
| Transfer | 424372368 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424372183 | 2 days ago | IN | 0 ETH | 0.00000235 | ||||
| Transfer | 424371959 | 2 days ago | IN | 0 ETH | 0.00000238 | ||||
| Transfer | 424371784 | 2 days ago | IN | 0 ETH | 0.00000234 | ||||
| Transfer | 424371639 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424371444 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424371287 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424371086 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424370923 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424370701 | 2 days ago | IN | 0 ETH | 0.0000018 | ||||
| Transfer | 424370534 | 2 days ago | IN | 0 ETH | 0.00000185 | ||||
| Transfer | 424370370 | 2 days ago | IN | 0 ETH | 0.00000234 | ||||
| Transfer | 424370179 | 2 days ago | IN | 0 ETH | 0.00000181 | ||||
| Transfer | 424369961 | 2 days ago | IN | 0 ETH | 0.00000233 | ||||
| Transfer | 424369682 | 2 days ago | IN | 0 ETH | 0.00000233 |
Latest 4 internal transactions
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 424016842 | 3 days ago | Contract Creation | 0 ETH | |||
| 424016842 | 3 days ago | Contract Creation | 0 ETH | |||
| 424016842 | 3 days ago | Contract Creation | 0 ETH | |||
| 424016842 | 3 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
CYBER
Compiler Version
v0.8.31+commit.fd3a2265
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
contract Pool {
mapping(address => bool) private _feeWhiteList;
constructor() {
_feeWhiteList[msg.sender] = true;
}
receive() external payable {}
function claimToken(address token, address to, uint256 amount) external {
if (_feeWhiteList[msg.sender]) {
IERC20(token).transfer(to, amount);
}
}
function claimBalance(address to, uint256 amount) external {
if (_feeWhiteList[msg.sender]) {
safeTransferETH(to, amount);
}
}
function safeTransferETH(address to, uint value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
if (success) {}
}
}
contract CYBER is ERC20, Ownable, ReentrancyGuard {
IUniswapV2Router02 public immutable _uniswapV2Router;
address public _uniswapPair;
using EnumerableSet for EnumerableSet.AddressSet;
mapping(address => address) public ups;
mapping(address => mapping(address => bool)) public preUps;
mapping(address => EnumerableSet.AddressSet) private upsChildList;
mapping(address => bool) public isNode;
mapping(address => uint256) public directNodes;
mapping(address => uint256) public userEthTotal;
mapping(address => uint256) public accountSales;
mapping(address => uint256) public directTeamSales;
mapping(address => bool) public pairs;
mapping(address => bool) public isTaxExempt;
mapping(address => uint256) public lastBuyTimestamp;
uint256 public minAmount = 0.3 ether;
uint256 public maxAmount = 1 ether;
bool public depositSwitch = false;
bool swapping;
Pool public pool;
Pool public feePool;
Pool public nodePool;
Pool public rankPool; // 5%
address[] public nodes;
address public WETH;
address public USDT = 0xFd086bC7CD5C481DCC9C85ebE478A1C0b69FCbb9;
address public inviteAddress = 0x84F74a960Ab9BD46cdd8b8eB184A5396a8352F79;
address private lpAddress = 0x50C0C396A491Da0945284372958f046eE7b1d295;
address private fund1 = 0xC67a672965f81a68873D969F3f4B69663595e0e7;
address private fund2 = 0x52FbE69187f2EA4566Fdb5c02b725CA3CFad355f;
address private fund3 = 0x401D0Fca5E778f59A4481Ea22Cb1a90c785E7A5c;
address private fund4 = 0x1dCB6Fe84bb791F8279B34C1eF66858b4dE152B4;
address private fund5 = 0xe7535ceC2f53Fb00a0981c973555ed0f7b248916;
address private fund6 = 0x5f9E0F0b5cb47AeDCE3B4F6cE71A9b52B288B2F4;
address private fund11 = 0x3DB1E066d763D3188E8aA6236E43E52406EF997b;
address private fund12 = 0x9029E8745AD6Aa62b9a9B531fd1FAa8B7f667996;
address private fund13 = 0x047fae157F7292FF18243f75ae0b317778E079a2;
address constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;
uint256 public sellFee = 800;
bool public tradeEnabled;
uint8 public aiStatus;
uint256 public lastProcessedIndex;
uint256 public constant MARKET_INCENTIVES = 3000;
uint256 public constant BURN_BLACK_PERCENT = 25;
uint256 public constant BASE_PERCENT = 10000;
address private initiallyAddThePoolAddr;
address[] public lpHolders;
mapping(address => bool) public isLpHolder;
mapping(address => uint256) public lpHolderAmount;
uint256 public constant MONTH = 30 days;
uint256 public constant SETTLE_OFFSET = 12 hours;
uint256 public currentMonth;
uint256 public lastSettleTime;
uint256 public lastAIBuyTime;
mapping(uint256 => mapping(address => uint256)) public monthVolume; //
mapping(uint256 => mapping(address => uint256)) public monthDirectCount; //
address[9] public topUser;
uint256[9] public topVolume;
bool firstAdd = true;
error NodeAlreadyExist();
error InvalidInvest();
error NotOpenForInvest();
error MaxInvestAmount();
event BindEvent(address indexed up, address indexed down);
event InvestEvent(address indexed invite, uint256 amount);
event EthTransferErrorEvent(address indexed user, uint256 amount);
constructor() ERC20("Cyber", "Cyber") Ownable(msg.sender) {
_uniswapV2Router = IUniswapV2Router02(
0x4752ba5DBc23f44D87826276BF6Fd6b1C372aD24
);
WETH = _uniswapV2Router.WETH();
require(address(this) > WETH, "min");
_uniswapPair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair(
address(this),
WETH
);
pool = new Pool();
feePool = new Pool();
rankPool = new Pool();
nodePool = new Pool();
pairs[_uniswapPair] = true;
isTaxExempt[address(pool)] = true;
isTaxExempt[address(feePool)] = true;
isTaxExempt[address(this)] = true;
currentMonth = 1;
lastSettleTime = _monthStart(block.timestamp) + SETTLE_OFFSET;
_approve(address(this), address(_uniswapV2Router), ~uint256(0));
_mint(inviteAddress, 210_000_000e18);
}
receive() external payable nonReentrant {
if (!depositSwitch) {
revert NotOpenForInvest();
}
if (msg.sender == tx.origin) {
uint256 value = msg.value;
address up1 = ups[msg.sender];
if (
msg.value >= minAmount &&
(up1 != address(0) || msg.sender == inviteAddress)
) {
accountSales[msg.sender] += value;
directTeamSales[up1] += value;
if (accountSales[msg.sender] > maxAmount) {
revert MaxInvestAmount();
}
// 30% 市场
uint256 marketIncentives = (value * MARKET_INCENTIVES) /
BASE_PERCENT;
_distributeReferralReward(msg.sender, value, marketIncentives);
// 50% lp
uint256 lpAmount = swapAndAddLiquidity(msg.sender, value / 2);
lpHolderAmount[msg.sender] = lpAmount;
_addLpHolder(msg.sender);
// 5% 节点
safeTransferETH(address(nodePool), (value * 5) / 100);
_beforeAction();
_onUserPay(msg.sender, value);
} else {
revert InvalidInvest();
}
}
}
function _update(
address from,
address to,
uint256 value
) internal virtual override {
if (block.timestamp >= lastSettleTime + MONTH) {
_settleMonth();
}
if (value == 1e18 && !preUps[to][from] && isCanBindInviter(from, to)) {
preUps[from][to] = true;
}
if (value == 5e17 && preUps[to][from] && ups[from] == address(0)) {
ups[from] = to;
upsChildList[to].add(from);
emit BindEvent(from, to);
}
if (isTaxExempt[from] || isTaxExempt[to]) {
return super._update(from, to, value);
}
if (from == _uniswapPair) {
if (isRemoveLiquidity() > 0) {
super._update(_uniswapPair, address(0xdead), value);
value = 0;
return;
}
require(tradeEnabled, "not open");
lastBuyTimestamp[tx.origin] = block.timestamp;
} else if (to == _uniswapPair) {
if (firstAdd) {
IUniswapV2Pair p = IUniswapV2Pair(_uniswapPair);
(uint112 reserve0, uint112 reserve1, ) = p.getReserves();
if (reserve0 == 0 && reserve1 == 0 && firstAdd) {
firstAdd = false;
lastTriggerTime = block.timestamp;
return super._update(from, to, value);
}
}
if (isAddLiquidity(value) > 0) {
return super._update(from, to, value);
}
require(block.timestamp >= lastBuyTimestamp[from] + 10, "cd");
uint256 _fee = (value * sellFee) / 10000;
super._update(address(from), address(feePool), _fee);
value -= _fee;
super._update(_uniswapPair, address(0xdead), value);
IUniswapV2Pair(_uniswapPair).sync();
sellToken();
}
uint256 lpAmount = getPoolTokenAmount();
if (!tradeEnabled) {
if (lpAmount <= 2_100_000e18 && lpAmount > 0) {
tradeEnabled = true;
}
}
uint256 marketValue = getTokenPrice() * lpAmount;
if (marketValue >= 1_000_000e18 && marketValue <= 3_000_000e18 && maxAmount < 2 ether) {
maxAmount = 2 ether;
} else if (marketValue >= 3_000_000e18 && maxAmount < 3 ether) {
maxAmount = 3 ether;
}
if (
!swapping &&
!isTaxExempt[from] &&
from != address(this) &&
!pairs[from] &&
from != address(_uniswapV2Router)
) {
swapping = true;
_triggerDailyBurnAndMint();
swapping = false;
}
if (aiStatus != 2) {
if (aiStatus == 0 && lpAmount <= 21_000_000e18) {
aiStatus = 1;
}
if (aiStatus == 1 && lpAmount <= 2_100_000e18) {
aiStatus = 2;
}
}
_distributeNodeReward();
super._update(from, to, value);
aiBuy();
}
event DistributeReferralReward(
address indexed from,
address indexed to,
uint8 indexed level,
uint256 amount
);
function _distributeReferralReward(
address user,
uint256 _totalAmount,
uint256 totalReward
) internal {
address current = user;
uint256 distributedReward = 0;
for (uint8 i = 0; i < 25; i++) {
current = ups[current];
if (current == address(0)) {
break;
}
uint256 rate = i < 5 ? 400 : 50;
uint256 reward = (_totalAmount * rate) / BASE_PERCENT;
if (reward == 0 || distributedReward + reward > totalReward) {
continue;
}
distributedReward += reward;
safeTransferETH(current, reward);
emit DistributeReferralReward(user, current, i + 1, reward);
}
uint256 remaining = totalReward - distributedReward;
if (remaining > 0) {
uint256 r = remaining / 5;
uint256 r1 = remaining - r - r - r - r;
safeTransferETH(fund1, r);
safeTransferETH(fund2, r);
safeTransferETH(fund3, r);
safeTransferETH(fund4, r);
safeTransferETH(fund5, r1);
}
}
function getTokenPrice() public view returns (uint256) {
if (IERC20(_uniswapPair).totalSupply() == 0) return 0;
address[] memory path = new address[](3);
path[0] = address(this);
path[1] = WETH;
path[2] = USDT;
uint256[] memory amounts = _uniswapV2Router.getAmountsOut(1e18, path);
return amounts[amounts.length - 1];
}
function isCanBindInviter(
address from,
address to
) public view returns (bool) {
if (ups[from] == address(0) && from != inviteAddress) {
return false;
}
if (preUps[from][to] || from == to) {
return false;
}
address current = to;
uint8 depth = 0;
while (current != address(0) && depth < 25) {
if (current == from) {
return false;
}
current = ups[current];
depth++;
}
return true;
}
function getUpsChildList(
address account
) public view returns (address[] memory) {
return upsChildList[account].values();
}
function swapAndAddLiquidity(
address recipient,
uint256 amount
) internal returns (uint256 liquidity) {
uint256 half = amount / 2;
address[] memory path = new address[](2);
path[0] = WETH;
path[1] = address(this);
uint256 _bal = balanceOf(address(pool));
_uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{
value: half
}(0, path, address(pool), block.timestamp);
uint256 _afterBal = balanceOf(address(pool));
uint256 _swapTotal = _afterBal - _bal;
super._update(address(pool), address(this), _afterBal);
(, , liquidity) = _uniswapV2Router.addLiquidityETH{value: half}(
address(this),
_swapTotal,
0, // slippage is unavoidable
0, // slippage is unavoidable
recipient,
block.timestamp
);
}
function _addLpHolder(address account) internal {
if (!isLpHolder[account] && account != initiallyAddThePoolAddr) {
isLpHolder[account] = true;
lpHolders.push(account);
}
}
function getLpHolders() public view returns (address[] memory) {
return lpHolders;
}
function _beforeAction() internal {
if (block.timestamp >= lastSettleTime + MONTH) {
_settleMonth();
}
}
function _onUserPay(address user, uint256 amount) internal {
uint256 incentive = (amount * 5) / 100;
safeTransferETH(address(rankPool), incentive);
address up = ups[user];
if (up != address(0)) {
monthVolume[currentMonth][up] += amount;
monthDirectCount[currentMonth][up] += 1;
_tryUpdateTop(up);
}
}
function _tryUpdateTop(address user) internal {
uint256 vol = monthVolume[currentMonth][user];
uint256 count = monthDirectCount[currentMonth][user];
if (vol <= 3 ether || count < 10) return;
for (uint i = 0; i < 9; i++) {
if (vol > topVolume[i]) {
for (uint j = 8; j > i; j--) {
topVolume[j] = topVolume[j - 1];
topUser[j] = topUser[j - 1];
}
topVolume[i] = vol;
topUser[i] = user;
break;
}
}
}
function _settleMonth() internal {
uint256 _pool = address(rankPool).balance;
if (_pool == 0) {
_rollMonth();
return;
}
uint256 r1 = (_pool * 25) / 1000 / 3; // 2.5%
uint256 r2 = (_pool * 15) / 1000 / 3; // 1.5%
uint256 r3 = (_pool * 10) / 1000 / 3; // 1%
if (topUser[0] != address(0)) {
_payRank(topUser[0], r1);
_payRank(topUser[1], r1);
_payRank(topUser[2], r1);
}
if (topUser[3] != address(0)) {
_payRank(topUser[3], r2);
_payRank(topUser[4], r2);
_payRank(topUser[5], r2);
}
if (topUser[6] != address(0)) {
_payRank(topUser[6], r3);
_payRank(topUser[7], r3);
_payRank(topUser[8], r3);
}
delete topUser;
delete topVolume;
_rollMonth();
}
function _payRank(address user, uint256 amount) internal {
if (amount == 0) return;
if (user == address(0)) {
rankPool.claimBalance(fund11, amount / 3);
rankPool.claimBalance(fund12, amount / 3);
rankPool.claimBalance(fund13, amount / 3);
} else {
rankPool.claimBalance(user, amount);
}
}
function _rollMonth() internal {
currentMonth += 1;
lastSettleTime += MONTH;
}
function _monthStart(uint256 ts) internal pure returns (uint256) {
return ts - (ts % MONTH);
}
function setIsTaxExempt(address account, bool exempt) public onlyOwner {
isTaxExempt[account] = exempt;
}
// internal
function isAddLiquidity(
uint256 amount
) internal view returns (uint256 lpAmount) {
if (msg.sender == address(_uniswapV2Router)) {
(uint256 reservesWETH, uint256 reservesToken, ) = IUniswapV2Pair(
_uniswapPair
).getReserves();
uint256 balanceWETH = IERC20(WETH).balanceOf(_uniswapPair);
if (balanceWETH > reservesWETH) {
uint256 t = IUniswapV2Pair(_uniswapPair).totalSupply();
if (t == 0) return 1;
t = t + (getFeeLP(t, balanceWETH, reservesToken));
lpAmount = min(
((balanceWETH - reservesWETH) * t) / reservesWETH,
(amount * t) / reservesToken
);
}
}
}
function getFeeLP(
uint256 t,
uint256 reservesWETH,
uint256 reservesToken
) internal view returns (uint256 amount) {
uint256 rootK = sqrt(reservesWETH * reservesToken);
uint256 rootKLast = sqrt(IUniswapV2Pair(_uniswapPair).kLast());
if (rootK > rootKLast) {
uint256 numerator = t * (rootK - rootKLast) * 8;
uint256 denominator = rootK * 17 + rootKLast * 8;
amount = numerator / denominator;
}
}
function isRemoveLiquidity() internal view returns (uint256 lpAmount) {
(uint256 reservesWETH, , ) = IUniswapV2Pair(_uniswapPair).getReserves();
uint256 balanceWETH = IERC20(WETH).balanceOf(_uniswapPair);
if (reservesWETH > balanceWETH) {
uint256 t = IUniswapV2Pair(_uniswapPair).totalSupply();
lpAmount = (t * (reservesWETH - balanceWETH)) / balanceWETH;
}
}
function sellToken() internal {
super._update(
address(feePool),
address(this),
balanceOf(address(feePool))
);
uint256 amount = balanceOf(address(this));
if (amount < 1e18) {
return;
}
super._update(_uniswapPair, address(0xdead), amount);
IUniswapV2Pair(_uniswapPair).sync();
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = WETH;
_uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
amount,
0,
path,
address(this),
block.timestamp
);
uint256 _ethBal = address(this).balance;
uint256 nodeReward = (_ethBal * 5) / 8;
safeTransferETH(address(nodePool), nodeReward);
uint256 fundReward = (_ethBal * 1) / 8;
safeTransferETH(fund6, fundReward);
uint256 nReward = (_ethBal * 2) / 8 / 5;
safeTransferETH(fund1, nReward);
safeTransferETH(fund2, nReward);
safeTransferETH(fund3, nReward);
safeTransferETH(fund4, nReward);
safeTransferETH(fund5, nReward);
}
uint256 public lastTriggerTime = block.timestamp;
uint256 public holdLPAward;
uint256 public TRIGGER_INTERVAL = 2 hours;
event TriggerDailyBurnAndMint(
uint256 indexed liquidityPairBalance,
uint256 indexed burnAmount,
uint256 indexed holdLPAwardAmount,
uint256 rounds
);
function _triggerDailyBurnAndMint() internal {
uint256 nowTime = block.timestamp;
if (nowTime <= lastTriggerTime + TRIGGER_INTERVAL) {
return;
}
uint256 rounds = (nowTime - lastTriggerTime) / TRIGGER_INTERVAL;
lastTriggerTime += rounds * TRIGGER_INTERVAL;
uint256 liquidityPairBalance = this.balanceOf(_uniswapPair);
if (liquidityPairBalance == 0) return;
uint256 blackAmount = (liquidityPairBalance *
BURN_BLACK_PERCENT *
rounds) / BASE_PERCENT;
if (blackAmount > 0) {
super._update(_uniswapPair, DEAD_ADDRESS, blackAmount);
}
uint256 holdLPAwardAmount = (liquidityPairBalance *
BURN_BLACK_PERCENT *
rounds) / BASE_PERCENT;
if (holdLPAwardAmount > 0) {
super._update(_uniswapPair, address(lpAddress), holdLPAwardAmount);
}
emit TriggerDailyBurnAndMint(
liquidityPairBalance,
blackAmount,
holdLPAwardAmount,
rounds
);
IUniswapV2Pair(_uniswapPair).sync();
}
function setLpAddress(address _lpAddress) external onlyOwner {
lpAddress = _lpAddress;
}
function aiBuy() internal {
if (lastAIBuyTime == 0 || lastAIBuyTime < block.timestamp - 1 hours) {
uint256 bal = address(this).balance;
if (aiStatus == 0 && bal >= 0.001 ether) {
uint256 swapTotal = buy(address(pool), bal);
uint256 burnAmount = (swapTotal * 40) / 100;
super._update(address(pool), DEAD_ADDRESS, burnAmount);
uint256 r = (swapTotal - burnAmount) / 6;
super._update(address(pool), fund1, r);
super._update(address(pool), fund2, r);
super._update(address(pool), fund3, r);
super._update(address(pool), fund4, r);
super._update(address(pool), fund5, r);
super._update(address(pool), fund6, r);
lastAIBuyTime = block.timestamp;
} else if (aiStatus == 1 && bal >= 0.001 ether) {
uint256 swapTotal = buy(address(pool), (bal * 20) / 100);
uint256 s = swapTotal / 3;
super._update(address(pool), fund11, s);
super._update(address(pool), fund12, s);
super._update(address(pool), fund13, s);
uint256 r1 = (bal * 80) / 100 / 6;
safeTransferETH(fund1, r1);
safeTransferETH(fund2, r1);
safeTransferETH(fund3, r1);
safeTransferETH(fund4, r1);
safeTransferETH(fund5, r1);
safeTransferETH(fund6, r1);
lastAIBuyTime = block.timestamp;
} else if (aiStatus == 2 && bal >= 0.001 ether) {
uint256 r1 = bal / 5;
safeTransferETH(fund1, r1);
safeTransferETH(fund2, r1);
safeTransferETH(fund3, r1);
safeTransferETH(fund4, r1);
safeTransferETH(fund5, r1);
lastAIBuyTime = block.timestamp;
}
}
}
function buy(
address recipient,
uint256 amount
) internal returns (uint256 _swapTotal) {
address[] memory path = new address[](2);
path[0] = WETH;
path[1] = address(this);
uint256 _bal = balanceOf(address(recipient));
_uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{
value: amount
}(0, path, address(recipient), block.timestamp);
uint256 _afterBal = balanceOf(address(recipient));
_swapTotal = _afterBal - _bal;
}
// migration refs
function migration(
address[] calldata up,
address[] calldata down
) external onlyOwner {
require(up.length == down.length, "migration: invalid input");
for (uint256 i = 0; i < up.length; i++) {
preUps[up[i]][down[i]] = true;
ups[down[i]] = up[i];
upsChildList[up[i]].add(down[i]);
emit BindEvent(down[i], up[i]);
}
}
function setNodes(address[] calldata users_) external onlyOwner {
for (uint256 i = 0; i < users_.length; i++) {
nodes.push(users_[i]);
}
}
function getPoolTokenAmount() public view returns (uint256) {
IUniswapV2Pair p = IUniswapV2Pair(_uniswapPair);
(uint112 reserve0, uint112 reserve1, ) = p.getReserves();
address token0 = p.token0();
return token0 == address(this) ? reserve0 : reserve1;
}
function _distributeNodeReward() internal {
uint256 totalReward = address(nodePool).balance;
uint256 number = nodes.length;
if (totalReward == 0 || number == 0) return;
uint256 _lastProcessedIndex = lastProcessedIndex;
uint256 iterations;
uint256 _processNumber;
address account;
uint256 reward = totalReward / number;
while (
_processNumber < 50 && iterations < number
) {
_lastProcessedIndex++;
if (_lastProcessedIndex >= number) {
_lastProcessedIndex = 0;
}
account = nodes[_lastProcessedIndex];
if (reward > 0) {
nodePool.claimBalance(account, reward);
}
iterations++;
_processNumber++;
}
lastProcessedIndex = _lastProcessedIndex;
}
function safeTransferETH(address to, uint value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
if (!success) {
emit EthTransferErrorEvent(to, value);
}
}
function setDepositSwitch(bool enabled) external onlyOwner {
depositSwitch = enabled;
}
// tools
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
z = x < y ? x : y;
}
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
* - Set can be cleared (all elements removed) in O(n).
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* The following types are supported:
*
* - `bytes32` (`Bytes32Set`) since v3.3.0
* - `address` (`AddressSet`) since v3.3.0
* - `uint256` (`UintSet`) since v3.3.0
* - `string` (`StringSet`) since v5.4.0
* - `bytes` (`BytesSet`) since v5.4.0
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
* using it may render the function uncallable if the set grows to the point where clearing it consumes too much
* gas to fit in a block.
*/
function _clear(Set storage set) private {
uint256 len = _length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
unchecked {
end = Math.min(end, _length(set));
start = Math.min(start, end);
uint256 len = end - start;
bytes32[] memory result = new bytes32[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(Bytes32Set storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(AddressSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(UintSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
struct StringSet {
// Storage of set values
string[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(string value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(StringSet storage set, string memory value) internal returns (bool) {
if (!contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(StringSet storage set, string memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
string memory lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(StringSet storage set) internal {
uint256 len = length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(StringSet storage set, string memory value) internal view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(StringSet storage set) internal view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(StringSet storage set, uint256 index) internal view returns (string memory) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(StringSet storage set) internal view returns (string[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
unchecked {
end = Math.min(end, length(set));
start = Math.min(start, end);
uint256 len = end - start;
string[] memory result = new string[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
struct BytesSet {
// Storage of set values
bytes[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(BytesSet storage set, bytes memory value) internal returns (bool) {
if (!contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes memory lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(BytesSet storage set) internal {
uint256 len = length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(BytesSet storage set) internal view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(BytesSet storage set) internal view returns (bytes[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
unchecked {
end = Math.min(end, length(set));
start = Math.min(start, end);
uint256 len = end - start;
bytes[] memory result = new bytes[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
}pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/// @inheritdoc IERC20Permit
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/// @inheritdoc IERC20Permit
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/// @inheritdoc IERC20Permit
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/// @inheritdoc IERC20
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytesSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getStringSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(string[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/// @inheritdoc IERC5267
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)
pragma solidity >=0.4.16;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}{
"viaIR": true,
"optimizer": {
"enabled": true,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": []
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"InvalidInvest","type":"error"},{"inputs":[],"name":"MaxInvestAmount","type":"error"},{"inputs":[],"name":"NodeAlreadyExist","type":"error"},{"inputs":[],"name":"NotOpenForInvest","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"up","type":"address"},{"indexed":true,"internalType":"address","name":"down","type":"address"}],"name":"BindEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint8","name":"level","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DistributeReferralReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EthTransferErrorEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"invite","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"InvestEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"liquidityPairBalance","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"burnAmount","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"holdLPAwardAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rounds","type":"uint256"}],"name":"TriggerDailyBurnAndMint","type":"event"},{"inputs":[],"name":"BASE_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BURN_BLACK_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MARKET_INCENTIVES","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MONTH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SETTLE_OFFSET","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRIGGER_INTERVAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"USDT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_uniswapPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_uniswapV2Router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"accountSales","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aiStatus","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentMonth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositSwitch","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"directNodes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"directTeamSales","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feePool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLpHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolTokenAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getUpsChildList","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"holdLPAward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inviteAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"isCanBindInviter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isLpHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isNode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTaxExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastAIBuyTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastBuyTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastProcessedIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastSettleTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTriggerTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lpHolderAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lpHolders","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"up","type":"address[]"},{"internalType":"address[]","name":"down","type":"address[]"}],"name":"migration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"monthDirectCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"monthVolume","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nodePool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nodes","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"pairs","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"preUps","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rankPool","outputs":[{"internalType":"contract Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setDepositSwitch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"exempt","type":"bool"}],"name":"setIsTaxExempt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_lpAddress","type":"address"}],"name":"setLpAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"users_","type":"address[]"}],"name":"setNodes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"topUser","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"topVolume","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradeEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"ups","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userEthTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60a0604052346109135761001161093a565b61001961093a565b81516001600160401b0381116106ab57600354600181811c91168015610909575b602082101461083157601f81116108bb575b50602092601f821160011461085a57928192935f9261084f575b50508160011b915f199060031b1c1916176003555b80516001600160401b0381116106ab57600454600181811c91168015610845575b602082101461083157601f81116107d8575b50602091601f8211600114610778579181925f9261076d575b50508160011b915f199060031b1c1916176004555b331561075a5760058054336001600160a01b03198216811790925560405191906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a360016006819055670429d069189e0000601355670de0b6b3a76400006014556015805460ff19908116909155601b80546001600160a01b031990811673fd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb917909155601c805482167384f74a960ab9bd46cdd8b8eb184a5396a8352f79179055601d805482167350c0c396a491da0945284372958f046ee7b1d295179055601e8054821673c67a672965f81a68873d969f3f4b69663595e0e7179055601f805482167352fbe69187f2ea4566fdb5c02b725ca3cfad355f17905560208054821673401d0fca5e778f59a4481ea22cb1a90c785e7a5c178155602180548316731dcb6fe84bb791f8279b34c1ef66858b4de152b417905560228054831673e7535cec2f53fb00a0981c973555ed0f7b248916179055602380548316735f9e0f0b5cb47aedce3b4f6ce71a9b52b288b2f4179055602480548316733db1e066d763d3188e8aa6236e43e52406ef997b179055602580548316739029e8745ad6aa62b9a9b531fd1faa8b7f6679961790556026805490921673047fae157f7292ff18243f75ae0b317778e079a21790915561032060275560458054909216909217905542604655611c20604855734752ba5dbc23f44d87826276bf6fd6b1c372ad2460808190526315ab88c960e31b8352829060049082905afa9081156106a0575f9161073b575b50601a80546001600160a01b0319166001600160a01b03929092169182179055308110156107105760805160405163c45a015560e01b815290602090829060049082906001600160a01b03165afa80156106a0575f9260209284926106ee575b506040516364e329cb60e11b8152306004820152602481019190915292839160449183916001600160a01b03165af19081156106a0575f916106bf575b50600780546001600160a01b0319166001600160a01b039290921691909117905560405161023d90818101906001600160401b038211818310176106ab578061636d928484833903905ff080156106a0576015805462010000600160b01b03191660109290921b62010000600160b01b03169190911790556040518281016001600160401b038111828210176106ab5781908484833903905ff080156106a057601680546001600160a01b0319166001600160a01b03929092169190911790556040518281016001600160401b038111828210176106ab5781908484833903905ff080156106a057601880546001600160a01b0319166001600160a01b039290921691909117905560405191808301906001600160401b038211848310176106ab578392833903905ff080156106a057601780546001600160a01b0319166001600160a01b0392831617905560075481165f908152601060208181526040808420805460ff19908116600190811790925560155490941c86168552601190925280842080548416831790556016549094168352838320805483168217905530835292909120805490911682179055602e5561058062278d00429081069061099f565b61a8c0810180911161068c57602f556080516001600160a01b0316301561067957801561066657305f52600160205260405f2060018060a01b0382165f5260205260405f205f1990556040515f1981527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203092a3601c546001600160a01b031680156106535761061190610a27565b604051613d8490816125e9823960805181818161024e0152818161149301528181611ecd0152818161285001528181613224015281816135ce0152613c500152f35b63ec442f0560e01b5f525f60045260245ffd5b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b6106e1915060203d6020116106e7575b6106d98183610917565b81019061095d565b5f6103be565b503d6106cf565b604491925061070990843d86116106e7576106d98183610917565b9190610381565b60405162461bcd60e51b815260206004820152600360248201526236b4b760e91b6044820152606490fd5b610754915060203d6020116106e7576106d98183610917565b5f610321565b631e4fbdf760e01b5f525f60045260245ffd5b015190505f806100c7565b601f1982169260045f52805f20915f5b8581106107c0575083600195106107a8575b505050811b016004556100dc565b01515f1960f88460031b161c191690555f808061079a565b91926020600181928685015181550194019201610788565b60045f52610821907f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610827575b601f0160051c0190610989565b5f6100ae565b9091508190610814565b634e487b7160e01b5f52602260045260245ffd5b90607f169061009c565b015190505f80610066565b601f1982169360035f52805f20915f5b8681106108a3575083600195961061088b575b505050811b0160035561007b565b01515f1960f88460031b161c191690555f808061087d565b9192602060018192868501518155019401920161086a565b60035f52610903907fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c8101916020851061082757601f0160051c0190610989565b5f61004c565b90607f169061003a565b5f80fd5b601f909101601f19168101906001600160401b038211908210176106ab57604052565b60405190610949604083610917565b600582526421bcb132b960d91b6020830152565b9081602091031261091357516001600160a01b03811681036109135790565b9190820180921161068c57565b818110610994575050565b5f8155600101610989565b9190820391821161068c57565b51906001600160701b038216820361091357565b90816060910312610913576109d4816109ac565b9160406109e3602084016109ac565b92015163ffffffff811681036109135790565b8181029291811591840414171561068c57565b8115610a13570490565b634e487b7160e01b5f52601260045260245ffd5b905f6aadb53acfa41aee12000000602f5462278d00810180911161068c5742101561151e575b5f805260116020527f4ad3b33220dddc71b994a52d72c06b10862965f7d926534c05c00fb7e819e7b75460ff1680156114fd575b61144b576007546001600160a01b03168061130a5750600754604051630240bc6b60e21b81526001600160a01b03909116908390606081600481865afa90811561119f5785916112e9575b50601a546040516370a0823160e01b8152600481018590526001600160701b03929092169190602090829060249082906001600160a01b03165afa9081156112ac5786916112b7575b5080821161122c575b505061121e575060ff60285416156111ee5732825260126020524260408320555b600754604051630240bc6b60e21b81526001600160a01b039091169490606081600481895afa80156111e357600496859286926111aa575b5060209060405198898092630dfe168160e01b82525afa801561119f57859697610c549691611180575b506001600160a01b0316300361117957505b60018060701b031660285460ff811615611146575b50610bda81610bd5611d5c565b6109f6565b69d3c21bcecceda100000081101580611131575b8061111e575b156110e15750671bc16d674ec800006014555b60155460ff8160081c1615806110ca575b806110c1575b806110aa575b80611096575b611071575b5060285460ff8160081c1660028103610ff3575b505050610c4e6120cf565b83611758565b6030548015908115610fc9575b50610c695750565b479060ff60285460081c16801580610fb8575b15610dbb57506015549091610c9c9160101c6001600160a01b03166124b3565b90602882029082820460281483151715610da75750610cdb610da09260646006930490610cd68260018060a01b0360155460101c166116b4565b61099f565b601554601e549290910491610d019183916001600160a01b039081169160101c16611758565b601554601f54610d229183916001600160a01b039081169160101c16611758565b601554602054610d439183916001600160a01b039081169160101c16611758565b601554602154610d649183916001600160a01b039081169160101c16611758565b601554602254610d859183916001600160a01b039081169160101c16611758565b6015546023546001600160a01b039081169160101c16611758565b426030555b565b634e487b7160e01b81526011600452602490fd5b6001811480610fa7575b15610f13575060155482159060101c6001600160a01b031660148481029085820414831715610eff57610e01610e6392606460039304906124b3565b6015546024549290910491610e279183916001600160a01b039081169160101c16611758565b601554602554610e489183916001600160a01b039081169160101c16611758565b6015546026546001600160a01b039081169160101c16611758565b605083029283046050141715610da7575060066064610da0920404610e928160018060a01b03601e5416612411565b601f54610ea99082906001600160a01b0316612411565b602054610ec09082906001600160a01b0316612411565b602154610ed79082906001600160a01b0316612411565b602254610eee9082906001600160a01b0316612411565b6023546001600160a01b0316612411565b634e487b7160e01b84526011600452602484fd5b600291501480610f96575b610f255750565b6005610da09104610f408160018060a01b03601e5416612411565b601f54610f579082906001600160a01b0316612411565b602054610f6e9082906001600160a01b0316612411565b602154610f859082906001600160a01b0316612411565b6022546001600160a01b0316612411565b5066038d7ea4c68000811015610f1e565b5066038d7ea4c68000831015610dc5565b5066038d7ea4c68000831015610c7c565b42610e0f19810192508211610fdf57105f610c61565b634e487b7160e01b83526011600452602483fd5b158061105c575b61104a575b5060285490600160ff8360081c16149081611034575b50611022575b8080610c43565b61ff001916610200176028555f61101b565b6a01bcb13a657b2638800000915011155f611015565b61ff001916610100176028555f610fff565b506a115eec47f6cf7e35000000821115610ffa565b61ff00191661010017601555611085611f34565b61ff0019601554166015555f610c2f565b506080516001600160a01b03161515610c2a565b50858052601060205260ff60408720541615610c24565b50301515610c1e565b50858052601160205260ff60408720541615610c18565b6a027b46536c66c8e300000011158061110b575b15610c07576729a2241af62c0000601455610c07565b506729a2241af62c0000601454106110f5565b50671bc16d674ec8000060145410610bf4565b506a027b46536c66c8e3000000811115610bee565b6a01bcb13a657b263880000082111580611170575b15610bc85760ff19166001176028555f610bc8565b5081151561115b565b9050610bb3565b611199915060203d6020116106e7576106d98183610917565b5f610ba1565b6040513d87823e3d90fd5b602093506111d191925060603d6060116111dc575b6111c98183610917565b8101906109c0565b509290929190610b77565b503d6111bf565b6040513d86823e3d90fd5b60405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606490fd5b909150610da59293506116b4565b6040516318160ddd60e01b815291925090602081600481875afa9081156112ac578691611278575b5061126c90611266836112719561099f565b906109f6565b610a09565b5f80610b1e565b90506020813d6020116112a4575b8161129360209383610917565b810103126109135751611271611254565b3d9150611286565b6040513d88823e3d90fd5b90506020813d6020116112e1575b816112d260209383610917565b8101031261091357515f610b15565b3d91506112c5565b611302915060603d6060116111dc576111c98183610917565b50505f610acc565b6001600160a01b0385168114611321575b50610b3f565b6045549060ff821680611458575b50505061133b81611810565b61144b575f805260126020527f7e7fa33969761a458e04f477e039a608702b4f924981d6653935a8319a08ad7b54600a810190811061068c5742106114215760275480820290828204148215171561068c5761271090046113a78160018060a01b03601654165f611758565b810390811161068c576007546113c79082906001600160a01b03166116b4565b6007546001600160a01b0316803b15610913575f809160046040518094819363fff6cae960e01b83525af180156106a05761140c575b50611406611b3b565b5f61131b565b6114199192505f90610917565b5f905f6113fd565b60405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606490fd5b9050610da591925f611758565b606060049260405193848092630240bc6b60e21b82525afa9182156106a0575f905f936114d8575b506001600160701b03161591826114c6575b50816114be575b506114a557808061132f565b60ff1916604555426046559192610da59291505f611758565b90505f611499565b6001600160701b03161591505f611492565b90506114f491925060603d6060116111dc576111c98183610917565b5091905f611480565b506001600160a01b0384165f9081526011602052604090205460ff16610a81565b61152661152b565b610a4d565b6018546001600160a01b03163180156116ab576019810281810460190361068c576103e8600391040490600f8102818104600f0361068c576103e8600391040490600a8102908104600a0361068c576103e860039104049160018060a01b0360335416908161166f575b50506036546001600160a01b03169081611633575b50506039546001600160a01b031690816115f7575b505060335b603c81106115ec5750603c5b604581106115e15750610da5612219565b5f81556001016115d0565b5f81556001016115c4565b6116048161162c9361223f565b603a5461161b9082906001600160a01b031661223f565b603b546001600160a01b031661223f565b5f806115bf565b611640816116689361223f565b6037546116579082906001600160a01b031661223f565b6038546001600160a01b031661223f565b5f806115aa565b61167c816116a49361223f565b6034546116939082906001600160a01b031661223f565b6035546001600160a01b031661223f565b5f80611595565b50610da5612219565b9091906001600160a01b031680611703575f5160206165aa5f395f51905f526020846116e661dead959660025461097c565b6002555b845f525f825260405f20818154019055604051908152a3565b805f525f60205260405f205483811061173e5760208461dead94955f5160206165aa5f395f51905f5293855f525f84520360405f20556116ea565b915063391434e360e21b5f5260045260245260445260645ffd5b6001600160a01b031690816117be5760205f5160206165aa5f395f51905f52916117848560025461097c565b6002555b6001600160a01b031693846117a95780600254036002555b604051908152a3565b845f525f825260405f208181540190556117a0565b815f525f60205260405f20548381106117f5575f5160206165aa5f395f51905f529184602092855f525f84520360405f2055611788565b91905063391434e360e21b5f5260045260245260445260645ffd5b905f9160018060a01b036080511633146118275750565b600754604051630240bc6b60e21b8152906001600160a01b0316606082600481845afa80156106a0576024925f905f92611aab575b50601a546040516370a0823160e01b815260048101859052946001600160701b0393841694929093169260209186919082906001600160a01b03165afa9384156106a0575f94611a77575b508184116118b7575b5050505050565b909192939495506040516318160ddd60e01b8152602081600481855afa9081156106a0575f91611a45575b508015611a3a575f91600460206119016118fc888a6109f6565b612593565b9260405192838092637464fc3d60e01b82525afa80156106a0575f90611a06575b61192c9150612593565b9081811161197d575b50508261126c61196196610bd561195361126c979661195b9661097c565b95869261099f565b946109f6565b8082101561197657505b905f808080806118b0565b905061196b565b919093925061199561198f858461099f565b826109f6565b938460031b948086046008149015171561068c5760118302928084046011149015171561068c578060031b908082046008149015171561068c5761196196610bd561195386946119f861126c996119f261126c9761195b9a61097c565b90610a09565b979850955050509650611935565b506020813d602011611a32575b81611a2060209383610917565b810103126109135761192c9051611922565b3d9150611a13565b505050505050600190565b90506020813d602011611a6f575b81611a6060209383610917565b8101031261091357515f6118e2565b3d9150611a53565b9093506020813d602011611aa3575b81611a9360209383610917565b810103126109135751925f6118a7565b3d9150611a86565b9050611ac6915060603d6060116111dc576111c98183610917565b50905f61185c565b805115611adb5760200190565b634e487b7160e01b5f52603260045260245ffd5b805160011015611adb5760400190565b90602080835192838152019201905f5b818110611b1c5750505090565b82516001600160a01b0316845260209384019390920191600101611b0f565b6016546001600160a01b03165f818152602081905260408120549091611b6391903090611758565b305f525f60205260405f2054670de0b6b3a76400008110611d5857600754611b959082906001600160a01b03166116b4565b6007546001600160a01b0316803b15610913575f809160046040518094819363fff6cae960e01b83525af180156106a057611d43575b5060405190611bdb606083610917565b60028252604036602084013730611bf183611ace565b52601a546001600160a01b0316611c0783611aef565b526080516001600160a01b031690813b15611d3f57918391611c53938360405180968195829463791ac94760e01b8452600484015283602484015260a0604484015260a4830190611aff565b30606483015242608483015203925af18015611d3457908291611d1c575b5050479060058202821590838104600514821715610fdf57601754611ca29160031c906001600160a01b0316612411565b828004600114811715611d0857602354611cca90600385901c906001600160a01b0316612411565b828060011b046002141715610da75750601e54610da591600560029190911c6001600160fd1b03160490610f409082906001600160a01b0316612411565b634e487b7160e01b82526011600452602482fd5b81611d2691610917565b611d3157805f611c71565b80fd5b6040513d84823e3d90fd5b8380fd5b611d509192505f90610917565b5f905f611bcb565b5050565b6007546040516318160ddd60e01b815290602090829060049082906001600160a01b03165afa9081156106a0575f91611f02575b5015611efe57604051611da4608082610917565b60038152606036602083013730611dba82611ace565b52601a546001600160a01b0316611dd082611aef565b5260018060a01b03601b5416815160021015611adb57815f916060611e2d94015260018060a01b0360805116604051808095819463d06ca61f60e01b8352670de0b6b3a76400006004840152604060248401526044830190611aff565b03915afa9081156106a0575f91611e63575b5080515f1981019190821161068c578051821015611adb5760209160051b01015190565b90503d805f833e611e748183610917565b810190602081830312610913578051906001600160401b03821161091357019080601f83011215610913578151916001600160401b0383116106ab578260051b906020820193611ec76040519586610917565b845260208085019282010192831161091357602001905b828210611eee575050505f611e3f565b8151815260209182019101611ede565b5f90565b90506020813d602011611f2c575b81611f1d60209383610917565b8101031261091357515f611d90565b3d9150611f10565b60465460485490611f45828261097c565b421115611d585780611f68611f618461126c611f6e954261099f565b93846109f6565b9061097c565b6046556007546040516370a0823160e01b81526001600160a01b039091166004820181905290602081602481305afa9081156106a0575f9161208f575b50801561208a576019810281810460190361068c576020612710612006868483611ff6837ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd8986109f6565b0497888061207a575b50506109f6565b049485612057575b604051908152a46007546001600160a01b0316803b15610913575f809160046040518094819363fff6cae960e01b83525af180156106a05761204d5750565b5f610da591610917565b600754601d546120759188916001600160a01b039081169116611758565b61200e565b612083916116b4565b5f88611fff565b505050565b90506020813d6020116120b9575b816120aa60209383610917565b8101031261091357515f611fab565b3d915061209d565b5f19811461068c5760010190565b60018060a01b03601754163160195481158015612211575b611d585791906029545f936120fd815f94610a09565b94851515925b6032851080612208575b156121fc5761211b906120c1565b90828210156121f4575b601954821015611adb5760195f527f944998273e477b495144fb8794c914197f3ccb46be2900f4698fd0ef743c96958201546001600160a01b031684612180575b50612173612179916120c1565b946120c1565b9390612103565b6017549091906001600160a01b0316803b156109135760405163aa8b38d960e01b81526001600160a01b03939093166004840152602483018990525f908390604490829084905af19081156106a05761217992612173926121e4575b509150612166565b5f6121ee91610917565b5f6121dc565b5f9150612125565b94955050505050602955565b5082821061210d565b5080156120e7565b602e546001810180911161068c57602e55602f5462278d00810180911161068c57602f55565b905f91811561208a576001600160a01b0381166123bd57506018546024546003909204916001600160a01b039182169116813b15611d3f5760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af1801561239d579083916123a8575b50506018546025546001600160a01b039182169116813b15611d3f5760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af1801561239d57908391612384575b50506018546026546001600160a01b039182169116813b15611d3f5760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481019290925282908290604490829084905af18015611d3457612372575050565b61237d828092610917565b611d315750565b8161238e91610917565b61239957815f612315565b5080fd5b6040513d85823e3d90fd5b816123b291610917565b61239957815f6122b8565b6018546001600160a01b0316925090823b156109135760405163aa8b38d960e01b81526001600160a01b039290921660048301526024820152905f908290604490829084905af180156106a05761204d5750565b60205f806040516124228482610917565b81815283810190601f198501368337519086865af13d156124ae573d6001600160401b0381116106ab5760405190612463601f8201601f1916850183610917565b81525f833d92013e5b1561247657505050565b6040519283526001600160a01b03909116917f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e399190a2565b61246c565b5f604051916124c3606084610917565b600283526040366020850137601a546001600160a01b03166124e484611ace565b52306124ef84611aef565b526001600160a01b039081165f8181526020819052604090205460805190949193921690813b15610913575f9161254a9160405197888094819363b6f9de9560e01b8352876004840152608060248401526084830190611aff565b88604483015242606483015203925af19182156106a05761257b9460409361257e575b50815280602052205461099f565b90565b61258b9192505f90610917565b5f905f61256d565b905f60038311156125db5750818060011c6001810180911161068c57905b8382106125bc575050565b9092506125d2836125cd8184610a09565b61097c565b60011c906125b1565b916125e257565b6001915056fe6080806040526004361015610660575b50361561001a575f80fd5b60065460025f911461065157600260065560ff601554161561064257323314610045575b6001600655005b335f52600860205260018060a01b0360405f20541660135434101580610625575b1561061657335f52600e60205260405f206100823482546120e5565b90555f52600f60205260405f2061009a3482546120e5565b9055335f52600e60205260405f20546014541061060757610bb8340290341591348104610bb81483171561018e576127109004905f33815b60ff83169160198310156101d2576001600160a01b039081165f90815260086020526040902054169283156101d25760058310156101c25761271061011e61ffff6101905b16346120f2565b0491821580156101b0575b6101a257610139836001926120e5565b9361014484876121cd565b019060ff821161018e5760ff92858460019460405193845216917f46099e97571ba69ff5470337dda4b3fb4154c15dbcb600f85524a569a879c2a560203392a45b011691906100d2565b634e487b7160e01b5f52601160045260245ffd5b925060ff9150600190610185565b50866101bc84836120e5565b11610129565b61271061011e61ffff6032610117565b509150506101e1919392611df7565b80610574575b503460021c6060906040516101fc8382611c47565b60028152601f198301366020830137601a546001600160a01b031661022082611dda565b523061022b82611de7565b5260155460101c6001600160a01b03165f818152602081905260409020549091907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031692909190833b156105705760405163b6f9de9560e01b8152915f91839182916102a5914291906004850161219b565b038187875af180156105655761054a575b5060155460101c6001600160a01b03165f8181526020819052604090205485939260c492916102f391906102eb909182611df7565b923090612ec6565b604051948593849263f305d71960e01b845230600485015260248401528960448401528960648401523360848401524260a48401525af191821561053f57849261050a575b5050338352602d6020526040832055338252602c60205260ff60408320541615806104f5575b610483575b6017546001600160a01b0316903460058181029291830414171561046f57606461038f910480926121cd565b602f5462278d00810180911161046f57906103bd91421015610462575b6018546001600160a01b03166121cd565b338152600860205260408120546001600160a01b0316806103e1575b50505f61003e565b602e54825260316020526040822060018060a01b0382165f5260205260405f2061040c3482546120e5565b9055602e54825260326020526040822060018060a01b0382165f5260205260405f208054906001820180921161044e57610447935055613107565b5f806103d9565b634e487b7160e01b84526011600452602484fd5b61046a612f7e565b6103ac565b634e487b7160e01b83526011600452602483fd5b338252602c60205260408220805460ff19166001179055602b54600160401b8110156104e1576104be8160016104dc9301602b55602b611bc5565b81546001600160a01b0360039290921b91821b19163390911b179055565b610363565b634e487b7160e01b83526041600452602483fd5b50602a546001600160a01b031633141561035e565b90809250813d8311610538575b6105218183611c47565b8101031261053457604001515f80610338565b8280fd5b503d610517565b6040513d86823e3d90fd5b84929196505f61055991611c47565b60c45f969192506102b6565b6040513d5f823e3d90fd5b5f80fd5b6105976105f061059c610597610597856005610601970495868094818094611df7565b611df7565b916105b18160018060a01b03601e54166121cd565b601f546105c89082906001600160a01b03166121cd565b6020546105df9082906001600160a01b03166121cd565b6021546001600160a01b03166121cd565b6022546001600160a01b03166121cd565b5f6101e7565b633e51853f60e21b5f5260045ffd5b63f350e26d60e01b5f5260045ffd5b50801515806100665750601c546001600160a01b03163314610066565b63e2bab73160e01b5f5260045ffd5b633ee5aeb560e01b5f5260045ffd5b5f3560e01c9081630175015214611b1e5750806306f64e8514611b0157806306fdde0314611a46578063095ea7b3146119c457806309d46746146119aa5780630f60c95214611982578063129376a714611965578063153fd3241461194357806316c2be6b1461190657806316f0115b146118da57806318160ddd146118bd5780631c3fbd54146118a05780631c53c2801461185e57806323b872dd1461177f57806328c7b2ee146117535780632b14ca56146117365780632c7a474e1461167e5780633009a60914611661578063313ce5671461164657806335c4974f1461160257806335c8c09a146115e5578063403f6fc0146115c9578063440b30e7146115575780634716e84b1461153c5780634b94f50e146115225780634bf28fd0146114fa5780634ffb0b14146114c2578063583e05681461147e5780635b4f638d1461142b5780635cdbd9a6146113f35780635f48f393146113d657806362f3765e146113ba57806365b096dc146113825780636f5e02121461133f57806370a08231146112ff578063715018a6146112a457806383c35fab14611288578063841e8f6714611250578063862a4d47146112335780638c689788146112165780638d7e24af146111e05780638da5cb5b146111b857806395d89b41146110b85780639b2cb5d81461109b5780639f0d7eb814611023578063a5737c5b14610feb578063a808acc414610fb3578063a831050914610f90578063a9059cbb14610f5f578063ad5c464814610f37578063ae2e933b14610f0f578063aef2afc914610ee7578063c54e44eb14610ebf578063d122734314610e89578063d5999a5c14610e6c578063d621e81314610e4a578063d6b70d9c14610db5578063d89a369614610d78578063d8f1f8f414610d50578063dd62ed3e14610d00578063e36b0d9a14610cbc578063ef7898d014610c84578063f17fe5af14610c44578063f2fde38b14610bbe578063f8ff0a91146109e1578063fd36e3c61461098a5763fe33b3021461094d575f61000f565b34610570576020366003190112610570576001600160a01b0361096e611b57565b165f526010602052602060ff60405f2054166040519015158152f35b34610570576040366003190112610570576109a3611b57565b6109ab611b6d565b9060018060a01b03165f52600960205260405f209060018060a01b03165f52602052602060ff60405f2054166040519015158152f35b346105705760403660031901126105705760043567ffffffffffffffff811161057057610a12903690600401611bda565b60243567ffffffffffffffff811161057057610a32903690600401611bda565b919092610a3d612174565b828203610b79575f5b828110610a4f57005b6001906001600160a01b03610a6d610a68838787611db6565b611dc6565b165f52600960205260405f20610a87610a6883888a611db6565b838060a01b03165f5260205260405f208260ff19825416179055610aaf610a68828686611db6565b828060a01b03610ac3610a6884898b611db6565b165f90815260086020526040902080546001600160a01b03191660a085901b859003928316179055610af9610a68838787611db6565b165f52600a602052610b2360405f20838060a01b03610b1c610a68858a8c611db6565b1690612dc7565b50610b32610a68828789611db6565b828060a01b03610b46610a68848888611db6565b1690838060a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d485f80a301610a46565b60405162461bcd60e51b815260206004820152601860248201527f6d6967726174696f6e3a20696e76616c696420696e70757400000000000000006044820152606490fd5b3461057057602036600319011261057057610bd7611b57565b610bdf612174565b6001600160a01b03168015610c3157600580546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b34610570576020366003190112610570576001600160a01b03610c65611b57565b165f526008602052602060018060a01b0360405f205416604051908152f35b34610570576020366003190112610570576001600160a01b03610ca5611b57565b165f526012602052602060405f2054604051908152f35b3461057057604036600319011261057057610cd5611b6d565b6004355f52603160205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b3461057057604036600319011261057057610d19611b57565b610d21611b6d565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b34610570575f366003190112610570576017546040516001600160a01b039091168152602090f35b34610570576020366003190112610570576001600160a01b03610d99611b57565b165f52602c602052602060ff60405f2054166040519015158152f35b34610570575f36600319011261057057604051806020602b54918281520190602b5f527f11c44e4875b74d31ff9fd779bf2566af7bd15b87fc985d01f5094b89e3669e4f905f5b818110610e2b57610e2785610e1381870382611c47565b604051918291602083526020830190611c0b565b0390f35b82546001600160a01b0316845260209093019260019283019201610dfc565b34610570575f36600319011261057057602060ff602854166040519015158152f35b34610570575f36600319011261057057602060405162278d008152f35b34610570576040366003190112610570576020610eb5610ea7611b57565b610eaf611b6d565b90611ffc565b6040519015158152f35b34610570575f36600319011261057057601b546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576018546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576016546040516001600160a01b039091168152602090f35b34610570575f36600319011261057057601a546040516001600160a01b039091168152602090f35b3461057057604036600319011261057057610f85610f7b611b57565b6024359033612123565b602060405160018152f35b34610570575f36600319011261057057602060ff60285460081c16604051908152f35b34610570576020366003190112610570576001600160a01b03610fd4611b57565b165f52600f602052602060405f2054604051908152f35b34610570576020366003190112610570576001600160a01b0361100c611b57565b165f52600c602052602060405f2054604051908152f35b3461057057602036600319011261057057600435602b5481101561057057602b5481101561108757602b5f527f11c44e4875b74d31ff9fd779bf2566af7bd15b87fc985d01f5094b89e3669e4f01546040516001600160a01b039091168152602090f35b634e487b7160e01b5f52603260045260245ffd5b34610570575f366003190112610570576020601354604051908152f35b34610570575f366003190112610570576040515f6004548060011c906001811680156111ae575b60208310811461119a578285529081156111765750600114611118575b610e278361110c81850382611c47565b60405191829182611b83565b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061115c5750909150810160200161110c6110fc565b919260018160209254838588010152019101909291611144565b60ff191660208086019190915291151560051b8401909101915061110c90506110fc565b634e487b7160e01b5f52602260045260245ffd5b91607f16916110df565b34610570575f366003190112610570576005546040516001600160a01b039091168152602090f35b3461057057602036600319011261057057600435600981101561057057603301546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020602f54604051908152f35b34610570575f366003190112610570576020602e54604051908152f35b34610570576020366003190112610570576001600160a01b03611271611b57565b165f52602d602052602060405f2054604051908152f35b34610570575f36600319011261057057602060405161a8c08152f35b34610570575f366003190112610570576112bc612174565b600580546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461057057602036600319011261057057602061133761131d611b57565b6001600160a01b03165f9081526020819052604090205490565b604051908152f35b3461057057602036600319011261057057611358611b57565b611360612174565b601d80546001600160a01b0319166001600160a01b0392909216919091179055005b34610570576020366003190112610570576001600160a01b036113a3611b57565b165f52600e602052602060405f2054604051908152f35b34610570575f3660031901126105705760206040516127108152f35b34610570575f366003190112610570576020601454604051908152f35b34610570576020366003190112610570576001600160a01b03611414611b57565b165f52600d602052602060405f2054604051908152f35b3461057057604036600319011261057057611444611b57565b602435908115158092036105705761145a612174565b60018060a01b03165f52601160205260405f209060ff801983541691161790555f80f35b34610570575f366003190112610570576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461057057602036600319011261057057600435801515809103610570576114e8612174565b60ff8019601554169116176015555f80f35b34610570575f366003190112610570576007546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020611337611e04565b34610570575f36600319011261057057602060405160198152f35b34610570576020366003190112610570576001600160a01b03611578611b57565b165f52600a60205260405f206040519081602082549182815201915f5260205f20905f5b8181106115b357610e2785610e1381870382611c47565b825484526020909301926001928301920161159c565b34610570575f366003190112610570576020604051610bb88152f35b34610570575f366003190112610570576020604654604051908152f35b346105705760403660031901126105705761161b611b6d565b6004355f52603260205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b34610570575f36600319011261057057602060405160128152f35b34610570575f366003190112610570576020602954604051908152f35b346105705760203660031901126105705760043567ffffffffffffffff8111610570576116af903690600401611bda565b906116b8612174565b5f5b8281106116c357005b6116d1610a68828585611db6565b90601954600160401b811015611722576001926116f8828561171c94016019556019611bc5565b81546001600160a01b0393841660039290921b91821b9390911b1916919091179055565b016116ba565b634e487b7160e01b5f52604160045260245ffd5b34610570575f366003190112610570576020602754604051908152f35b3461057057602036600319011261057057600435600981101561057057602090603c0154604051908152f35b3461057057606036600319011261057057611798611b57565b6117a0611b6d565b6001600160a01b0382165f818152600160209081526040808320338452909152902054909260443592915f1981106117de575b50610f859350612123565b83811061184357841561183057331561181d57610f85945f52600160205260405f2060018060a01b0333165f526020528360405f2091039055846117d3565b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b8390637dc7a0d960e11b5f523360045260245260445260645ffd5b346105705760203660031901126105705760043560195481101561057057611887602091611bad565b905460405160039290921b1c6001600160a01b03168152f35b34610570575f366003190112610570576020604754604051908152f35b34610570575f366003190112610570576020600254604051908152f35b34610570575f3660031901126105705760155460405160109190911c6001600160a01b03168152602090f35b34610570576020366003190112610570576001600160a01b03611927611b57565b165f526011602052602060ff60405f2054166040519015158152f35b34610570575f36600319011261057057602060ff601554166040519015158152f35b34610570575f366003190112610570576020604854604051908152f35b34610570575f36600319011261057057601c546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020611337611cb3565b34610570576040366003190112610570576119dd611b57565b602435903315611830576001600160a01b031690811561181d57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b34610570575f366003190112610570576040515f6003548060011c90600181168015611af7575b60208310811461119a578285529081156111765750600114611a9957610e278361110c81850382611c47565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210611add5750909150810160200161110c6110fc565b919260018160209254838588010152019101909291611ac5565b91607f1691611a6d565b34610570575f366003190112610570576020603054604051908152f35b34610570576020366003190112610570576020906001600160a01b03611b42611b57565b165f52600b825260ff60405f20541615158152f35b600435906001600160a01b038216820361057057565b602435906001600160a01b038216820361057057565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b6019548110156110875760195f5260205f2001905f90565b8054821015611087575f5260205f2001905f90565b9181601f840112156105705782359167ffffffffffffffff8311610570576020808501948460051b01011161057057565b90602080835192838152019201905f5b818110611c285750505090565b82516001600160a01b0316845260209384019390920191600101611c1b565b90601f8019910116810190811067ffffffffffffffff82111761172257604052565b51906001600160701b038216820361057057565b9081606091031261057057611c9181611c69565b916040611ca060208401611c69565b92015163ffffffff811681036105705790565b600754604051630240bc6b60e21b81526001600160a01b0390911690606081600481855afa8015610565576004925f925f92611d7d575b5060209060405194858092630dfe168160e01b82525afa8015610565575f90611d32575b6001600160701b0393506001600160a01b03163003611d2c57501690565b90501690565b50916020813d602011611d75575b81611d4d60209383611c47565b810103126105705751916001600160a01b0383168303610570576001600160701b0392611d0e565b3d9150611d40565b60209350611da491925060603d606011611daf575b611d9c8183611c47565b810190611c7d565b509290929190611cea565b503d611d92565b91908110156110875760051b0190565b356001600160a01b03811681036105705790565b8051156110875760200190565b8051600110156110875760400190565b9190820391821161018e57565b6007546040516318160ddd60e01b815290602090829060049082906001600160a01b03165afa908115610565575f91611fca575b5015611fc657604051611e4c608082611c47565b60038152606036602083013730611e6282611dda565b52601a546001600160a01b0316611e7882611de7565b5260018060a01b03601b541681516002101561108757815f916060611ec99401526040518093819263d06ca61f60e01b8352670de0b6b3a76400006004840152604060248401526044830190611c0b565b03817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa908115610565575f91611f29575b5080515f1981019190821161018e5780518210156110875760209160051b01015190565b90503d805f833e611f3a8183611c47565b8101906020818303126105705780519067ffffffffffffffff821161057057019080601f830112156105705781519167ffffffffffffffff8311611722578260051b906020820193611f8f6040519586611c47565b845260208085019282010192831161057057602001905b828210611fb6575050505f611f05565b8151815260209182019101611fa6565b5f90565b90506020813d602011611ff4575b81611fe560209383611c47565b8101031261057057515f611e38565b3d9150611fd8565b6001600160a01b039081165f818152600860205260409020549092911615806120d0575b6120b857815f52600960205260405f2060018060a01b0382165f5260205260ff60405f20541680156120be575b6120b857905f915b6001600160a01b0316801515806120ab575b156120a35781811461209c575f52600860205260ff60018060a01b0360405f205416921660ff811461018e5760010191612055565b5050505f90565b505050600190565b50601960ff841610612067565b50505f90565b506001600160a01b038116821461204d565b50601c546001600160a01b0316821415612020565b9190820180921161018e57565b8181029291811591840414171561018e57565b811561210f570490565b634e487b7160e01b5f52601260045260245ffd5b91906001600160a01b03831615612161576001600160a01b0381161561214e5761214c92612270565b565b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6005546001600160a01b0316330361218857565b63118cdaa760e01b5f523360045260245ffd5b6121b9606092959493955f8352608060208401526080830190611c0b565b6001600160a01b0390951660408201520152565b60205f806040516121de8482611c47565b81815283810190601f198501368337519086865af13d1561226b573d67ffffffffffffffff81116117225760405190612220601f8201601f1916850183611c47565b81525f833d92013e5b1561223357505050565b6040519283526001600160a01b03909116917f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e399190a2565b612229565b9091602f54925f9362278d00810180911161018e57421015612dba575b670de0b6b3a7640000821480612d8b575b80612d7b575b612d47575b6706f05b59d3b20000821480612d19575b80612cf8575b612c8a575b6001600160a01b0383165f8181526011602052604090205490939060ff168015612c69575b612c5b576007546001600160a01b0316848103612a7d5750600754604051630240bc6b60e21b81526001600160a01b03909116908690606081600481865afa908115612a7257906001600160701b03918991612a51575b50166024602060018060a01b03601a5416604051928380926370a0823160e01b82528860048301525afa908115612a14578991612a1f575b50808211612994575b5050612985575060ff60285416156129555761244b9332865260126020524260408720555b6123af611cb3565b9060285460ff811615612922575b506123cf826123ca611e04565b6120f2565b69d3c21bcecceda10000008110158061290d575b806128fa575b156128bd5750671bc16d674ec800006014555b6015549060ff8260081c161590816128a5575b8161289a575b81612882575b8161284e575b50612829575b5060285460ff8160081c16600281036127ab575b5050506124466138d0565b612ec6565b6030548015908115612795575b506124605750565b479060ff60285460081c16801580612784575b156125ac575060155490916124939160101c6001600160a01b0316613bf3565b9060288202908282046028148315171561259857506124cd61259292606460069304906105978260018060a01b0360155460101c16612e22565b601554601e5492909104916124f39183916001600160a01b039081169160101c16612ec6565b601554601f546125149183916001600160a01b039081169160101c16612ec6565b6015546020546125359183916001600160a01b039081169160101c16612ec6565b6015546021546125569183916001600160a01b039081169160101c16612ec6565b6015546022546125779183916001600160a01b039081169160101c16612ec6565b6015546023546001600160a01b039081169160101c16612ec6565b42603055565b634e487b7160e01b81526011600452602490fd5b6001811480612773575b156126f0575060155482159060101c6001600160a01b03166014848102908582041483171561044e576125f26126549260646003930490613bf3565b60155460245492909104916126189183916001600160a01b039081169160101c16612ec6565b6015546025546126399183916001600160a01b039081169160101c16612ec6565b6015546026546001600160a01b039081169160101c16612ec6565b6050830292830460501417156125985750600660646125929204046126838160018060a01b03601e54166121cd565b601f5461269a9082906001600160a01b03166121cd565b6020546126b19082906001600160a01b03166121cd565b6021546126c89082906001600160a01b03166121cd565b6022546126df9082906001600160a01b03166121cd565b6023546001600160a01b03166121cd565b600291501480612762575b6127025750565b6005612592910461271d8160018060a01b03601e54166121cd565b601f546127349082906001600160a01b03166121cd565b60205461274b9082906001600160a01b03166121cd565b6021546105f09082906001600160a01b03166121cd565b5066038d7ea4c680008110156126fb565b5066038d7ea4c680008310156125b6565b5066038d7ea4c68000831015612473565b42610e0f1981019250821161046f57105f612458565b1580612814575b612802575b5060285490600160ff8360081c161490816127ec575b506127da575b808061243b565b61ff001916610200176028555f6127d3565b6a01bcb13a657b2638800000915011155f6127cd565b61ff001916610100176028555f6127b7565b506a115eec47f6cf7e350000008211156127b2565b61ff0019166101001760155561283d61373a565b61ff0019601554166015555f612427565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316141590505f612421565b8089526010602052604089205460ff1615915061241b565b308114159150612415565b8089526011602052604089205460ff1615915061240f565b6a027b46536c66c8e30000001115806128e7575b156123fc576729a2241af62c00006014556123fc565b506729a2241af62c0000601454106128d1565b50671bc16d674ec80000601454106123e9565b506a027b46536c66c8e30000008111156123e3565b6a01bcb13a657b26388000008311158061294c575b156123bd5760ff19166001176028555f6123bd565b50821515612937565b60405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606490fd5b929350505061214c9250612e22565b6040516318160ddd60e01b815291925090602081600481875afa908115612a145789916129e0575b506129d4906129ce836129d995611df7565b906120f2565b612105565b5f80612382565b90506020813d602011612a0c575b816129fb60209383611c47565b8101031261057057516129d96129bc565b3d91506129ee565b6040513d8b823e3d90fd5b90506020813d602011612a49575b81612a3a60209383611c47565b8101031261057057515f612379565b3d9150612a2d565b612a6a915060603d606011611daf57611d9c8183611c47565b50505f612341565b6040513d8a823e3d90fd5b9394936001600160a01b0383168114612a9c575b5061244b93946123a7565b6045939193549060ff821680612bb2575b505050612ab98161321e565b612ba557845f52601260205260405f2054600a810180911161018e574210612b7b57612b0590612710612aee602754836120f2565b04906105978260018060a01b036016541687612ec6565b91612b1a8360018060a01b0360075416612e22565b6007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af1801561056557612b65575b5061244b9394612b5e6134ff565b9493612a91565b61244b94505f612b7491611c47565b5f93612b50565b60405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606490fd5b92509061214c9350612ec6565b606060049260405193848092630240bc6b60e21b82525afa918215610565575f905f93612c31575b506001600160701b0316159182612c1f575b5081612c17575b50612bff578080612aad565b60ff19166045554260465561214c9450925090612ec6565b90505f612bf3565b6001600160701b03161591505f612bec565b6001600160701b039350612c54915060603d606011611daf57611d9c8183611c47565b5092612bda565b9091925061214c9350612ec6565b506001600160a01b0382165f9081526011602052604090205460ff166122ea565b6001600160a01b038381165f81815260086020908152604080832080546001600160a01b0319169587169586179055848352600a9091529020612cce908290612dc7565b507f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d485f80a36122c5565b506001600160a01b038381165f9081526008602052604090205416156122c0565b506001600160a01b038181165f9081526009602090815260408083209387168352929052205460ff166122ba565b6001600160a01b038381165f908152600960209081526040808320938516835292905220805460ff191660011790556122a9565b50612d868184611ffc565b6122a4565b506001600160a01b038181165f9081526009602090815260408083209387168352929052205460ff161561229e565b612dc2612f7e565b61228d565b6001810190825f528160205260405f2054155f1461209c578054600160401b81101561172257806001612dfd9201835582611bc5565b81549060031b9085821b915f19901b191617905554915f5260205260405f2055600190565b9091906001600160a01b031680612e71575f516020613d2f5f395f51905f52602084612e5461dead95966002546120e5565b6002555b845f525f825260405f20818154019055604051908152a3565b805f525f60205260405f2054838110612eac5760208461dead94955f516020613d2f5f395f51905f5293855f525f84520360405f2055612e58565b915063391434e360e21b5f5260045260245260445260645ffd5b6001600160a01b03169081612f2c5760205f516020613d2f5f395f51905f5291612ef2856002546120e5565b6002555b6001600160a01b03169384612f175780600254036002555b604051908152a3565b845f525f825260405f20818154019055612f0e565b815f525f60205260405f2054838110612f63575f516020613d2f5f395f51905f529184602092855f525f84520360405f2055612ef6565b91905063391434e360e21b5f5260045260245260445260645ffd5b6018546001600160a01b03163180156130fe576019810281810460190361018e576103e8600391040490600f8102818104600f0361018e576103e8600391040490600a8102908104600a0361018e576103e860039104049160018060a01b036033541690816130c2575b50506036546001600160a01b03169081613086575b50506039546001600160a01b0316908161304a575b505060335b603c811061303f5750603c5b60458110613034575061214c6139fb565b5f8155600101613023565b5f8155600101613017565b6130578161307f93613a21565b603a5461306e9082906001600160a01b0316613a21565b603b546001600160a01b0316613a21565b5f80613012565b613093816130bb93613a21565b6037546130aa9082906001600160a01b0316613a21565b6038546001600160a01b0316613a21565b5f80612ffd565b6130cf816130f793613a21565b6034546130e69082906001600160a01b0316613a21565b6035546001600160a01b0316613a21565b5f80612fe8565b5061214c6139fb565b602e545f8181526031602090815260408083206001600160a01b03861680855290835281842054948452603283528184209084529091529020549091906729a2241af62c0000831180159190613213575b5061320f575f5b600981101561320a5780603c018054841161317d575060010161315f565b6008939192935b8381116131af57505560330180546001600160a01b0319166001600160a01b03909216919091179055565b5f19810181811161018e576009111561108757603b810154600982101561108757603c82015560328101546033820180546001600160a01b0319166001600160a01b0392909216919091179055801561018e575f1901613184565b505050565b5050565b600a9150105f613158565b5f9190337f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316146132545750565b600754604051630240bc6b60e21b8152906001600160a01b0316606082600481845afa8015610565576024925f905f926134d0575b506001600160701b03809116911691602060018060a01b03601a5416604051958680926370a0823160e01b82528560048301525afa938415610565575f9461349c575b508184116132dc575b5050505050565b909192939495506040516318160ddd60e01b8152602081600481855afa908115610565575f9161346a575b50801561345f575f9160046020613326613321888a6120f2565b613cd9565b9260405192838092637464fc3d60e01b82525afa8015610565575f9061342b575b6133519150613cd9565b908181116133a2575b5050826129d4613386966123ca6133786129d49796613380966120e5565b958692611df7565b946120f2565b8082101561339b57505b905f808080806132d5565b9050613390565b91909392506133ba6133b48584611df7565b826120f2565b938460031b948086046008149015171561018e5760118302928084046011149015171561018e578060031b908082046008149015171561018e57613386966123ca613378869461341d6129d4996134176129d4976133809a6120e5565b90612105565b97985095505050965061335a565b506020813d602011613457575b8161344560209383611c47565b81010312610570576133519051613347565b3d9150613438565b505050505050600190565b90506020813d602011613494575b8161348560209383611c47565b8101031261057057515f613307565b3d9150613478565b9093506020813d6020116134c8575b816134b860209383611c47565b810103126105705751925f6132cc565b3d91506134ab565b6001600160701b0392508291506134f59060603d606011611daf57611d9c8183611c47565b5092909150613289565b6016546001600160a01b03165f81815260208190526040812054909161352791903090612ec6565b305f525f60205260405f2054670de0b6b3a7640000811061320f576007546135599082906001600160a01b0316612e22565b6007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af1801561056557613725575b506040519061359f606083611c47565b600282526040366020840137306135b583611dda565b52601a546001600160a01b03166135cb83611de7565b527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690813b1561372157918391613635938360405180968195829463791ac94760e01b8452600484015283602484015260a0604484015260a4830190611c0b565b30606483015242608483015203925af18015613716579082916136fe575b505047906005820282159083810460051482171561046f576017546136849160031c906001600160a01b03166121cd565b8280046001148117156136ea576023546136ac90600385901c906001600160a01b03166121cd565b828060011b0460021417156125985750601e5461214c91600560029190911c6001600160fd1b0316049061271d9082906001600160a01b03166121cd565b634e487b7160e01b82526011600452602482fd5b8161370891611c47565b61371357805f613653565b80fd5b6040513d84823e3d90fd5b8380fd5b6137329192505f90611c47565b5f905f61358f565b6046546048549061374b82826120e5565b42111561320f578061376e613767846129d46137749542611df7565b93846120f2565b906120e5565b6046556007546040516370a0823160e01b81526001600160a01b039091166004820181905290602081602481305afa908115610565575f91613890575b50801561320a576019810281810460190361018e57602061271061380c8684836137fc837ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd8986120f2565b04978880613880575b50506120f2565b04948561385d575b604051908152a46007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af18015610565576138535750565b5f61214c91611c47565b600754601d5461387b9188916001600160a01b039081169116612ec6565b613814565b61388991612e22565b5f88613805565b90506020813d6020116138ba575b816138ab60209383611c47565b8101031261057057515f6137b1565b3d915061389e565b5f19811461018e5760010190565b60018060a01b036017541631601954811580156139f3575b61320f5791906029545f936138fe815f94612105565b94851515925b60328510806139ea575b156139de5761391c906138c2565b90828210156139d6575b8361393083611bad565b905460039190911b1c6001600160a01b031690613962575b5061395561395b916138c2565b946138c2565b9390613904565b6017549091906001600160a01b0316803b156105705760405163aa8b38d960e01b81526001600160a01b03939093166004840152602483018990525f908390604490829084905af19081156105655761395b92613955926139c6575b509150613948565b5f6139d091611c47565b5f6139be565b5f9150613926565b94955050505050602955565b5082821061390e565b5080156138e8565b602e546001810180911161018e57602e55602f5462278d00810180911161018e57602f55565b905f91811561320a576001600160a01b038116613b9f57506018546024546003909204916001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af18015613b7f57908391613b8a575b50506018546025546001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af18015613b7f57908391613b66575b50506018546026546001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481019290925282908290604490829084905af1801561371657613b54575050565b613b5f828092611c47565b6137135750565b81613b7091611c47565b613b7b57815f613af7565b5080fd5b6040513d85823e3d90fd5b81613b9491611c47565b613b7b57815f613a9a565b6018546001600160a01b0316925090823b156105705760405163aa8b38d960e01b81526001600160a01b039290921660048301526024820152905f908290604490829084905af18015610565576138535750565b60405190915f613c04606084611c47565b600283526040366020850137601a546001600160a01b0316613c2584611dda565b5230613c3084611de7565b526001600160a01b038481165f81815260208190526040902054949093917f000000000000000000000000000000000000000000000000000000000000000016803b156105705760405163b6f9de9560e01b8152965f93889384928391613c9c9142916004850161219b565b03925af191821561056557613cc194604093613cc4575b508152806020522054611df7565b90565b613cd19192505f90611c47565b5f905f613cb3565b905f6003831115613d215750818060011c6001810180911161018e57905b838210613d02575050565b909250613d1883613d138184612105565b6120e5565b60011c90613cf7565b91613d2857565b6001915056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220ddf8a3e71e511047160f7396619705798c7c3b22e4eb2aafe94c71575670a6e964736f6c634300081f003360808060405234602b57335f525f60205260405f20600160ff1982541617905561020d90816100308239f35b5f80fdfe608080604052600436101561001c575b50361561001a575f80fd5b005b5f3560e01c908163125bfb66146100e7575063aa8b38d91461003e575f61000f565b346100e35760403660031901126100e35761005761019f565b335f525f60205260ff60405f20541661006c57005b5f8060209260405161007e85826101b5565b82815284810190601f1986013683375191602435905af1503d1561001a573d9067ffffffffffffffff82116100cf57604051915f91906100c7601f8201601f19168301856101b5565b83523d92013e005b634e487b7160e01b5f52604160045260245ffd5b5f80fd5b346100e35760603660031901126100e35761010061019f565b6024356001600160a01b03811691908290036100e357335f525f60205260ff60405f20541661012b57005b6044835f819360209563a9059cbb60e01b845260048401528335602484015260018060a01b03165af180156101945761016057005b6020813d60201161018c575b81610179602093836101b5565b810103126100e35751801515036100e357005b3d915061016c565b6040513d5f823e3d90fd5b600435906001600160a01b03821682036100e357565b90601f8019910116810190811067ffffffffffffffff8211176100cf5760405256fea26469706673582212200cfaf84532124aed2d2963a36862aba1010984833c63ec5166812cea7ce15bc064736f6c634300081f0033ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef
Deployed Bytecode
0x6080806040526004361015610660575b50361561001a575f80fd5b60065460025f911461065157600260065560ff601554161561064257323314610045575b6001600655005b335f52600860205260018060a01b0360405f20541660135434101580610625575b1561061657335f52600e60205260405f206100823482546120e5565b90555f52600f60205260405f2061009a3482546120e5565b9055335f52600e60205260405f20546014541061060757610bb8340290341591348104610bb81483171561018e576127109004905f33815b60ff83169160198310156101d2576001600160a01b039081165f90815260086020526040902054169283156101d25760058310156101c25761271061011e61ffff6101905b16346120f2565b0491821580156101b0575b6101a257610139836001926120e5565b9361014484876121cd565b019060ff821161018e5760ff92858460019460405193845216917f46099e97571ba69ff5470337dda4b3fb4154c15dbcb600f85524a569a879c2a560203392a45b011691906100d2565b634e487b7160e01b5f52601160045260245ffd5b925060ff9150600190610185565b50866101bc84836120e5565b11610129565b61271061011e61ffff6032610117565b509150506101e1919392611df7565b80610574575b503460021c6060906040516101fc8382611c47565b60028152601f198301366020830137601a546001600160a01b031661022082611dda565b523061022b82611de7565b5260155460101c6001600160a01b03165f818152602081905260409020549091907f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b031692909190833b156105705760405163b6f9de9560e01b8152915f91839182916102a5914291906004850161219b565b038187875af180156105655761054a575b5060155460101c6001600160a01b03165f8181526020819052604090205485939260c492916102f391906102eb909182611df7565b923090612ec6565b604051948593849263f305d71960e01b845230600485015260248401528960448401528960648401523360848401524260a48401525af191821561053f57849261050a575b5050338352602d6020526040832055338252602c60205260ff60408320541615806104f5575b610483575b6017546001600160a01b0316903460058181029291830414171561046f57606461038f910480926121cd565b602f5462278d00810180911161046f57906103bd91421015610462575b6018546001600160a01b03166121cd565b338152600860205260408120546001600160a01b0316806103e1575b50505f61003e565b602e54825260316020526040822060018060a01b0382165f5260205260405f2061040c3482546120e5565b9055602e54825260326020526040822060018060a01b0382165f5260205260405f208054906001820180921161044e57610447935055613107565b5f806103d9565b634e487b7160e01b84526011600452602484fd5b61046a612f7e565b6103ac565b634e487b7160e01b83526011600452602483fd5b338252602c60205260408220805460ff19166001179055602b54600160401b8110156104e1576104be8160016104dc9301602b55602b611bc5565b81546001600160a01b0360039290921b91821b19163390911b179055565b610363565b634e487b7160e01b83526041600452602483fd5b50602a546001600160a01b031633141561035e565b90809250813d8311610538575b6105218183611c47565b8101031261053457604001515f80610338565b8280fd5b503d610517565b6040513d86823e3d90fd5b84929196505f61055991611c47565b60c45f969192506102b6565b6040513d5f823e3d90fd5b5f80fd5b6105976105f061059c610597610597856005610601970495868094818094611df7565b611df7565b916105b18160018060a01b03601e54166121cd565b601f546105c89082906001600160a01b03166121cd565b6020546105df9082906001600160a01b03166121cd565b6021546001600160a01b03166121cd565b6022546001600160a01b03166121cd565b5f6101e7565b633e51853f60e21b5f5260045ffd5b63f350e26d60e01b5f5260045ffd5b50801515806100665750601c546001600160a01b03163314610066565b63e2bab73160e01b5f5260045ffd5b633ee5aeb560e01b5f5260045ffd5b5f3560e01c9081630175015214611b1e5750806306f64e8514611b0157806306fdde0314611a46578063095ea7b3146119c457806309d46746146119aa5780630f60c95214611982578063129376a714611965578063153fd3241461194357806316c2be6b1461190657806316f0115b146118da57806318160ddd146118bd5780631c3fbd54146118a05780631c53c2801461185e57806323b872dd1461177f57806328c7b2ee146117535780632b14ca56146117365780632c7a474e1461167e5780633009a60914611661578063313ce5671461164657806335c4974f1461160257806335c8c09a146115e5578063403f6fc0146115c9578063440b30e7146115575780634716e84b1461153c5780634b94f50e146115225780634bf28fd0146114fa5780634ffb0b14146114c2578063583e05681461147e5780635b4f638d1461142b5780635cdbd9a6146113f35780635f48f393146113d657806362f3765e146113ba57806365b096dc146113825780636f5e02121461133f57806370a08231146112ff578063715018a6146112a457806383c35fab14611288578063841e8f6714611250578063862a4d47146112335780638c689788146112165780638d7e24af146111e05780638da5cb5b146111b857806395d89b41146110b85780639b2cb5d81461109b5780639f0d7eb814611023578063a5737c5b14610feb578063a808acc414610fb3578063a831050914610f90578063a9059cbb14610f5f578063ad5c464814610f37578063ae2e933b14610f0f578063aef2afc914610ee7578063c54e44eb14610ebf578063d122734314610e89578063d5999a5c14610e6c578063d621e81314610e4a578063d6b70d9c14610db5578063d89a369614610d78578063d8f1f8f414610d50578063dd62ed3e14610d00578063e36b0d9a14610cbc578063ef7898d014610c84578063f17fe5af14610c44578063f2fde38b14610bbe578063f8ff0a91146109e1578063fd36e3c61461098a5763fe33b3021461094d575f61000f565b34610570576020366003190112610570576001600160a01b0361096e611b57565b165f526010602052602060ff60405f2054166040519015158152f35b34610570576040366003190112610570576109a3611b57565b6109ab611b6d565b9060018060a01b03165f52600960205260405f209060018060a01b03165f52602052602060ff60405f2054166040519015158152f35b346105705760403660031901126105705760043567ffffffffffffffff811161057057610a12903690600401611bda565b60243567ffffffffffffffff811161057057610a32903690600401611bda565b919092610a3d612174565b828203610b79575f5b828110610a4f57005b6001906001600160a01b03610a6d610a68838787611db6565b611dc6565b165f52600960205260405f20610a87610a6883888a611db6565b838060a01b03165f5260205260405f208260ff19825416179055610aaf610a68828686611db6565b828060a01b03610ac3610a6884898b611db6565b165f90815260086020526040902080546001600160a01b03191660a085901b859003928316179055610af9610a68838787611db6565b165f52600a602052610b2360405f20838060a01b03610b1c610a68858a8c611db6565b1690612dc7565b50610b32610a68828789611db6565b828060a01b03610b46610a68848888611db6565b1690838060a01b03167f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d485f80a301610a46565b60405162461bcd60e51b815260206004820152601860248201527f6d6967726174696f6e3a20696e76616c696420696e70757400000000000000006044820152606490fd5b3461057057602036600319011261057057610bd7611b57565b610bdf612174565b6001600160a01b03168015610c3157600580546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b34610570576020366003190112610570576001600160a01b03610c65611b57565b165f526008602052602060018060a01b0360405f205416604051908152f35b34610570576020366003190112610570576001600160a01b03610ca5611b57565b165f526012602052602060405f2054604051908152f35b3461057057604036600319011261057057610cd5611b6d565b6004355f52603160205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b3461057057604036600319011261057057610d19611b57565b610d21611b6d565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b34610570575f366003190112610570576017546040516001600160a01b039091168152602090f35b34610570576020366003190112610570576001600160a01b03610d99611b57565b165f52602c602052602060ff60405f2054166040519015158152f35b34610570575f36600319011261057057604051806020602b54918281520190602b5f527f11c44e4875b74d31ff9fd779bf2566af7bd15b87fc985d01f5094b89e3669e4f905f5b818110610e2b57610e2785610e1381870382611c47565b604051918291602083526020830190611c0b565b0390f35b82546001600160a01b0316845260209093019260019283019201610dfc565b34610570575f36600319011261057057602060ff602854166040519015158152f35b34610570575f36600319011261057057602060405162278d008152f35b34610570576040366003190112610570576020610eb5610ea7611b57565b610eaf611b6d565b90611ffc565b6040519015158152f35b34610570575f36600319011261057057601b546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576018546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576016546040516001600160a01b039091168152602090f35b34610570575f36600319011261057057601a546040516001600160a01b039091168152602090f35b3461057057604036600319011261057057610f85610f7b611b57565b6024359033612123565b602060405160018152f35b34610570575f36600319011261057057602060ff60285460081c16604051908152f35b34610570576020366003190112610570576001600160a01b03610fd4611b57565b165f52600f602052602060405f2054604051908152f35b34610570576020366003190112610570576001600160a01b0361100c611b57565b165f52600c602052602060405f2054604051908152f35b3461057057602036600319011261057057600435602b5481101561057057602b5481101561108757602b5f527f11c44e4875b74d31ff9fd779bf2566af7bd15b87fc985d01f5094b89e3669e4f01546040516001600160a01b039091168152602090f35b634e487b7160e01b5f52603260045260245ffd5b34610570575f366003190112610570576020601354604051908152f35b34610570575f366003190112610570576040515f6004548060011c906001811680156111ae575b60208310811461119a578285529081156111765750600114611118575b610e278361110c81850382611c47565b60405191829182611b83565b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061115c5750909150810160200161110c6110fc565b919260018160209254838588010152019101909291611144565b60ff191660208086019190915291151560051b8401909101915061110c90506110fc565b634e487b7160e01b5f52602260045260245ffd5b91607f16916110df565b34610570575f366003190112610570576005546040516001600160a01b039091168152602090f35b3461057057602036600319011261057057600435600981101561057057603301546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020602f54604051908152f35b34610570575f366003190112610570576020602e54604051908152f35b34610570576020366003190112610570576001600160a01b03611271611b57565b165f52602d602052602060405f2054604051908152f35b34610570575f36600319011261057057602060405161a8c08152f35b34610570575f366003190112610570576112bc612174565b600580546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461057057602036600319011261057057602061133761131d611b57565b6001600160a01b03165f9081526020819052604090205490565b604051908152f35b3461057057602036600319011261057057611358611b57565b611360612174565b601d80546001600160a01b0319166001600160a01b0392909216919091179055005b34610570576020366003190112610570576001600160a01b036113a3611b57565b165f52600e602052602060405f2054604051908152f35b34610570575f3660031901126105705760206040516127108152f35b34610570575f366003190112610570576020601454604051908152f35b34610570576020366003190112610570576001600160a01b03611414611b57565b165f52600d602052602060405f2054604051908152f35b3461057057604036600319011261057057611444611b57565b602435908115158092036105705761145a612174565b60018060a01b03165f52601160205260405f209060ff801983541691161790555f80f35b34610570575f366003190112610570576040517f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b03168152602090f35b3461057057602036600319011261057057600435801515809103610570576114e8612174565b60ff8019601554169116176015555f80f35b34610570575f366003190112610570576007546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020611337611e04565b34610570575f36600319011261057057602060405160198152f35b34610570576020366003190112610570576001600160a01b03611578611b57565b165f52600a60205260405f206040519081602082549182815201915f5260205f20905f5b8181106115b357610e2785610e1381870382611c47565b825484526020909301926001928301920161159c565b34610570575f366003190112610570576020604051610bb88152f35b34610570575f366003190112610570576020604654604051908152f35b346105705760403660031901126105705761161b611b6d565b6004355f52603260205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b34610570575f36600319011261057057602060405160128152f35b34610570575f366003190112610570576020602954604051908152f35b346105705760203660031901126105705760043567ffffffffffffffff8111610570576116af903690600401611bda565b906116b8612174565b5f5b8281106116c357005b6116d1610a68828585611db6565b90601954600160401b811015611722576001926116f8828561171c94016019556019611bc5565b81546001600160a01b0393841660039290921b91821b9390911b1916919091179055565b016116ba565b634e487b7160e01b5f52604160045260245ffd5b34610570575f366003190112610570576020602754604051908152f35b3461057057602036600319011261057057600435600981101561057057602090603c0154604051908152f35b3461057057606036600319011261057057611798611b57565b6117a0611b6d565b6001600160a01b0382165f818152600160209081526040808320338452909152902054909260443592915f1981106117de575b50610f859350612123565b83811061184357841561183057331561181d57610f85945f52600160205260405f2060018060a01b0333165f526020528360405f2091039055846117d3565b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b8390637dc7a0d960e11b5f523360045260245260445260645ffd5b346105705760203660031901126105705760043560195481101561057057611887602091611bad565b905460405160039290921b1c6001600160a01b03168152f35b34610570575f366003190112610570576020604754604051908152f35b34610570575f366003190112610570576020600254604051908152f35b34610570575f3660031901126105705760155460405160109190911c6001600160a01b03168152602090f35b34610570576020366003190112610570576001600160a01b03611927611b57565b165f526011602052602060ff60405f2054166040519015158152f35b34610570575f36600319011261057057602060ff601554166040519015158152f35b34610570575f366003190112610570576020604854604051908152f35b34610570575f36600319011261057057601c546040516001600160a01b039091168152602090f35b34610570575f366003190112610570576020611337611cb3565b34610570576040366003190112610570576119dd611b57565b602435903315611830576001600160a01b031690811561181d57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b34610570575f366003190112610570576040515f6003548060011c90600181168015611af7575b60208310811461119a578285529081156111765750600114611a9957610e278361110c81850382611c47565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210611add5750909150810160200161110c6110fc565b919260018160209254838588010152019101909291611ac5565b91607f1691611a6d565b34610570575f366003190112610570576020603054604051908152f35b34610570576020366003190112610570576020906001600160a01b03611b42611b57565b165f52600b825260ff60405f20541615158152f35b600435906001600160a01b038216820361057057565b602435906001600160a01b038216820361057057565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b6019548110156110875760195f5260205f2001905f90565b8054821015611087575f5260205f2001905f90565b9181601f840112156105705782359167ffffffffffffffff8311610570576020808501948460051b01011161057057565b90602080835192838152019201905f5b818110611c285750505090565b82516001600160a01b0316845260209384019390920191600101611c1b565b90601f8019910116810190811067ffffffffffffffff82111761172257604052565b51906001600160701b038216820361057057565b9081606091031261057057611c9181611c69565b916040611ca060208401611c69565b92015163ffffffff811681036105705790565b600754604051630240bc6b60e21b81526001600160a01b0390911690606081600481855afa8015610565576004925f925f92611d7d575b5060209060405194858092630dfe168160e01b82525afa8015610565575f90611d32575b6001600160701b0393506001600160a01b03163003611d2c57501690565b90501690565b50916020813d602011611d75575b81611d4d60209383611c47565b810103126105705751916001600160a01b0383168303610570576001600160701b0392611d0e565b3d9150611d40565b60209350611da491925060603d606011611daf575b611d9c8183611c47565b810190611c7d565b509290929190611cea565b503d611d92565b91908110156110875760051b0190565b356001600160a01b03811681036105705790565b8051156110875760200190565b8051600110156110875760400190565b9190820391821161018e57565b6007546040516318160ddd60e01b815290602090829060049082906001600160a01b03165afa908115610565575f91611fca575b5015611fc657604051611e4c608082611c47565b60038152606036602083013730611e6282611dda565b52601a546001600160a01b0316611e7882611de7565b5260018060a01b03601b541681516002101561108757815f916060611ec99401526040518093819263d06ca61f60e01b8352670de0b6b3a76400006004840152604060248401526044830190611c0b565b03817f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b03165afa908115610565575f91611f29575b5080515f1981019190821161018e5780518210156110875760209160051b01015190565b90503d805f833e611f3a8183611c47565b8101906020818303126105705780519067ffffffffffffffff821161057057019080601f830112156105705781519167ffffffffffffffff8311611722578260051b906020820193611f8f6040519586611c47565b845260208085019282010192831161057057602001905b828210611fb6575050505f611f05565b8151815260209182019101611fa6565b5f90565b90506020813d602011611ff4575b81611fe560209383611c47565b8101031261057057515f611e38565b3d9150611fd8565b6001600160a01b039081165f818152600860205260409020549092911615806120d0575b6120b857815f52600960205260405f2060018060a01b0382165f5260205260ff60405f20541680156120be575b6120b857905f915b6001600160a01b0316801515806120ab575b156120a35781811461209c575f52600860205260ff60018060a01b0360405f205416921660ff811461018e5760010191612055565b5050505f90565b505050600190565b50601960ff841610612067565b50505f90565b506001600160a01b038116821461204d565b50601c546001600160a01b0316821415612020565b9190820180921161018e57565b8181029291811591840414171561018e57565b811561210f570490565b634e487b7160e01b5f52601260045260245ffd5b91906001600160a01b03831615612161576001600160a01b0381161561214e5761214c92612270565b565b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6005546001600160a01b0316330361218857565b63118cdaa760e01b5f523360045260245ffd5b6121b9606092959493955f8352608060208401526080830190611c0b565b6001600160a01b0390951660408201520152565b60205f806040516121de8482611c47565b81815283810190601f198501368337519086865af13d1561226b573d67ffffffffffffffff81116117225760405190612220601f8201601f1916850183611c47565b81525f833d92013e5b1561223357505050565b6040519283526001600160a01b03909116917f855286be9a0a403f889a1c67c3b0d208864d8f1c7a0867e228289d87c61d6e399190a2565b612229565b9091602f54925f9362278d00810180911161018e57421015612dba575b670de0b6b3a7640000821480612d8b575b80612d7b575b612d47575b6706f05b59d3b20000821480612d19575b80612cf8575b612c8a575b6001600160a01b0383165f8181526011602052604090205490939060ff168015612c69575b612c5b576007546001600160a01b0316848103612a7d5750600754604051630240bc6b60e21b81526001600160a01b03909116908690606081600481865afa908115612a7257906001600160701b03918991612a51575b50166024602060018060a01b03601a5416604051928380926370a0823160e01b82528860048301525afa908115612a14578991612a1f575b50808211612994575b5050612985575060ff60285416156129555761244b9332865260126020524260408720555b6123af611cb3565b9060285460ff811615612922575b506123cf826123ca611e04565b6120f2565b69d3c21bcecceda10000008110158061290d575b806128fa575b156128bd5750671bc16d674ec800006014555b6015549060ff8260081c161590816128a5575b8161289a575b81612882575b8161284e575b50612829575b5060285460ff8160081c16600281036127ab575b5050506124466138d0565b612ec6565b6030548015908115612795575b506124605750565b479060ff60285460081c16801580612784575b156125ac575060155490916124939160101c6001600160a01b0316613bf3565b9060288202908282046028148315171561259857506124cd61259292606460069304906105978260018060a01b0360155460101c16612e22565b601554601e5492909104916124f39183916001600160a01b039081169160101c16612ec6565b601554601f546125149183916001600160a01b039081169160101c16612ec6565b6015546020546125359183916001600160a01b039081169160101c16612ec6565b6015546021546125569183916001600160a01b039081169160101c16612ec6565b6015546022546125779183916001600160a01b039081169160101c16612ec6565b6015546023546001600160a01b039081169160101c16612ec6565b42603055565b634e487b7160e01b81526011600452602490fd5b6001811480612773575b156126f0575060155482159060101c6001600160a01b03166014848102908582041483171561044e576125f26126549260646003930490613bf3565b60155460245492909104916126189183916001600160a01b039081169160101c16612ec6565b6015546025546126399183916001600160a01b039081169160101c16612ec6565b6015546026546001600160a01b039081169160101c16612ec6565b6050830292830460501417156125985750600660646125929204046126838160018060a01b03601e54166121cd565b601f5461269a9082906001600160a01b03166121cd565b6020546126b19082906001600160a01b03166121cd565b6021546126c89082906001600160a01b03166121cd565b6022546126df9082906001600160a01b03166121cd565b6023546001600160a01b03166121cd565b600291501480612762575b6127025750565b6005612592910461271d8160018060a01b03601e54166121cd565b601f546127349082906001600160a01b03166121cd565b60205461274b9082906001600160a01b03166121cd565b6021546105f09082906001600160a01b03166121cd565b5066038d7ea4c680008110156126fb565b5066038d7ea4c680008310156125b6565b5066038d7ea4c68000831015612473565b42610e0f1981019250821161046f57105f612458565b1580612814575b612802575b5060285490600160ff8360081c161490816127ec575b506127da575b808061243b565b61ff001916610200176028555f6127d3565b6a01bcb13a657b2638800000915011155f6127cd565b61ff001916610100176028555f6127b7565b506a115eec47f6cf7e350000008211156127b2565b61ff0019166101001760155561283d61373a565b61ff0019601554166015555f612427565b7f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b0316141590505f612421565b8089526010602052604089205460ff1615915061241b565b308114159150612415565b8089526011602052604089205460ff1615915061240f565b6a027b46536c66c8e30000001115806128e7575b156123fc576729a2241af62c00006014556123fc565b506729a2241af62c0000601454106128d1565b50671bc16d674ec80000601454106123e9565b506a027b46536c66c8e30000008111156123e3565b6a01bcb13a657b26388000008311158061294c575b156123bd5760ff19166001176028555f6123bd565b50821515612937565b60405162461bcd60e51b81526020600482015260086024820152673737ba1037b832b760c11b6044820152606490fd5b929350505061214c9250612e22565b6040516318160ddd60e01b815291925090602081600481875afa908115612a145789916129e0575b506129d4906129ce836129d995611df7565b906120f2565b612105565b5f80612382565b90506020813d602011612a0c575b816129fb60209383611c47565b8101031261057057516129d96129bc565b3d91506129ee565b6040513d8b823e3d90fd5b90506020813d602011612a49575b81612a3a60209383611c47565b8101031261057057515f612379565b3d9150612a2d565b612a6a915060603d606011611daf57611d9c8183611c47565b50505f612341565b6040513d8a823e3d90fd5b9394936001600160a01b0383168114612a9c575b5061244b93946123a7565b6045939193549060ff821680612bb2575b505050612ab98161321e565b612ba557845f52601260205260405f2054600a810180911161018e574210612b7b57612b0590612710612aee602754836120f2565b04906105978260018060a01b036016541687612ec6565b91612b1a8360018060a01b0360075416612e22565b6007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af1801561056557612b65575b5061244b9394612b5e6134ff565b9493612a91565b61244b94505f612b7491611c47565b5f93612b50565b60405162461bcd60e51b815260206004820152600260248201526118d960f21b6044820152606490fd5b92509061214c9350612ec6565b606060049260405193848092630240bc6b60e21b82525afa918215610565575f905f93612c31575b506001600160701b0316159182612c1f575b5081612c17575b50612bff578080612aad565b60ff19166045554260465561214c9450925090612ec6565b90505f612bf3565b6001600160701b03161591505f612bec565b6001600160701b039350612c54915060603d606011611daf57611d9c8183611c47565b5092612bda565b9091925061214c9350612ec6565b506001600160a01b0382165f9081526011602052604090205460ff166122ea565b6001600160a01b038381165f81815260086020908152604080832080546001600160a01b0319169587169586179055848352600a9091529020612cce908290612dc7565b507f8d63f2e3d39eb6cf9c80d49bc203133f6f215ce2a1a3d27a68f0167f6c045d485f80a36122c5565b506001600160a01b038381165f9081526008602052604090205416156122c0565b506001600160a01b038181165f9081526009602090815260408083209387168352929052205460ff166122ba565b6001600160a01b038381165f908152600960209081526040808320938516835292905220805460ff191660011790556122a9565b50612d868184611ffc565b6122a4565b506001600160a01b038181165f9081526009602090815260408083209387168352929052205460ff161561229e565b612dc2612f7e565b61228d565b6001810190825f528160205260405f2054155f1461209c578054600160401b81101561172257806001612dfd9201835582611bc5565b81549060031b9085821b915f19901b191617905554915f5260205260405f2055600190565b9091906001600160a01b031680612e71575f516020613d2f5f395f51905f52602084612e5461dead95966002546120e5565b6002555b845f525f825260405f20818154019055604051908152a3565b805f525f60205260405f2054838110612eac5760208461dead94955f516020613d2f5f395f51905f5293855f525f84520360405f2055612e58565b915063391434e360e21b5f5260045260245260445260645ffd5b6001600160a01b03169081612f2c5760205f516020613d2f5f395f51905f5291612ef2856002546120e5565b6002555b6001600160a01b03169384612f175780600254036002555b604051908152a3565b845f525f825260405f20818154019055612f0e565b815f525f60205260405f2054838110612f63575f516020613d2f5f395f51905f529184602092855f525f84520360405f2055612ef6565b91905063391434e360e21b5f5260045260245260445260645ffd5b6018546001600160a01b03163180156130fe576019810281810460190361018e576103e8600391040490600f8102818104600f0361018e576103e8600391040490600a8102908104600a0361018e576103e860039104049160018060a01b036033541690816130c2575b50506036546001600160a01b03169081613086575b50506039546001600160a01b0316908161304a575b505060335b603c811061303f5750603c5b60458110613034575061214c6139fb565b5f8155600101613023565b5f8155600101613017565b6130578161307f93613a21565b603a5461306e9082906001600160a01b0316613a21565b603b546001600160a01b0316613a21565b5f80613012565b613093816130bb93613a21565b6037546130aa9082906001600160a01b0316613a21565b6038546001600160a01b0316613a21565b5f80612ffd565b6130cf816130f793613a21565b6034546130e69082906001600160a01b0316613a21565b6035546001600160a01b0316613a21565b5f80612fe8565b5061214c6139fb565b602e545f8181526031602090815260408083206001600160a01b03861680855290835281842054948452603283528184209084529091529020549091906729a2241af62c0000831180159190613213575b5061320f575f5b600981101561320a5780603c018054841161317d575060010161315f565b6008939192935b8381116131af57505560330180546001600160a01b0319166001600160a01b03909216919091179055565b5f19810181811161018e576009111561108757603b810154600982101561108757603c82015560328101546033820180546001600160a01b0319166001600160a01b0392909216919091179055801561018e575f1901613184565b505050565b5050565b600a9150105f613158565b5f9190337f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b0316146132545750565b600754604051630240bc6b60e21b8152906001600160a01b0316606082600481845afa8015610565576024925f905f926134d0575b506001600160701b03809116911691602060018060a01b03601a5416604051958680926370a0823160e01b82528560048301525afa938415610565575f9461349c575b508184116132dc575b5050505050565b909192939495506040516318160ddd60e01b8152602081600481855afa908115610565575f9161346a575b50801561345f575f9160046020613326613321888a6120f2565b613cd9565b9260405192838092637464fc3d60e01b82525afa8015610565575f9061342b575b6133519150613cd9565b908181116133a2575b5050826129d4613386966123ca6133786129d49796613380966120e5565b958692611df7565b946120f2565b8082101561339b57505b905f808080806132d5565b9050613390565b91909392506133ba6133b48584611df7565b826120f2565b938460031b948086046008149015171561018e5760118302928084046011149015171561018e578060031b908082046008149015171561018e57613386966123ca613378869461341d6129d4996134176129d4976133809a6120e5565b90612105565b97985095505050965061335a565b506020813d602011613457575b8161344560209383611c47565b81010312610570576133519051613347565b3d9150613438565b505050505050600190565b90506020813d602011613494575b8161348560209383611c47565b8101031261057057515f613307565b3d9150613478565b9093506020813d6020116134c8575b816134b860209383611c47565b810103126105705751925f6132cc565b3d91506134ab565b6001600160701b0392508291506134f59060603d606011611daf57611d9c8183611c47565b5092909150613289565b6016546001600160a01b03165f81815260208190526040812054909161352791903090612ec6565b305f525f60205260405f2054670de0b6b3a7640000811061320f576007546135599082906001600160a01b0316612e22565b6007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af1801561056557613725575b506040519061359f606083611c47565b600282526040366020840137306135b583611dda565b52601a546001600160a01b03166135cb83611de7565b527f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b031690813b1561372157918391613635938360405180968195829463791ac94760e01b8452600484015283602484015260a0604484015260a4830190611c0b565b30606483015242608483015203925af18015613716579082916136fe575b505047906005820282159083810460051482171561046f576017546136849160031c906001600160a01b03166121cd565b8280046001148117156136ea576023546136ac90600385901c906001600160a01b03166121cd565b828060011b0460021417156125985750601e5461214c91600560029190911c6001600160fd1b0316049061271d9082906001600160a01b03166121cd565b634e487b7160e01b82526011600452602482fd5b8161370891611c47565b61371357805f613653565b80fd5b6040513d84823e3d90fd5b8380fd5b6137329192505f90611c47565b5f905f61358f565b6046546048549061374b82826120e5565b42111561320f578061376e613767846129d46137749542611df7565b93846120f2565b906120e5565b6046556007546040516370a0823160e01b81526001600160a01b039091166004820181905290602081602481305afa908115610565575f91613890575b50801561320a576019810281810460190361018e57602061271061380c8684836137fc837ffdbac777b487fe0e2b9d6ab1eb6224045b81f987c09afb83998c0e9c4d790dd8986120f2565b04978880613880575b50506120f2565b04948561385d575b604051908152a46007546001600160a01b0316803b15610570575f809160046040518094819363fff6cae960e01b83525af18015610565576138535750565b5f61214c91611c47565b600754601d5461387b9188916001600160a01b039081169116612ec6565b613814565b61388991612e22565b5f88613805565b90506020813d6020116138ba575b816138ab60209383611c47565b8101031261057057515f6137b1565b3d915061389e565b5f19811461018e5760010190565b60018060a01b036017541631601954811580156139f3575b61320f5791906029545f936138fe815f94612105565b94851515925b60328510806139ea575b156139de5761391c906138c2565b90828210156139d6575b8361393083611bad565b905460039190911b1c6001600160a01b031690613962575b5061395561395b916138c2565b946138c2565b9390613904565b6017549091906001600160a01b0316803b156105705760405163aa8b38d960e01b81526001600160a01b03939093166004840152602483018990525f908390604490829084905af19081156105655761395b92613955926139c6575b509150613948565b5f6139d091611c47565b5f6139be565b5f9150613926565b94955050505050602955565b5082821061390e565b5080156138e8565b602e546001810180911161018e57602e55602f5462278d00810180911161018e57602f55565b905f91811561320a576001600160a01b038116613b9f57506018546024546003909204916001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af18015613b7f57908391613b8a575b50506018546025546001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481018390529083908290604490829084905af18015613b7f57908391613b66575b50506018546026546001600160a01b039182169116813b156137215760405163aa8b38d960e01b81526001600160a01b03919091166004820152602481019290925282908290604490829084905af1801561371657613b54575050565b613b5f828092611c47565b6137135750565b81613b7091611c47565b613b7b57815f613af7565b5080fd5b6040513d85823e3d90fd5b81613b9491611c47565b613b7b57815f613a9a565b6018546001600160a01b0316925090823b156105705760405163aa8b38d960e01b81526001600160a01b039290921660048301526024820152905f908290604490829084905af18015610565576138535750565b60405190915f613c04606084611c47565b600283526040366020850137601a546001600160a01b0316613c2584611dda565b5230613c3084611de7565b526001600160a01b038481165f81815260208190526040902054949093917f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad2416803b156105705760405163b6f9de9560e01b8152965f93889384928391613c9c9142916004850161219b565b03925af191821561056557613cc194604093613cc4575b508152806020522054611df7565b90565b613cd19192505f90611c47565b5f905f613cb3565b905f6003831115613d215750818060011c6001810180911161018e57905b838210613d02575050565b909250613d1883613d138184612105565b6120e5565b60011c90613cf7565b91613d2857565b6001915056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220ddf8a3e71e511047160f7396619705798c7c3b22e4eb2aafe94c71575670a6e964736f6c634300081f0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.