Contract 0x6CFE86f0eDB0a21f02AD2aF9C71D6ab53a58DA8c

 
Txn Hash Method
Block
From
To
Value [Txn Fee]
0x1abf8884a06b08fb2d1a27d46ca8061a354533b32a02f04c2b971d95299257e70x60a0604033047092021-11-24 18:27:473 days 8 hrs ago0xc7f8d87734ab2cbf70030ac8aa82abfe3e8126cb IN  Contract Creation0 ETH0.071183143894 ETH
[ Download CSV Export 
Parent Txn Hash Block From To Value
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ProxyManager

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 26 : ProxyManager.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

import {OwnableInternal} from "@solidstate/contracts/access/OwnableInternal.sol";

import {IProxyManager} from "./IProxyManager.sol";
import {ProxyManagerStorage} from "./ProxyManagerStorage.sol";
import {PoolProxy} from "../pool/PoolProxy.sol";
import {OptionMath} from "../libraries/OptionMath.sol";
import {IPoolView} from "../pool/IPoolView.sol";
import {IPremiaMining} from "../mining/IPremiaMining.sol";

/**
 * @title Options pair management contract
 * @dev deployed standalone and connected to Premia as diamond facet
 */
contract ProxyManager is IProxyManager, OwnableInternal {
    using ProxyManagerStorage for ProxyManagerStorage.Layout;

    address private immutable DIAMOND;

    // 64x64 fixed point representation of 1e
    int128 private constant INITIAL_C_LEVEL_64x64 = 0x2b7e151628aed2a6b;
    // 64x64 fixed point representation of 0.5
    int128 private constant INITIAL_STEEPNESS_64x64 = 0x8000000000000000;

    event DeployPool(
        address indexed base,
        address indexed underlying,
        int128 indexed initialCLevel64x64,
        address baseOracle,
        address underlyingOracle,
        address pool
    );

    constructor(address diamond) {
        DIAMOND = diamond;
    }

    /**
     * @notice get address of Pool contract for given assets
     * @param base base token
     * @param underlying underlying token
     * @return pool address (zero address if pool does not exist)
     */
    function getPool(address base, address underlying)
        external
        view
        returns (address)
    {
        return ProxyManagerStorage.layout().getPool(base, underlying);
    }

    /**
     * @notice get address list of all Pool contracts
     * @return list of pool addresses
     */
    function getPoolList() external view override returns (address[] memory) {
        return ProxyManagerStorage.layout().poolList;
    }

    /**
     * @notice deploy PoolProxy contracts for the pair
     * @param base base token
     * @param underlying underlying token
     * @param baseOracle Chainlink price aggregator for base
     * @param underlyingOracle Chainlink price aggregator for underlying
     * @param baseMinimum64x64 64x64 fixed point representation of minimum base currency amount
     * @param underlyingMinimum64x64 64x64 fixed point representation of minimum underlying currency amount
     * @param basePoolCap64x64 64x64 fixed point representation of pool-wide base currency deposit cap
     * @param underlyingPoolCap64x64 64x64 fixed point representation of pool-wide underlying currency deposit cap
     * @param miningAllocPoints alloc points attributed per pool (call and put) for liquidity mining
     * @return deployment address
     */
    function deployPool(
        address base,
        address underlying,
        address baseOracle,
        address underlyingOracle,
        int128 baseMinimum64x64,
        int128 underlyingMinimum64x64,
        int128 basePoolCap64x64,
        int128 underlyingPoolCap64x64,
        uint256 miningAllocPoints
    ) external onlyOwner returns (address) {
        ProxyManagerStorage.Layout storage l = ProxyManagerStorage.layout();

        require(
            l.getPool(base, underlying) == address(0),
            "ProxyManager: Pool already exists"
        );

        address pool = address(
            new PoolProxy(
                DIAMOND,
                base,
                underlying,
                baseOracle,
                underlyingOracle,
                baseMinimum64x64,
                underlyingMinimum64x64,
                basePoolCap64x64,
                underlyingPoolCap64x64,
                INITIAL_C_LEVEL_64x64,
                INITIAL_STEEPNESS_64x64
            )
        );
        l.setPool(base, underlying, underlyingOracle);

        l.poolList.push(pool);

        IPremiaMining(IPoolView(DIAMOND).getPremiaMining()).addPool(
            pool,
            miningAllocPoints
        );

        emit DeployPool(
            base,
            underlying,
            INITIAL_C_LEVEL_64x64,
            baseOracle,
            underlyingOracle,
            pool
        );

        return pool;
    }
}

File 2 of 26 : OwnableInternal.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { OwnableStorage } from './OwnableStorage.sol';

abstract contract OwnableInternal {
    using OwnableStorage for OwnableStorage.Layout;

    modifier onlyOwner() {
        require(
            msg.sender == OwnableStorage.layout().owner,
            'Ownable: sender must be owner'
        );
        _;
    }
}

File 3 of 26 : IProxyManager.sol
// SPDX-License-Identifier: LGPL-3.0-or-later

pragma solidity ^0.8.0;

interface IProxyManager {
    function getPoolList() external view returns (address[] memory);
}

File 4 of 26 : ProxyManagerStorage.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

library ProxyManagerStorage {
    bytes32 internal constant STORAGE_SLOT =
        keccak256("premia.contracts.storage.ProxyManager");

    struct Layout {
        // base => underlying => Pool
        mapping(address => mapping(address => address)) pools;
        address[] poolList;
    }

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }

    function getPool(
        Layout storage l,
        address base,
        address underlying
    ) internal view returns (address) {
        return l.pools[base][underlying];
    }

    function setPool(
        Layout storage l,
        address base,
        address underlying,
        address pool
    ) internal {
        l.pools[base][underlying] = pool;
    }
}

File 5 of 26 : PoolProxy.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

import {OwnableStorage} from "@solidstate/contracts/access/OwnableStorage.sol";
import {ERC165Storage} from "@solidstate/contracts/introspection/ERC165Storage.sol";
import {Proxy} from "@solidstate/contracts/proxy/Proxy.sol";
import {IDiamondLoupe} from "@solidstate/contracts/proxy/diamond/IDiamondLoupe.sol";
import {IERC20Metadata} from "@solidstate/contracts/token/ERC20/metadata/IERC20Metadata.sol";
import {IERC1155} from "@solidstate/contracts/token/ERC1155/IERC1155.sol";
import {IERC165} from "@solidstate/contracts/introspection/IERC165.sol";

import {IProxyManager} from "../core/IProxyManager.sol";
import {PoolStorage} from "./PoolStorage.sol";
import {ABDKMath64x64Token} from "../libraries/ABDKMath64x64Token.sol";

/**
 * @title Upgradeable proxy with centrally controlled Pool implementation
 */
contract PoolProxy is Proxy {
    using PoolStorage for PoolStorage.Layout;
    using ERC165Storage for ERC165Storage.Layout;

    address private immutable DIAMOND;

    constructor(
        address diamond,
        address base,
        address underlying,
        address baseOracle,
        address underlyingOracle,
        int128 baseMinimum64x64,
        int128 underlyingMinimum64x64,
        int128 basePoolCap64x64,
        int128 underlyingPoolCap64x64,
        int128 initialCLevel64x64,
        int128 initialSteepness64x64
    ) {
        DIAMOND = diamond;
        OwnableStorage.layout().owner = msg.sender;

        {
            PoolStorage.Layout storage l = PoolStorage.layout();

            l.base = base;
            l.underlying = underlying;

            l.setOracles(baseOracle, underlyingOracle);

            uint8 baseDecimals = IERC20Metadata(base).decimals();
            uint8 underlyingDecimals = IERC20Metadata(underlying).decimals();

            l.baseDecimals = baseDecimals;
            l.underlyingDecimals = underlyingDecimals;

            l.baseMinimum = ABDKMath64x64Token.toDecimals(
                baseMinimum64x64,
                baseDecimals
            );

            l.underlyingMinimum = ABDKMath64x64Token.toDecimals(
                underlyingMinimum64x64,
                underlyingDecimals
            );

            l.basePoolCap = ABDKMath64x64Token.toDecimals(
                basePoolCap64x64,
                baseDecimals
            );

            l.underlyingPoolCap = ABDKMath64x64Token.toDecimals(
                underlyingPoolCap64x64,
                underlyingDecimals
            );

            l.steepnessBase64x64 = initialSteepness64x64;
            l.steepnessUnderlying64x64 = initialSteepness64x64;
            l.cLevelBase64x64 = initialCLevel64x64;
            l.cLevelUnderlying64x64 = initialCLevel64x64;

            int128 newPrice64x64 = l.fetchPriceUpdate();
            l.setPriceUpdate(block.timestamp, newPrice64x64);

            l.updatedAt = block.timestamp;
            l.cLevelBaseUpdatedAt = block.timestamp;
            l.cLevelUnderlyingUpdatedAt = block.timestamp;
        }

        {
            ERC165Storage.Layout storage l = ERC165Storage.layout();
            l.setSupportedInterface(type(IERC165).interfaceId, true);
            l.setSupportedInterface(type(IERC1155).interfaceId, true);
        }
    }

    function _getImplementation() internal view override returns (address) {
        return IDiamondLoupe(DIAMOND).facetAddress(msg.sig);
    }
}

File 6 of 26 : OptionMath.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

import {ABDKMath64x64} from "abdk-libraries-solidity/ABDKMath64x64.sol";

library OptionMath {
    using ABDKMath64x64 for int128;

    struct QuoteArgs {
        int128 varianceAnnualized64x64; // 64x64 fixed point representation of annualized variance
        int128 strike64x64; // 64x64 fixed point representation of strike price
        int128 spot64x64; // 64x64 fixed point representation of spot price
        int128 timeToMaturity64x64; // 64x64 fixed point representation of duration of option contract (in years)
        int128 oldCLevel64x64; // 64x64 fixed point representation of C-Level of Pool before purchase
        int128 oldPoolState; // 64x64 fixed point representation of current state of the pool
        int128 newPoolState; // 64x64 fixed point representation of state of the pool after trade
        int128 steepness64x64; // 64x64 fixed point representation of Pool state delta multiplier
        int128 minAPY64x64; // 64x64 fixed point representation of minimum APY for capital locked up to underwrite options
        bool isCall; // whether to price "call" or "put" option
    }

    struct CalculateCLevelDecayArgs {
        int128 timeIntervalsElapsed64x64; // 64x64 fixed point representation of quantity of discrete arbitrary intervals elapsed since last update
        int128 oldCLevel64x64; // 64x64 fixed point representation of C-Level prior to accounting for decay
        int128 utilization64x64; // 64x64 fixed point representation of pool capital utilization rate
        int128 utilizationLowerBound64x64;
        int128 utilizationUpperBound64x64;
        int128 cLevelLowerBound64x64;
        int128 cLevelUpperBound64x64;
        int128 cConvergenceULowerBound64x64;
        int128 cConvergenceUUpperBound64x64;
    }

    // 64x64 fixed point integer constants
    int128 internal constant ONE_64x64 = 0x10000000000000000;
    int128 internal constant THREE_64x64 = 0x30000000000000000;

    // 64x64 fixed point constants used in Choudhury’s approximation of the Black-Scholes CDF
    int128 private constant CDF_CONST_0 = 0x09109f285df452394; // 2260 / 3989
    int128 private constant CDF_CONST_1 = 0x19abac0ea1da65036; // 6400 / 3989
    int128 private constant CDF_CONST_2 = 0x0d3c84b78b749bd6b; // 3300 / 3989

    /**
     * @notice recalculate C-Level based on change in liquidity
     * @param initialCLevel64x64 64x64 fixed point representation of C-Level of Pool before update
     * @param oldPoolState64x64 64x64 fixed point representation of liquidity in pool before update
     * @param newPoolState64x64 64x64 fixed point representation of liquidity in pool after update
     * @param steepness64x64 64x64 fixed point representation of steepness coefficient
     * @return 64x64 fixed point representation of new C-Level
     */
    function calculateCLevel(
        int128 initialCLevel64x64,
        int128 oldPoolState64x64,
        int128 newPoolState64x64,
        int128 steepness64x64
    ) external pure returns (int128) {
        return
            newPoolState64x64
                .sub(oldPoolState64x64)
                .div(
                    oldPoolState64x64 > newPoolState64x64
                        ? oldPoolState64x64
                        : newPoolState64x64
                )
                .mul(steepness64x64)
                .neg()
                .exp()
                .mul(initialCLevel64x64);
    }

    /**
     * @notice calculate the price of an option using the Premia Finance model
     * @param args arguments of quotePrice
     * @return premiaPrice64x64 64x64 fixed point representation of Premia option price
     * @return cLevel64x64 64x64 fixed point representation of C-Level of Pool after purchase
     */
    function quotePrice(QuoteArgs memory args)
        external
        pure
        returns (
            int128 premiaPrice64x64,
            int128 cLevel64x64,
            int128 slippageCoefficient64x64
        )
    {
        int128 deltaPoolState64x64 = args
            .newPoolState
            .sub(args.oldPoolState)
            .div(args.oldPoolState)
            .mul(args.steepness64x64);
        int128 tradingDelta64x64 = deltaPoolState64x64.neg().exp();

        int128 blackScholesPrice64x64 = _blackScholesPrice(
            args.varianceAnnualized64x64,
            args.strike64x64,
            args.spot64x64,
            args.timeToMaturity64x64,
            args.isCall
        );

        cLevel64x64 = tradingDelta64x64.mul(args.oldCLevel64x64);
        slippageCoefficient64x64 = ONE_64x64.sub(tradingDelta64x64).div(
            deltaPoolState64x64
        );

        premiaPrice64x64 = blackScholesPrice64x64.mul(cLevel64x64).mul(
            slippageCoefficient64x64
        );

        int128 intrinsicValue64x64;

        if (args.isCall && args.strike64x64 < args.spot64x64) {
            intrinsicValue64x64 = args.spot64x64.sub(args.strike64x64);
        } else if (!args.isCall && args.strike64x64 > args.spot64x64) {
            intrinsicValue64x64 = args.strike64x64.sub(args.spot64x64);
        }

        int128 collateralValue64x64 = args.isCall
            ? args.spot64x64
            : args.strike64x64;

        int128 minPrice64x64 = intrinsicValue64x64.add(
            collateralValue64x64.mul(args.minAPY64x64).mul(
                args.timeToMaturity64x64
            )
        );

        if (minPrice64x64 > premiaPrice64x64) {
            premiaPrice64x64 = minPrice64x64;
        }
    }

    /**
     * @notice calculate the decay of C-Level based on heat diffusion function
     * @param args structured CalculateCLevelDecayArgs
     * @return cLevelDecayed64x64 C-Level after accounting for decay
     */
    function calculateCLevelDecay(CalculateCLevelDecayArgs memory args)
        external
        pure
        returns (int128 cLevelDecayed64x64)
    {
        int128 convFHighU64x64 = (args.utilization64x64 >=
            args.utilizationUpperBound64x64 &&
            args.oldCLevel64x64 <= args.cLevelLowerBound64x64)
            ? ONE_64x64
            : int128(0);

        int128 convFLowU64x64 = (args.utilization64x64 <=
            args.utilizationLowerBound64x64 &&
            args.oldCLevel64x64 >= args.cLevelUpperBound64x64)
            ? ONE_64x64
            : int128(0);

        cLevelDecayed64x64 = args
            .oldCLevel64x64
            .sub(args.cConvergenceULowerBound64x64.mul(convFLowU64x64))
            .sub(args.cConvergenceUUpperBound64x64.mul(convFHighU64x64))
            .mul(
                convFLowU64x64
                    .mul(ONE_64x64.sub(args.utilization64x64))
                    .add(convFHighU64x64.mul(args.utilization64x64))
                    .mul(args.timeIntervalsElapsed64x64)
                    .neg()
                    .exp()
            )
            .add(
                args.cConvergenceULowerBound64x64.mul(convFLowU64x64).add(
                    args.cConvergenceUUpperBound64x64.mul(convFHighU64x64)
                )
            );
    }

    /**
     * @notice calculate the exponential decay coefficient for a given interval
     * @param oldTimestamp timestamp of previous update
     * @param newTimestamp current timestamp
     * @return 64x64 fixed point representation of exponential decay coefficient
     */
    function _decay(uint256 oldTimestamp, uint256 newTimestamp)
        internal
        pure
        returns (int128)
    {
        return
            ONE_64x64.sub(
                (-ABDKMath64x64.divu(newTimestamp - oldTimestamp, 7 days)).exp()
            );
    }

    /**
     * @notice calculate Choudhury’s approximation of the Black-Scholes CDF
     * @param input64x64 64x64 fixed point representation of random variable
     * @return 64x64 fixed point representation of the approximated CDF of x
     */
    function _N(int128 input64x64) internal pure returns (int128) {
        // squaring via mul is cheaper than via pow
        int128 inputSquared64x64 = input64x64.mul(input64x64);

        int128 value64x64 = (-inputSquared64x64 >> 1).exp().div(
            CDF_CONST_0.add(CDF_CONST_1.mul(input64x64.abs())).add(
                CDF_CONST_2.mul(inputSquared64x64.add(THREE_64x64).sqrt())
            )
        );

        return input64x64 > 0 ? ONE_64x64.sub(value64x64) : value64x64;
    }

    /**
     * @notice calculate the price of an option using the Black-Scholes model
     * @param varianceAnnualized64x64 64x64 fixed point representation of annualized variance
     * @param strike64x64 64x64 fixed point representation of strike price
     * @param spot64x64 64x64 fixed point representation of spot price
     * @param timeToMaturity64x64 64x64 fixed point representation of duration of option contract (in years)
     * @param isCall whether to price "call" or "put" option
     * @return 64x64 fixed point representation of Black-Scholes option price
     */
    function _blackScholesPrice(
        int128 varianceAnnualized64x64,
        int128 strike64x64,
        int128 spot64x64,
        int128 timeToMaturity64x64,
        bool isCall
    ) internal pure returns (int128) {
        int128 cumulativeVariance64x64 = timeToMaturity64x64.mul(
            varianceAnnualized64x64
        );
        int128 cumulativeVarianceSqrt64x64 = cumulativeVariance64x64.sqrt();

        int128 d1_64x64 = spot64x64
            .div(strike64x64)
            .ln()
            .add(cumulativeVariance64x64 >> 1)
            .div(cumulativeVarianceSqrt64x64);
        int128 d2_64x64 = d1_64x64.sub(cumulativeVarianceSqrt64x64);

        if (isCall) {
            return
                spot64x64.mul(_N(d1_64x64)).sub(strike64x64.mul(_N(d2_64x64)));
        } else {
            return
                -spot64x64.mul(_N(-d1_64x64)).sub(
                    strike64x64.mul(_N(-d2_64x64))
                );
        }
    }
}

File 7 of 26 : IPoolView.sol
// SPDX-License-Identifier: LGPL-3.0-or-later

pragma solidity ^0.8.0;

import {IERC1155Metadata} from "@solidstate/contracts/token/ERC1155/metadata/IERC1155Metadata.sol";

import {PoolStorage} from "./PoolStorage.sol";

interface IPoolView is IERC1155Metadata {
    function getFeeReceiverAddress() external view returns (address);

    function getPoolSettings()
        external
        view
        returns (PoolStorage.PoolSettings memory);

    function getTokenIds() external view returns (uint256[] memory);

    function getCLevel64x64(bool isCall) external view returns (int128);

    function getSteepness64x64(bool isCall) external view returns (int128);

    function getPrice(uint256 timestamp) external view returns (int128);

    function getParametersForTokenId(uint256 tokenId)
        external
        pure
        returns (
            PoolStorage.TokenType,
            uint64,
            int128
        );

    function getMinimumAmounts()
        external
        view
        returns (uint256 minCallTokenAmount, uint256 minPutTokenAmount);

    function getCapAmounts()
        external
        view
        returns (uint256 callTokenCapAmount, uint256 putTokenCapAmount);

    function getUserTVL(address user)
        external
        view
        returns (uint256 underlyingTVL, uint256 baseTVL);

    function getTotalTVL()
        external
        view
        returns (uint256 underlyingTVL, uint256 baseTVL);

    function getPremiaMining() external view returns (address);

    function getDivestmentTimestamps(address account)
        external
        view
        returns (
            uint256 callDivestmentTimestamp,
            uint256 putDivestmentTimestamp
        );
}

File 8 of 26 : IPremiaMining.sol
// SPDX-License-Identifier: LGPL-3.0-or-later

pragma solidity ^0.8.0;

import {PremiaMiningStorage} from "./PremiaMiningStorage.sol";

interface IPremiaMining {
    function addPremiaRewards(uint256 _amount) external;

    function premiaRewardsAvailable() external view returns (uint256);

    function getTotalAllocationPoints() external view returns (uint256);

    function getPoolInfo(address pool, bool isCallPool)
        external
        view
        returns (PremiaMiningStorage.PoolInfo memory);

    function getPremiaPerYear() external view returns (uint256);

    function addPool(address _pool, uint256 _allocPoints) external;

    function setPoolAllocPoints(
        address[] memory _pools,
        uint256[] memory _allocPoints
    ) external;

    function pendingPremia(
        address _pool,
        bool _isCallPool,
        address _user
    ) external view returns (uint256);

    function updatePool(
        address _pool,
        bool _isCallPool,
        uint256 _totalTVL
    ) external;

    function allocatePending(
        address _user,
        address _pool,
        bool _isCallPool,
        uint256 _userTVLOld,
        uint256 _userTVLNew,
        uint256 _totalTVL
    ) external;

    function claim(
        address _user,
        address _pool,
        bool _isCallPool,
        uint256 _userTVLOld,
        uint256 _userTVLNew,
        uint256 _totalTVL
    ) external;
}

File 9 of 26 : OwnableStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library OwnableStorage {
    struct Layout {
        address owner;
    }

    bytes32 internal constant STORAGE_SLOT =
        keccak256('solidstate.contracts.storage.Ownable');

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }

    function setOwner(Layout storage l, address owner) internal {
        l.owner = owner;
    }
}

File 10 of 26 : ERC165Storage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library ERC165Storage {
    struct Layout {
        mapping(bytes4 => bool) supportedInterfaces;
    }

    bytes32 internal constant STORAGE_SLOT =
        keccak256('solidstate.contracts.storage.ERC165');

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }

    function isSupportedInterface(Layout storage l, bytes4 interfaceId)
        internal
        view
        returns (bool)
    {
        return l.supportedInterfaces[interfaceId];
    }

    function setSupportedInterface(
        Layout storage l,
        bytes4 interfaceId,
        bool status
    ) internal {
        require(interfaceId != 0xffffffff, 'ERC165: invalid interface id');
        l.supportedInterfaces[interfaceId] = status;
    }
}

File 11 of 26 : Proxy.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { AddressUtils } from '../utils/AddressUtils.sol';

/**
 * @title Base proxy contract
 */
abstract contract Proxy {
    using AddressUtils for address;

    /**
     * @notice delegate all calls to implementation contract
     * @dev reverts if implementation address contains no code, for compatibility with metamorphic contracts
     * @dev memory location in use by assembly may be unsafe in other contexts
     */
    fallback() external payable virtual {
        address implementation = _getImplementation();

        require(
            implementation.isContract(),
            'Proxy: implementation must be contract'
        );

        assembly {
            calldatacopy(0, 0, calldatasize())
            let result := delegatecall(
                gas(),
                implementation,
                0,
                calldatasize(),
                0,
                0
            )
            returndatacopy(0, 0, returndatasize())

            switch result
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @notice get logic implementation address
     * @return implementation address
     */
    function _getImplementation() internal virtual returns (address);
}

File 12 of 26 : IDiamondLoupe.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title Diamond proxy introspection interface
 * @dev see https://eips.ethereum.org/EIPS/eip-2535
 */
interface IDiamondLoupe {
    struct Facet {
        address target;
        bytes4[] selectors;
    }

    /**
     * @notice get all facets and their selectors
     * @return diamondFacets array of structured facet data
     */
    function facets() external view returns (Facet[] memory diamondFacets);

    /**
     * @notice get all selectors for given facet address
     * @param facet address of facet to query
     * @return selectors array of function selectors
     */
    function facetFunctionSelectors(address facet)
        external
        view
        returns (bytes4[] memory selectors);

    /**
     * @notice get addresses of all facets used by diamond
     * @return addresses array of facet addresses
     */
    function facetAddresses()
        external
        view
        returns (address[] memory addresses);

    /**
     * @notice get the address of the facet associated with given selector
     * @param selector function selector to query
     * @return facet facet address (zero address if not found)
     */
    function facetAddress(bytes4 selector)
        external
        view
        returns (address facet);
}

File 13 of 26 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title ERC20 metadata interface
 */
interface IERC20Metadata {
    /**
     * @notice return token name
     * @return token name
     */
    function name() external view returns (string memory);

    /**
     * @notice return token symbol
     * @return token symbol
     */
    function symbol() external view returns (string memory);

    /**
     * @notice return token decimals, generally used only for display purposes
     * @return token decimals
     */
    function decimals() external view returns (uint8);
}

File 14 of 26 : IERC1155.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IERC1155Internal } from './IERC1155Internal.sol';
import { IERC165 } from '../../introspection/IERC165.sol';

/**
 * @notice ERC1155 interface
 * @dev see https://github.com/ethereum/EIPs/issues/1155
 */
interface IERC1155 is IERC1155Internal, IERC165 {
    /**
     * @notice query the balance of given token held by given address
     * @param account address to query
     * @param id token to query
     * @return token balance
     */
    function balanceOf(address account, uint256 id)
        external
        view
        returns (uint256);

    /**
     * @notice query the balances of given tokens held by given addresses
     * @param accounts addresss to query
     * @param ids tokens to query
     * @return token balances
     */
    function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
        external
        view
        returns (uint256[] memory);

    /**
     * @notice query approval status of given operator with respect to given address
     * @param account address to query for approval granted
     * @param operator address to query for approval received
     * @return whether operator is approved to spend tokens held by account
     */
    function isApprovedForAll(address account, address operator)
        external
        view
        returns (bool);

    /**
     * @notice grant approval to or revoke approval from given operator to spend held tokens
     * @param operator address whose approval status to update
     * @param status whether operator should be considered approved
     */
    function setApprovalForAll(address operator, bool status) external;

    /**
     * @notice transfer tokens between given addresses, checking for ERC1155Receiver implementation if applicable
     * @param from sender of tokens
     * @param to receiver of tokens
     * @param id token ID
     * @param amount quantity of tokens to transfer
     * @param data data payload
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 id,
        uint256 amount,
        bytes calldata data
    ) external;

    /**
     * @notice transfer batch of tokens between given addresses, checking for ERC1155Receiver implementation if applicable
     * @param from sender of tokens
     * @param to receiver of tokens
     * @param ids list of token IDs
     * @param amounts list of quantities of tokens to transfer
     * @param data data payload
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata amounts,
        bytes calldata data
    ) external;
}

File 15 of 26 : IERC165.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title ERC165 interface registration interface
 * @dev see https://eips.ethereum.org/EIPS/eip-165
 */
interface IERC165 {
    /**
     * @notice query whether contract has registered support for given interface
     * @param interfaceId interface id
     * @return bool whether interface is supported
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 16 of 26 : PoolStorage.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

import {AggregatorInterface} from "@chainlink/contracts/src/v0.8/interfaces/AggregatorInterface.sol";
import {AggregatorV3Interface} from "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";
import {EnumerableSet, ERC1155EnumerableStorage} from "@solidstate/contracts/token/ERC1155/enumerable/ERC1155EnumerableStorage.sol";

import {ABDKMath64x64} from "abdk-libraries-solidity/ABDKMath64x64.sol";
import {ABDKMath64x64Token} from "../libraries/ABDKMath64x64Token.sol";
import {OptionMath} from "../libraries/OptionMath.sol";

library PoolStorage {
    using ABDKMath64x64 for int128;
    using PoolStorage for PoolStorage.Layout;

    enum TokenType {
        UNDERLYING_FREE_LIQ,
        BASE_FREE_LIQ,
        UNDERLYING_RESERVED_LIQ,
        BASE_RESERVED_LIQ,
        LONG_CALL,
        SHORT_CALL,
        LONG_PUT,
        SHORT_PUT
    }

    struct PoolSettings {
        address underlying;
        address base;
        address underlyingOracle;
        address baseOracle;
    }

    struct QuoteArgsInternal {
        address feePayer; // address of the fee payer
        uint64 maturity; // timestamp of option maturity
        int128 strike64x64; // 64x64 fixed point representation of strike price
        int128 spot64x64; // 64x64 fixed point representation of spot price
        uint256 contractSize; // size of option contract
        bool isCall; // true for call, false for put
    }

    struct QuoteResultInternal {
        int128 baseCost64x64; // 64x64 fixed point representation of option cost denominated in underlying currency (without fee)
        int128 feeCost64x64; // 64x64 fixed point representation of option fee cost denominated in underlying currency for call, or base currency for put
        int128 cLevel64x64; // 64x64 fixed point representation of C-Level of Pool after purchase
        int128 slippageCoefficient64x64; // 64x64 fixed point representation of slippage coefficient for given order size
    }

    struct BatchData {
        uint256 eta;
        uint256 totalPendingDeposits;
    }

    bytes32 internal constant STORAGE_SLOT =
        keccak256("premia.contracts.storage.Pool");

    uint256 private constant C_DECAY_BUFFER = 12 hours;
    uint256 private constant C_DECAY_INTERVAL = 4 hours;

    struct Layout {
        // ERC20 token addresses
        address base;
        address underlying;
        // AggregatorV3Interface oracle addresses
        address baseOracle;
        address underlyingOracle;
        // token metadata
        uint8 underlyingDecimals;
        uint8 baseDecimals;
        // minimum amounts
        uint256 baseMinimum;
        uint256 underlyingMinimum;
        // deposit caps
        uint256 basePoolCap;
        uint256 underlyingPoolCap;
        // market state
        int128 _deprecated_steepness64x64;
        int128 cLevelBase64x64;
        int128 cLevelUnderlying64x64;
        uint256 cLevelBaseUpdatedAt;
        uint256 cLevelUnderlyingUpdatedAt;
        uint256 updatedAt;
        // User -> isCall -> depositedAt
        mapping(address => mapping(bool => uint256)) depositedAt;
        mapping(address => mapping(bool => uint256)) divestmentTimestamps;
        // doubly linked list of free liquidity intervals
        // isCall -> User -> User
        mapping(bool => mapping(address => address)) liquidityQueueAscending;
        mapping(bool => mapping(address => address)) liquidityQueueDescending;
        // minimum resolution price bucket => price
        mapping(uint256 => int128) bucketPrices64x64;
        // sequence id (minimum resolution price bucket / 256) => price update sequence
        mapping(uint256 => uint256) priceUpdateSequences;
        // isCall -> batch data
        mapping(bool => BatchData) nextDeposits;
        // user -> batch timestamp -> isCall -> pending amount
        mapping(address => mapping(uint256 => mapping(bool => uint256))) pendingDeposits;
        EnumerableSet.UintSet tokenIds;
        // user -> isCallPool -> total value locked of user (Used for liquidity mining)
        mapping(address => mapping(bool => uint256)) userTVL;
        // isCallPool -> total value locked
        mapping(bool => uint256) totalTVL;
        // steepness values
        int128 steepnessBase64x64;
        int128 steepnessUnderlying64x64;
    }

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }

    /**
     * @notice calculate ERC1155 token id for given option parameters
     * @param tokenType TokenType enum
     * @param maturity timestamp of option maturity
     * @param strike64x64 64x64 fixed point representation of strike price
     * @return tokenId token id
     */
    function formatTokenId(
        TokenType tokenType,
        uint64 maturity,
        int128 strike64x64
    ) internal pure returns (uint256 tokenId) {
        tokenId =
            (uint256(tokenType) << 248) +
            (uint256(maturity) << 128) +
            uint256(int256(strike64x64));
    }

    /**
     * @notice derive option maturity and strike price from ERC1155 token id
     * @param tokenId token id
     * @return tokenType TokenType enum
     * @return maturity timestamp of option maturity
     * @return strike64x64 option strike price
     */
    function parseTokenId(uint256 tokenId)
        internal
        pure
        returns (
            TokenType tokenType,
            uint64 maturity,
            int128 strike64x64
        )
    {
        assembly {
            tokenType := shr(248, tokenId)
            maturity := shr(128, tokenId)
            strike64x64 := tokenId
        }
    }

    function getTokenDecimals(Layout storage l, bool isCall)
        internal
        view
        returns (uint8 decimals)
    {
        decimals = isCall ? l.underlyingDecimals : l.baseDecimals;
    }

    /**
     * @notice get the total supply of free liquidity tokens, minus pending deposits
     * @param l storage layout struct
     * @param isCall whether query is for call or put pool
     * @return 64x64 fixed point representation of total free liquidity
     */
    function totalFreeLiquiditySupply64x64(Layout storage l, bool isCall)
        internal
        view
        returns (int128)
    {
        uint256 tokenId = formatTokenId(
            isCall ? TokenType.UNDERLYING_FREE_LIQ : TokenType.BASE_FREE_LIQ,
            0,
            0
        );

        return
            ABDKMath64x64Token.fromDecimals(
                ERC1155EnumerableStorage.layout().totalSupply[tokenId] -
                    l.nextDeposits[isCall].totalPendingDeposits,
                l.getTokenDecimals(isCall)
            );
    }

    function getReinvestmentStatus(
        Layout storage l,
        address account,
        bool isCallPool
    ) internal view returns (bool) {
        uint256 timestamp = l.divestmentTimestamps[account][isCallPool];
        return timestamp == 0 || timestamp > block.timestamp;
    }

    function addUnderwriter(
        Layout storage l,
        address account,
        bool isCallPool
    ) internal {
        require(account != address(0));

        mapping(address => address) storage asc = l.liquidityQueueAscending[
            isCallPool
        ];
        mapping(address => address) storage desc = l.liquidityQueueDescending[
            isCallPool
        ];

        if (_isInQueue(account, asc, desc)) return;

        address last = desc[address(0)];

        asc[last] = account;
        desc[account] = last;
        desc[address(0)] = account;
    }

    function removeUnderwriter(
        Layout storage l,
        address account,
        bool isCallPool
    ) internal {
        require(account != address(0));

        mapping(address => address) storage asc = l.liquidityQueueAscending[
            isCallPool
        ];
        mapping(address => address) storage desc = l.liquidityQueueDescending[
            isCallPool
        ];

        if (!_isInQueue(account, asc, desc)) return;

        address prev = desc[account];
        address next = asc[account];
        asc[prev] = next;
        desc[next] = prev;
        delete asc[account];
        delete desc[account];
    }

    function isInQueue(
        Layout storage l,
        address account,
        bool isCallPool
    ) internal view returns (bool) {
        mapping(address => address) storage asc = l.liquidityQueueAscending[
            isCallPool
        ];
        mapping(address => address) storage desc = l.liquidityQueueDescending[
            isCallPool
        ];

        return _isInQueue(account, asc, desc);
    }

    function _isInQueue(
        address account,
        mapping(address => address) storage asc,
        mapping(address => address) storage desc
    ) private view returns (bool) {
        return asc[account] != address(0) || desc[address(0)] == account;
    }

    /**
     * @notice get current C-Level, without accounting for pending adjustments
     * @param l storage layout struct
     * @param isCall whether query is for call or put pool
     * @return cLevel64x64 64x64 fixed point representation of C-Level
     */
    function getRawCLevel64x64(Layout storage l, bool isCall)
        internal
        view
        returns (int128 cLevel64x64)
    {
        cLevel64x64 = isCall ? l.cLevelUnderlying64x64 : l.cLevelBase64x64;
    }

    /**
     * @notice get current C-Level, accounting for unrealized decay
     * @param l storage layout struct
     * @param isCall whether query is for call or put pool
     * @return cLevel64x64 64x64 fixed point representation of C-Level
     */
    function getDecayAdjustedCLevel64x64(Layout storage l, bool isCall)
        internal
        view
        returns (int128 cLevel64x64)
    {
        // get raw C-Level from storage
        cLevel64x64 = l.getRawCLevel64x64(isCall);

        // account for C-Level decay
        cLevel64x64 = l.applyCLevelDecayAdjustment(cLevel64x64, isCall);
    }

    /**
     * @notice calculate updated C-Level, accounting for unrealized decay
     * @param l storage layout struct
     * @param oldCLevel64x64 64x64 fixed point representation pool C-Level before accounting for decay
     * @param isCall whether query is for call or put pool
     * @return cLevel64x64 64x64 fixed point representation of C-Level of Pool after accounting for decay
     */
    function applyCLevelDecayAdjustment(
        Layout storage l,
        int128 oldCLevel64x64,
        bool isCall
    ) internal view returns (int128 cLevel64x64) {
        uint256 timeElapsed = block.timestamp -
            (isCall ? l.cLevelUnderlyingUpdatedAt : l.cLevelBaseUpdatedAt);

        // do not apply C decay if less than 24 hours have elapsed

        if (timeElapsed > C_DECAY_BUFFER) {
            timeElapsed -= C_DECAY_BUFFER;
        } else {
            return oldCLevel64x64;
        }

        int128 timeIntervalsElapsed64x64 = ABDKMath64x64.divu(
            timeElapsed,
            C_DECAY_INTERVAL
        );

        uint256 tokenId = formatTokenId(
            isCall ? TokenType.UNDERLYING_FREE_LIQ : TokenType.BASE_FREE_LIQ,
            0,
            0
        );

        uint256 tvl = l.totalTVL[isCall];

        int128 utilization = ABDKMath64x64.divu(
            tvl -
                (ERC1155EnumerableStorage.layout().totalSupply[tokenId] -
                    l.nextDeposits[isCall].totalPendingDeposits),
            tvl
        );

        return
            OptionMath.calculateCLevelDecay(
                OptionMath.CalculateCLevelDecayArgs(
                    timeIntervalsElapsed64x64,
                    oldCLevel64x64,
                    utilization,
                    0xb333333333333333, // 0.7
                    0xe666666666666666, // 0.9
                    0x10000000000000000, // 1.0
                    0x10000000000000000, // 1.0
                    0xe666666666666666, // 0.9
                    0x56fc2a2c515da32ea // 2e
                )
            );
    }

    /**
     * @notice calculate updated C-Level, accounting for pending deposits
     * @param l storage layout struct
     * @param oldCLevel64x64 64x64 fixed point representation pool C-Level before accounting for liquidity change
     * @param oldLiquidity64x64 64x64 fixed point representation of previous liquidity
     * @param isCall whether to update C-Level for call or put pool
     * @return cLevel64x64 64x64 fixed point representation of C-Level
     * @return liquidity64x64 64x64 fixed point representation of new liquidity amount
     */
    function applyCLevelPendingDepositAdjustment(
        Layout storage l,
        int128 oldCLevel64x64,
        int128 oldLiquidity64x64,
        bool isCall
    ) internal view returns (int128 cLevel64x64, int128 liquidity64x64) {
        PoolStorage.BatchData storage batchData = l.nextDeposits[isCall];
        int128 pendingDeposits64x64;

        if (
            batchData.totalPendingDeposits > 0 &&
            batchData.eta != 0 &&
            block.timestamp >= batchData.eta
        ) {
            pendingDeposits64x64 = ABDKMath64x64Token.fromDecimals(
                batchData.totalPendingDeposits,
                l.getTokenDecimals(isCall)
            );

            liquidity64x64 = oldLiquidity64x64.add(pendingDeposits64x64);

            cLevel64x64 = l.applyCLevelLiquidityChangeAdjustment(
                oldCLevel64x64,
                oldLiquidity64x64,
                liquidity64x64,
                isCall
            );
        } else {
            cLevel64x64 = oldCLevel64x64;
            liquidity64x64 = oldLiquidity64x64;
        }
    }

    /**
     * @notice calculate updated C-Level, accounting for change in liquidity
     * @param l storage layout struct
     * @param oldCLevel64x64 64x64 fixed point representation pool C-Level before accounting for liquidity change
     * @param oldLiquidity64x64 64x64 fixed point representation of previous liquidity
     * @param newLiquidity64x64 64x64 fixed point representation of current liquidity
     * @param isCallPool whether to update C-Level for call or put pool
     * @return cLevel64x64 64x64 fixed point representation of C-Level
     */
    function applyCLevelLiquidityChangeAdjustment(
        Layout storage l,
        int128 oldCLevel64x64,
        int128 oldLiquidity64x64,
        int128 newLiquidity64x64,
        bool isCallPool
    ) internal view returns (int128 cLevel64x64) {
        int128 steepness64x64 = isCallPool
            ? l.steepnessUnderlying64x64
            : l.steepnessBase64x64;

        // fallback to deprecated storage value if side-specific value is not set
        if (steepness64x64 == 0) steepness64x64 = l._deprecated_steepness64x64;

        cLevel64x64 = OptionMath.calculateCLevel(
            oldCLevel64x64,
            oldLiquidity64x64,
            newLiquidity64x64,
            steepness64x64
        );

        if (cLevel64x64 < 0xb333333333333333) {
            cLevel64x64 = int128(0xb333333333333333); // 64x64 fixed point representation of 0.7
        }
    }

    /**
     * @notice set C-Level to arbitrary pre-calculated value
     * @param cLevel64x64 new C-Level of pool
     * @param isCallPool whether to update C-Level for call or put pool
     */
    function setCLevel(
        Layout storage l,
        int128 cLevel64x64,
        bool isCallPool
    ) internal {
        if (isCallPool) {
            l.cLevelUnderlying64x64 = cLevel64x64;
            l.cLevelUnderlyingUpdatedAt = block.timestamp;
        } else {
            l.cLevelBase64x64 = cLevel64x64;
            l.cLevelBaseUpdatedAt = block.timestamp;
        }
    }

    function setOracles(
        Layout storage l,
        address baseOracle,
        address underlyingOracle
    ) internal {
        require(
            AggregatorV3Interface(baseOracle).decimals() ==
                AggregatorV3Interface(underlyingOracle).decimals(),
            "Pool: oracle decimals must match"
        );

        l.baseOracle = baseOracle;
        l.underlyingOracle = underlyingOracle;
    }

    function fetchPriceUpdate(Layout storage l)
        internal
        view
        returns (int128 price64x64)
    {
        int256 priceUnderlying = AggregatorInterface(l.underlyingOracle)
            .latestAnswer();
        int256 priceBase = AggregatorInterface(l.baseOracle).latestAnswer();

        return ABDKMath64x64.divi(priceUnderlying, priceBase);
    }

    /**
     * @notice set price update for hourly bucket corresponding to given timestamp
     * @param l storage layout struct
     * @param timestamp timestamp to update
     * @param price64x64 64x64 fixed point representation of price
     */
    function setPriceUpdate(
        Layout storage l,
        uint256 timestamp,
        int128 price64x64
    ) internal {
        uint256 bucket = timestamp / (1 hours);
        l.bucketPrices64x64[bucket] = price64x64;
        l.priceUpdateSequences[bucket >> 8] += 1 << (255 - (bucket & 255));
    }

    /**
     * @notice get price update for hourly bucket corresponding to given timestamp
     * @param l storage layout struct
     * @param timestamp timestamp to query
     * @return 64x64 fixed point representation of price
     */
    function getPriceUpdate(Layout storage l, uint256 timestamp)
        internal
        view
        returns (int128)
    {
        return l.bucketPrices64x64[timestamp / (1 hours)];
    }

    /**
     * @notice get first price update available following given timestamp
     * @param l storage layout struct
     * @param timestamp timestamp to query
     * @return 64x64 fixed point representation of price
     */
    function getPriceUpdateAfter(Layout storage l, uint256 timestamp)
        internal
        view
        returns (int128)
    {
        // price updates are grouped into hourly buckets
        uint256 bucket = timestamp / (1 hours);
        // divide by 256 to get the index of the relevant price update sequence
        uint256 sequenceId = bucket >> 8;

        // get position within sequence relevant to current price update

        uint256 offset = bucket & 255;
        // shift to skip buckets from earlier in sequence
        uint256 sequence = (l.priceUpdateSequences[sequenceId] << offset) >>
            offset;

        // iterate through future sequences until a price update is found
        // sequence corresponding to current timestamp used as upper bound

        uint256 currentPriceUpdateSequenceId = block.timestamp / (256 hours);

        while (sequence == 0 && sequenceId <= currentPriceUpdateSequenceId) {
            sequence = l.priceUpdateSequences[++sequenceId];
        }

        // if no price update is found (sequence == 0) function will return 0
        // this should never occur, as each relevant external function triggers a price update

        // the most significant bit of the sequence corresponds to the offset of the relevant bucket

        uint256 msb;

        for (uint256 i = 128; i > 0; i >>= 1) {
            if (sequence >> i > 0) {
                msb += i;
                sequence >>= i;
            }
        }

        return l.bucketPrices64x64[((sequenceId + 1) << 8) - msb - 1];
    }

    function fromBaseToUnderlyingDecimals(Layout storage l, uint256 value)
        internal
        view
        returns (uint256)
    {
        int128 valueFixed64x64 = ABDKMath64x64Token.fromDecimals(
            value,
            l.baseDecimals
        );
        return
            ABDKMath64x64Token.toDecimals(
                valueFixed64x64,
                l.underlyingDecimals
            );
    }

    function fromUnderlyingToBaseDecimals(Layout storage l, uint256 value)
        internal
        view
        returns (uint256)
    {
        int128 valueFixed64x64 = ABDKMath64x64Token.fromDecimals(
            value,
            l.underlyingDecimals
        );
        return ABDKMath64x64Token.toDecimals(valueFixed64x64, l.baseDecimals);
    }
}

File 17 of 26 : ABDKMath64x64Token.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

import {ABDKMath64x64} from "abdk-libraries-solidity/ABDKMath64x64.sol";

library ABDKMath64x64Token {
    using ABDKMath64x64 for int128;

    /**
     * @notice convert 64x64 fixed point representation of token amount to decimal
     * @param value64x64 64x64 fixed point representation of token amount
     * @param decimals token display decimals
     * @return value decimal representation of token amount
     */
    function toDecimals(int128 value64x64, uint8 decimals)
        internal
        pure
        returns (uint256 value)
    {
        value = value64x64.mulu(10**decimals);
    }

    /**
     * @notice convert decimal representation of token amount to 64x64 fixed point
     * @param value decimal representation of token amount
     * @param decimals token display decimals
     * @return value64x64 64x64 fixed point representation of token amount
     */
    function fromDecimals(uint256 value, uint8 decimals)
        internal
        pure
        returns (int128 value64x64)
    {
        value64x64 = ABDKMath64x64.divu(value, 10**decimals);
    }

    /**
     * @notice convert 64x64 fixed point representation of token amount to wei (18 decimals)
     * @param value64x64 64x64 fixed point representation of token amount
     * @return value wei representation of token amount
     */
    function toWei(int128 value64x64) internal pure returns (uint256 value) {
        value = toDecimals(value64x64, 18);
    }

    /**
     * @notice convert wei representation (18 decimals) of token amount to 64x64 fixed point
     * @param value wei representation of token amount
     * @return value64x64 64x64 fixed point representation of token amount
     */
    function fromWei(uint256 value) internal pure returns (int128 value64x64) {
        value64x64 = fromDecimals(value, 18);
    }
}

File 18 of 26 : AddressUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library AddressUtils {
    function toString(address account) internal pure returns (string memory) {
        bytes32 value = bytes32(uint256(uint160(account)));
        bytes memory alphabet = '0123456789abcdef';
        bytes memory chars = new bytes(42);

        chars[0] = '0';
        chars[1] = 'x';

        for (uint256 i = 0; i < 20; i++) {
            chars[2 + i * 2] = alphabet[uint8(value[i + 12] >> 4)];
            chars[3 + i * 2] = alphabet[uint8(value[i + 12] & 0x0f)];
        }

        return string(chars);
    }

    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }

    function sendValue(address payable account, uint256 amount) internal {
        (bool success, ) = account.call{ value: amount }('');
        require(success, 'AddressUtils: failed to send value');
    }

    function functionCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionCall(target, data, 'AddressUtils: failed low-level call');
    }

    function functionCall(
        address target,
        bytes memory data,
        string memory error
    ) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, error);
    }

    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return
            functionCallWithValue(
                target,
                data,
                value,
                'AddressUtils: failed low-level call with value'
            );
    }

    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory error
    ) internal returns (bytes memory) {
        require(
            address(this).balance >= value,
            'AddressUtils: insufficient balance for call'
        );
        return _functionCallWithValue(target, data, value, error);
    }

    function _functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory error
    ) private returns (bytes memory) {
        require(
            isContract(target),
            'AddressUtils: function call to non-contract'
        );

        (bool success, bytes memory returnData) = target.call{ value: value }(
            data
        );

        if (success) {
            return returnData;
        } else if (returnData.length > 0) {
            assembly {
                let returnData_size := mload(returnData)
                revert(add(32, returnData), returnData_size)
            }
        } else {
            revert(error);
        }
    }
}

File 19 of 26 : IERC1155Internal.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IERC165 } from '../../introspection/IERC165.sol';

/**
 * @notice Partial ERC1155 interface needed by internal functions
 */
interface IERC1155Internal {
    event TransferSingle(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256 id,
        uint256 value
    );

    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    event ApprovalForAll(
        address indexed account,
        address indexed operator,
        bool approved
    );
}

File 20 of 26 : AggregatorInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface AggregatorInterface {
  function latestAnswer()
    external
    view
    returns (
      int256
    );
  
  function latestTimestamp()
    external
    view
    returns (
      uint256
    );

  function latestRound()
    external
    view
    returns (
      uint256
    );

  function getAnswer(
    uint256 roundId
  )
    external
    view
    returns (
      int256
    );

  function getTimestamp(
    uint256 roundId
  )
    external
    view
    returns (
      uint256
    );

  event AnswerUpdated(
    int256 indexed current,
    uint256 indexed roundId,
    uint256 updatedAt
  );

  event NewRound(
    uint256 indexed roundId,
    address indexed startedBy,
    uint256 startedAt
  );
}

File 21 of 26 : AggregatorV3Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface AggregatorV3Interface {

  function decimals()
    external
    view
    returns (
      uint8
    );

  function description()
    external
    view
    returns (
      string memory
    );

  function version()
    external
    view
    returns (
      uint256
    );

  // getRoundData and latestRoundData should both raise "No data present"
  // if they do not have data to report, instead of returning unset values
  // which could be misinterpreted as actual reported values.
  function getRoundData(
    uint80 _roundId
  )
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );

  function latestRoundData()
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );

}

File 22 of 26 : ERC1155EnumerableStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { EnumerableSet } from '../../../utils/EnumerableSet.sol';

library ERC1155EnumerableStorage {
    struct Layout {
        mapping(uint256 => uint256) totalSupply;
        mapping(uint256 => EnumerableSet.AddressSet) accountsByToken;
        mapping(address => EnumerableSet.UintSet) tokensByAccount;
    }

    bytes32 internal constant STORAGE_SLOT =
        keccak256('solidstate.contracts.storage.ERC1155Enumerable');

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

File 23 of 26 : ABDKMath64x64.sol
// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    unchecked {
      require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    unchecked {
      return int64 (x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    unchecked {
      require (x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (int256 (x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    unchecked {
      require (x >= 0);
      return uint64 (uint128 (x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    unchecked {
      return int256 (x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) * y >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
          y <= 0x1000000000000000000000000000000000000000000000000);
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu (x, uint256 (y));
        if (negativeResult) {
          require (absoluteResult <=
            0x8000000000000000000000000000000000000000000000000000000000000000);
          return -int256 (absoluteResult); // We rely on overflow behavior here
        } else {
          require (absoluteResult <=
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return int256 (absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require (x >= 0);

      uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256 (int256 (x)) * (y >> 128);

      require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require (hi <=
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      int256 result = (int256 (x) << 64) / y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
      if (negativeResult) {
        require (absoluteResult <= 0x80000000000000000000000000000000);
        return -int128 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      uint128 result = divuu (x, y);
      require (result <= uint128 (MAX_64x64));
      return int128 (result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != 0);
      int256 result = int256 (0x100000000000000000000000000000000) / x;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128 ((int256 (x) + int256 (y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256 (x) * int256 (y);
      require (m >= 0);
      require (m <
          0x4000000000000000000000000000000000000000000000000000000000000000);
      return int128 (sqrtu (uint256 (m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128 (x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x2 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x4 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x8 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
        if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
        if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
        if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
        if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
        if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }

        uint256 resultShift = 0;
        while (y != 0) {
          require (absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = absX * absX >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
              absX >>= 1;
              absXShift += 1;
          }

          y >>= 1;
        }

        require (resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256 (absResult) : int256 (absResult);
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    unchecked {
      require (x >= 0);
      return int128 (sqrtu (uint256 (int256 (x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 result = msb - 64 << 64;
      uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256 (b);
      }

      return int128 (result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      return int128 (int256 (
          uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (x & 0x4000000000000000 > 0)
        result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (x & 0x2000000000000000 > 0)
        result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (x & 0x1000000000000000 > 0)
        result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (x & 0x800000000000000 > 0)
        result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (x & 0x400000000000000 > 0)
        result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (x & 0x200000000000000 > 0)
        result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (x & 0x100000000000000 > 0)
        result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (x & 0x80000000000000 > 0)
        result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (x & 0x40000000000000 > 0)
        result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (x & 0x20000000000000 > 0)
        result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (x & 0x10000000000000 > 0)
        result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (x & 0x8000000000000 > 0)
        result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (x & 0x4000000000000 > 0)
        result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (x & 0x2000000000000 > 0)
        result = result * 0x1000162E525EE054754457D5995292026 >> 128;
      if (x & 0x1000000000000 > 0)
        result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (x & 0x800000000000 > 0)
        result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (x & 0x400000000000 > 0)
        result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (x & 0x200000000000 > 0)
        result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (x & 0x100000000000 > 0)
        result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (x & 0x80000000000 > 0)
        result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (x & 0x40000000000 > 0)
        result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (x & 0x20000000000 > 0)
        result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (x & 0x10000000000 > 0)
        result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (x & 0x8000000000 > 0)
        result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (x & 0x4000000000 > 0)
        result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (x & 0x2000000000 > 0)
        result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (x & 0x1000000000 > 0)
        result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (x & 0x800000000 > 0)
        result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (x & 0x400000000 > 0)
        result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (x & 0x200000000 > 0)
        result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (x & 0x100000000 > 0)
        result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (x & 0x80000000 > 0)
        result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (x & 0x40000000 > 0)
        result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (x & 0x20000000 > 0)
        result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (x & 0x10000000 > 0)
        result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (x & 0x8000000 > 0)
        result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (x & 0x4000000 > 0)
        result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (x & 0x2000000 > 0)
        result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (x & 0x1000000 > 0)
        result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (x & 0x800000 > 0)
        result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (x & 0x400000 > 0)
        result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (x & 0x200000 > 0)
        result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (x & 0x100000 > 0)
        result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (x & 0x80000 > 0)
        result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (x & 0x40000 > 0)
        result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (x & 0x20000 > 0)
        result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (x & 0x10000 > 0)
        result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (x & 0x8000 > 0)
        result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (x & 0x4000 > 0)
        result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (x & 0x2000 > 0)
        result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (x & 0x1000 > 0)
        result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (x & 0x800 > 0)
        result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (x & 0x400 > 0)
        result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (x & 0x200 > 0)
        result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (x & 0x100 > 0)
        result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (x & 0x80 > 0)
        result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (x & 0x40 > 0)
        result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (x & 0x20 > 0)
        result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (x & 0x10 > 0)
        result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (x & 0x8 > 0)
        result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (x & 0x4 > 0)
        result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (x & 0x2 > 0)
        result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (x & 0x1 > 0)
        result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

      result >>= uint256 (int256 (63 - (x >> 64)));
      require (result <= uint256 (int256 (MAX_64x64)));

      return int128 (int256 (result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return exp_2 (
          int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require (y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
        if (xc >= 0x10000) { xc >>= 16; msb += 16; }
        if (xc >= 0x100) { xc >>= 8; msb += 8; }
        if (xc >= 0x10) { xc >>= 4; msb += 4; }
        if (xc >= 0x4) { xc >>= 2; msb += 2; }
        if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

        result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
        require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        assert (xh == hi >> 128);

        result += xl / y;
      }

      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
        if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
        if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
        if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
        if (xx >= 0x100) { xx >>= 8; r <<= 4; }
        if (xx >= 0x10) { xx >>= 4; r <<= 2; }
        if (xx >= 0x8) { r <<= 1; }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128 (r < r1 ? r : r1);
      }
    }
  }
}

File 24 of 26 : EnumerableSet.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title Set implementation with enumeration functions
 * @dev derived from https://github.com/OpenZeppelin/openzeppelin-contracts (MIT license)
 */
library EnumerableSet {
    struct Set {
        bytes32[] _values;
        // 1-indexed to allow 0 to signify nonexistence
        mapping(bytes32 => uint256) _indexes;
    }

    struct Bytes32Set {
        Set _inner;
    }

    struct AddressSet {
        Set _inner;
    }

    struct UintSet {
        Set _inner;
    }

    function at(Bytes32Set storage set, uint256 index)
        internal
        view
        returns (bytes32)
    {
        return _at(set._inner, index);
    }

    function at(AddressSet storage set, uint256 index)
        internal
        view
        returns (address)
    {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    function at(UintSet storage set, uint256 index)
        internal
        view
        returns (uint256)
    {
        return uint256(_at(set._inner, index));
    }

    function contains(Bytes32Set storage set, bytes32 value)
        internal
        view
        returns (bool)
    {
        return _contains(set._inner, value);
    }

    function contains(AddressSet storage set, address value)
        internal
        view
        returns (bool)
    {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    function contains(UintSet storage set, uint256 value)
        internal
        view
        returns (bool)
    {
        return _contains(set._inner, bytes32(value));
    }

    function indexOf(Bytes32Set storage set, bytes32 value)
        internal
        view
        returns (uint256)
    {
        return _indexOf(set._inner, value);
    }

    function indexOf(AddressSet storage set, address value)
        internal
        view
        returns (uint256)
    {
        return _indexOf(set._inner, bytes32(uint256(uint160(value))));
    }

    function indexOf(UintSet storage set, uint256 value)
        internal
        view
        returns (uint256)
    {
        return _indexOf(set._inner, bytes32(value));
    }

    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    function add(Bytes32Set storage set, bytes32 value)
        internal
        returns (bool)
    {
        return _add(set._inner, value);
    }

    function add(AddressSet storage set, address value)
        internal
        returns (bool)
    {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    function remove(Bytes32Set storage set, bytes32 value)
        internal
        returns (bool)
    {
        return _remove(set._inner, value);
    }

    function remove(AddressSet storage set, address value)
        internal
        returns (bool)
    {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    function remove(UintSet storage set, uint256 value)
        internal
        returns (bool)
    {
        return _remove(set._inner, bytes32(value));
    }

    function _at(Set storage set, uint256 index)
        private
        view
        returns (bytes32)
    {
        require(
            set._values.length > index,
            'EnumerableSet: index out of bounds'
        );
        return set._values[index];
    }

    function _contains(Set storage set, bytes32 value)
        private
        view
        returns (bool)
    {
        return set._indexes[value] != 0;
    }

    function _indexOf(Set storage set, bytes32 value)
        private
        view
        returns (uint256)
    {
        unchecked {
            return set._indexes[value] - 1;
        }
    }

    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    function _remove(Set storage set, bytes32 value) private returns (bool) {
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            uint256 index = valueIndex - 1;
            bytes32 last = set._values[set._values.length - 1];

            // move last value to now-vacant index

            set._values[index] = last;
            set._indexes[last] = index + 1;

            // clear last index

            set._values.pop();
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }
}

File 25 of 26 : IERC1155Metadata.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title ERC1155Metadata interface
 */
interface IERC1155Metadata {
    /**
     * @notice get generated URI for given token
     * @return token URI
     */
    function uri(uint256 tokenId) external view returns (string memory);
}

File 26 of 26 : PremiaMiningStorage.sol
// SPDX-License-Identifier: BUSL-1.1
// For further clarification please see https://license.premia.legal

pragma solidity ^0.8.0;

library PremiaMiningStorage {
    bytes32 internal constant STORAGE_SLOT =
        keccak256("premia.contracts.storage.PremiaMining");

    // Info of each pool.
    struct PoolInfo {
        uint256 allocPoint; // How many allocation points assigned to this pool. PREMIA to distribute per block.
        uint256 lastRewardTimestamp; // Last timestamp that PREMIA distribution occurs
        uint256 accPremiaPerShare; // Accumulated PREMIA per share, times 1e12. See below.
    }

    // Info of each user.
    struct UserInfo {
        uint256 reward; // Total allocated unclaimed reward
        uint256 rewardDebt; // Reward debt. See explanation below.
        //
        // We do some fancy math here. Basically, any point in time, the amount of PREMIA
        // entitled to a user but is pending to be distributed is:
        //
        //   pending reward = (user.amount * pool.accPremiaPerShare) - user.rewardDebt
        //
        // Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
        //   1. The pool's `accPremiaPerShare` (and `lastRewardBlock`) gets updated.
        //   2. User receives the pending reward sent to his/her address.
        //   3. User's `amount` gets updated.
        //   4. User's `rewardDebt` gets updated.
    }

    struct Layout {
        // Total PREMIA left to distribute
        uint256 premiaAvailable;
        // Amount of premia distributed per year
        uint256 premiaPerYear;
        // pool -> isCallPool -> PoolInfo
        mapping(address => mapping(bool => PoolInfo)) poolInfo;
        // pool -> isCallPool -> user -> UserInfo
        mapping(address => mapping(bool => mapping(address => UserInfo))) userInfo;
        // Total allocation points. Must be the sum of all allocation points in all pools.
        uint256 totalAllocPoint;
    }

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"diamond","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"base","type":"address"},{"indexed":true,"internalType":"address","name":"underlying","type":"address"},{"indexed":true,"internalType":"int128","name":"initialCLevel64x64","type":"int128"},{"indexed":false,"internalType":"address","name":"baseOracle","type":"address"},{"indexed":false,"internalType":"address","name":"underlyingOracle","type":"address"},{"indexed":false,"internalType":"address","name":"pool","type":"address"}],"name":"DeployPool","type":"event"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"baseOracle","type":"address"},{"internalType":"address","name":"underlyingOracle","type":"address"},{"internalType":"int128","name":"baseMinimum64x64","type":"int128"},{"internalType":"int128","name":"underlyingMinimum64x64","type":"int128"},{"internalType":"int128","name":"basePoolCap64x64","type":"int128"},{"internalType":"int128","name":"underlyingPoolCap64x64","type":"int128"},{"internalType":"uint256","name":"miningAllocPoints","type":"uint256"}],"name":"deployPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"underlying","type":"address"}],"name":"getPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolList","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"}]

60a060405234801561001057600080fd5b50604051611f5a380380611f5a83398101604081905261002f91610040565b6001600160a01b0316608052610070565b60006020828403121561005257600080fd5b81516001600160a01b038116811461006957600080fd5b9392505050565b608051611ec86100926000396000818161022801526103820152611ec86000f3fe60806040523480156200001157600080fd5b5060043610620000465760003560e01c8063531aa03e146200004b578063815f1665146200007f578063d41dcbea1462000096575b600080fd5b620000626200005c36600462000586565b620000af565b6040516001600160a01b0390911681526020015b60405180910390f35b6200006262000090366004620005dc565b62000100565b620000a0620004d9565b60405162000076919062000696565b6001600160a01b0380831660009081527fbf3e41747c0252bce17f1a115c290ff82989734c042b7fc1b3dcbdfa0be3bdf36020908152604080832084861684529091528120549091165b9392505050565b60007f8a22373512790c48b83a1fe2efdd2888d4a917bcdc24d0adf63e60f671680460546001600160a01b03163314620001815760405162461bcd60e51b815260206004820152601d60248201527f4f776e61626c653a2073656e646572206d757374206265206f776e657200000060448201526064015b60405180910390fd5b6001600160a01b038a811660009081527fbf3e41747c0252bce17f1a115c290ff82989734c042b7fc1b3dcbdfa0be3bdf3602081815260408084208e861685529091529091205490911615620002245760405162461bcd60e51b815260206004820152602160248201527f50726f78794d616e616765723a20506f6f6c20616c72656164792065786973746044820152607360f81b606482015260840162000178565b60007f00000000000000000000000000000000000000000000000000000000000000008c8c8c8c8c8c8c8c6802b7e151628aed2a6b67800000000000000060405162000270906200055f565b6001600160a01b039b8c168152998b1660208b0152978a1660408a01529589166060890152939097166080870152600f91820b60a0870152810b60c086015294850b60e0850152840b610100840152830b61012083015290910b61014082015261016001604051809103906000f080158015620002f1573d6000803e3d6000fd5b50905062000338828d8d8c6001600160a01b0392831660009081526020948552604080822093851682529290945292208054919092166001600160a01b0319909116179055565b600182810180549182018155600090815260209081902090910180546001600160a01b0319166001600160a01b03848116919091179091556040805163029cf2a560e41b815290517f0000000000000000000000000000000000000000000000000000000000000000909216926329cf2a5092600480840193829003018186803b158015620003c657600080fd5b505afa158015620003db573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620004019190620006e5565b604051631954e55d60e11b81526001600160a01b0383811660048301526024820187905291909116906332a9caba90604401600060405180830381600087803b1580156200044e57600080fd5b505af115801562000463573d6000803e3d6000fd5b5050604080516001600160a01b038e811682528d81166020830152858116928201929092526802b7e151628aed2a6b9350818f169250908f16907f0eed1e2eaa02a25f3a4f1ed140a936cc03305fe46cda1a6dea432b4ed9be14919060600160405180910390a49b9a5050505050505050505050565b60607fbf3e41747c0252bce17f1a115c290ff82989734c042b7fc1b3dcbdfa0be3bdf36001018054806020026020016040519081016040528092919081815260200182805480156200055557602002820191906000526020600020905b81546001600160a01b0316815260019091019060200180831162000536575b5050505050905090565b61178d806200070683390190565b6001600160a01b03811681146200058357600080fd5b50565b600080604083850312156200059a57600080fd5b8235620005a7816200056d565b91506020830135620005b9816200056d565b809150509250929050565b8035600f81900b8114620005d757600080fd5b919050565b60008060008060008060008060006101208a8c031215620005fc57600080fd5b893562000609816200056d565b985060208a01356200061b816200056d565b975060408a01356200062d816200056d565b965060608a01356200063f816200056d565b95506200064f60808b01620005c4565b94506200065f60a08b01620005c4565b93506200066f60c08b01620005c4565b92506200067f60e08b01620005c4565b91506101008a013590509295985092959850929598565b6020808252825182820181905260009190848201906040850190845b81811015620006d95783516001600160a01b031683529284019291840191600101620006b2565b50909695505050505050565b600060208284031215620006f857600080fd5b8151620000f9816200056d56fe60a06040523480156200001157600080fd5b506040516200178d3803806200178d833981016040819052620000349162000aa7565b6001600160a01b038b1660805233620000586200038f602090811b6200014917901c565b60000160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600062000096620003b360201b6200016d1760201c565b80546001600160a01b03199081166001600160a01b038e8116919091178355600183018054909216908d161790559050620000df818a8a620003d7602090811b6200019117901c565b60008b6001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200011b57600080fd5b505afa15801562000130573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000156919062000b8a565b905060008b6001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200019457600080fd5b505afa158015620001a9573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620001cf919062000b8a565b60038401805461ffff60a01b1916600160a81b60ff8681169190910260ff60a01b191691909117600160a01b9184169190910217905590506200021f89836200054c602090811b620002f817901c565b83600401819055506200023e88826200054c60201b620002f81760201c565b83600501819055506200025d87836200054c60201b620002f81760201c565b83600601819055506200027c86826200054c60201b620002f81760201c565b6007840155600160801b6001600160801b0380861682810217601986015560088501805488831693840292169190911790556009840180546001600160801b03191690911790556000620002df846200031a6200057e602090811b91909117901c565b9050620002fd428286620006be60201b62000445179092919060201c565b4284600c01819055504284600a01819055504284600b0181905550505050506000620003336200074260201b620004cc1760201c565b9050620003596301ffc9a760e01b6001836200076660201b620004f0179092919060201c565b6200037d636cdb3d1360e11b6001836200076660201b620004f0179092919060201c565b50505050505050505050505062000d71565b7f8a22373512790c48b83a1fe2efdd2888d4a917bcdc24d0adf63e60f67168046090565b7fbbd6af8edd89d04327b00c29df7f272b9b1ae01bf6d9c54a784f935706df52eb90565b806001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200041157600080fd5b505afa15801562000426573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200044c919062000b8a565b60ff16826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200048957600080fd5b505afa1580156200049e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620004c4919062000b8a565b60ff16146200051a5760405162461bcd60e51b815260206004820181905260248201527f506f6f6c3a206f7261636c6520646563696d616c73206d757374206d6174636860448201526064015b60405180910390fd5b6002830180546001600160a01b03199081166001600160a01b0394851617909155600390930180549093169116179055565b6000620005776200055f83600a62000cc2565b84600f0b620007f060201b620005781790919060201c565b9392505050565b6000808260030160009054906101000a90046001600160a01b03166001600160a01b03166350d25bcd6040518163ffffffff1660e01b815260040160206040518083038186803b158015620005d257600080fd5b505afa158015620005e7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200060d919062000cd3565b905060008360020160009054906101000a90046001600160a01b03166001600160a01b03166350d25bcd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156200066257600080fd5b505afa15801562000677573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200069d919062000cd3565b9050620006b682826200085f60201b620005e21760201c565b949350505050565b6000620006ce610e108462000d03565b6000818152601186016020526040902080546001600160801b0319166001600160801b03851617905590506200070960ff8083169062000d26565b6001901b846012016000600884901c8152602001908152602001600020600082825462000737919062000d40565b909155505050505050565b7f326d0c59a7612f6a9919e2a8ee333c80ba689d8ba2634de89c85cbb04832e70590565b6001600160e01b03198083161415620007c25760405162461bcd60e51b815260206004820152601c60248201527f4552433136353a20696e76616c696420696e7465726661636520696400000000604482015260640162000511565b6001600160e01b03199190911660009081526020929092526040909120805460ff1916911515919091179055565b600081620008015750600062000859565b600083600f0b12156200081357600080fd5b600f83900b6001600160801b038316810260401c90608084901c026001600160c01b038111156200084357600080fd5b60401b81198111156200085557600080fd5b0190505b92915050565b6000816200086c57600080fd5b6000808412156200088257836000039350600190505b6000831215620008955760009290920391155b6000620008a38585620008fc565b90508115620008d4576001607f1b816001600160801b03161115620008c757600080fd5b6000039150620008599050565b60016001607f1b03816001600160801b03161115620008f257600080fd5b9150620008599050565b6000816200090957600080fd5b60006001600160c01b038411620009395782604085901b8162000930576200093062000ced565b04905062000a62565b60c084811c640100000000811062000953576020918201911c5b62010000811062000966576010918201911c5b610100811062000978576008918201911c5b6010811062000989576004918201911c5b600481106200099a576002918201911c5b60028110620009aa576001820191505b60bf820360018603901c6001018260ff0387901b81620009ce57620009ce62000ced565b0492506001600160801b03831115620009e657600080fd5b608085901c83026001600160801b038616840260c088901c604089901b8281101562000a13576001820391505b608084901b9290038281101562000a2b576001820391505b829003608084901c821462000a445762000a4462000d5b565b88818162000a565762000a5662000ced565b04870196505050505050505b6001600160801b038111156200057757600080fd5b80516001600160a01b038116811462000a8f57600080fd5b919050565b8051600f81900b811462000a8f57600080fd5b60008060008060008060008060008060006101608c8e03121562000aca57600080fd5b62000ad58c62000a77565b9a5062000ae560208d0162000a77565b995062000af560408d0162000a77565b985062000b0560608d0162000a77565b975062000b1560808d0162000a77565b965062000b2560a08d0162000a94565b955062000b3560c08d0162000a94565b945062000b4560e08d0162000a94565b935062000b566101008d0162000a94565b925062000b676101208d0162000a94565b915062000b786101408d0162000a94565b90509295989b509295989b9093969950565b60006020828403121562000b9d57600080fd5b815160ff811681146200057757600080fd5b634e487b7160e01b600052601160045260246000fd5b600181815b8085111562000c0657816000190482111562000bea5762000bea62000baf565b8085161562000bf857918102915b93841c939080029062000bca565b509250929050565b60008262000c1f5750600162000859565b8162000c2e5750600062000859565b816001811462000c47576002811462000c525762000c72565b600191505062000859565b60ff84111562000c665762000c6662000baf565b50506001821b62000859565b5060208310610133831016604e8410600b841016171562000c97575081810a62000859565b62000ca3838362000bc5565b806000190482111562000cba5762000cba62000baf565b029392505050565b60006200057760ff84168362000c0e565b60006020828403121562000ce657600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b60008262000d2157634e487b7160e01b600052601260045260246000fd5b500490565b60008282101562000d3b5762000d3b62000baf565b500390565b6000821982111562000d565762000d5662000baf565b500190565b634e487b7160e01b600052600160045260246000fd5b608051610a0162000d8c600039600060c20152610a016000f3fe6080604052600061000e61009f565b90506001600160a01b0381163b61007b5760405162461bcd60e51b815260206004820152602660248201527f50726f78793a20696d706c656d656e746174696f6e206d75737420626520636f6044820152651b9d1c9858dd60d21b60648201526084015b60405180910390fd5b3660008037600080366000845af43d6000803e80801561009a573d6000f35b3d6000fd5b6040516366ffd66360e11b8152600080356001600160e01b0319166004830152907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063cdffacc69060240160206040518083038186803b15801561010c57600080fd5b505afa158015610120573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061014491906107e0565b905090565b7f8a22373512790c48b83a1fe2efdd2888d4a917bcdc24d0adf63e60f67168046090565b7fbbd6af8edd89d04327b00c29df7f272b9b1ae01bf6d9c54a784f935706df52eb90565b806001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156101ca57600080fd5b505afa1580156101de573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102029190610809565b60ff16826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b15801561023e57600080fd5b505afa158015610252573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102769190610809565b60ff16146102c65760405162461bcd60e51b815260206004820181905260248201527f506f6f6c3a206f7261636c6520646563696d616c73206d757374206d617463686044820152606401610072565b6002830180546001600160a01b03199081166001600160a01b0394851617909155600390930180549093169116179055565b600061031361030883600a610926565b600f85900b90610578565b9392505050565b6000808260030160009054906101000a90046001600160a01b03166001600160a01b03166350d25bcd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561036d57600080fd5b505afa158015610381573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103a59190610935565b905060008360020160009054906101000a90046001600160a01b03166001600160a01b03166350d25bcd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156103f957600080fd5b505afa15801561040d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104319190610935565b905061043d82826105e2565b949350505050565b6000610453610e1084610964565b6000818152601186016020526040902080546fffffffffffffffffffffffffffffffff19166001600160801b038516179055905061049560ff80831690610986565b6001901b846012016000600884901c815260200190815260200160002060008282546104c1919061099d565b909155505050505050565b7f326d0c59a7612f6a9919e2a8ee333c80ba689d8ba2634de89c85cbb04832e70590565b6001600160e01b0319808316141561054a5760405162461bcd60e51b815260206004820152601c60248201527f4552433136353a20696e76616c696420696e74657266616365206964000000006044820152606401610072565b6001600160e01b03199190911660009081526020929092526040909120805460ff1916911515919091179055565b600081610587575060006105dc565b600083600f0b121561059857600080fd5b600f83900b6001600160801b038316810260401c90608084901c026001600160c01b038111156105c757600080fd5b60401b81198111156105d857600080fd5b0190505b92915050565b6000816105ee57600080fd5b60008084121561060357836000039350600190505b60008312156106155760009290920391155b6000610621858561067e565b9050811561064f576001607f1b816001600160801b0316111561064357600080fd5b60000391506105dc9050565b6f7fffffffffffffffffffffffffffffff816001600160801b0316111561067557600080fd5b91506105dc9050565b60008161068a57600080fd5b60006001600160c01b0384116106b55782604085901b816106ad576106ad61094e565b0490506107cc565b60c084811c64010000000081106106ce576020918201911c5b6201000081106106e0576010918201911c5b61010081106106f1576008918201911c5b60108110610701576004918201911c5b60048110610711576002918201911c5b60028110610720576001820191505b60bf820360018603901c6001018260ff0387901b816107415761074161094e565b0492506001600160801b0383111561075857600080fd5b608085901c83026001600160801b038616840260c088901c604089901b82811015610784576001820391505b608084901b9290038281101561079b576001820391505b829003608084901c82146107b1576107b16109b5565b8881816107c0576107c061094e565b04870196505050505050505b6001600160801b0381111561031357600080fd5b6000602082840312156107f257600080fd5b81516001600160a01b038116811461031357600080fd5b60006020828403121561081b57600080fd5b815160ff8116811461031357600080fd5b634e487b7160e01b600052601160045260246000fd5b600181815b8085111561087d5781600019048211156108635761086361082c565b8085161561087057918102915b93841c9390800290610847565b509250929050565b600082610894575060016105dc565b816108a1575060006105dc565b81600181146108b757600281146108c1576108dd565b60019150506105dc565b60ff8411156108d2576108d261082c565b50506001821b6105dc565b5060208310610133831016604e8410600b8410161715610900575081810a6105dc565b61090a8383610842565b806000190482111561091e5761091e61082c565b029392505050565b600061031360ff841683610885565b60006020828403121561094757600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b60008261098157634e487b7160e01b600052601260045260246000fd5b500490565b6000828210156109985761099861082c565b500390565b600082198211156109b0576109b061082c565b500190565b634e487b7160e01b600052600160045260246000fdfea2646970667358221220cc6c47375c24676fe6b920997d5d09215a56418e8ec4e28bc68e3722d8a9e4e164736f6c63430008090033a2646970667358221220414be34176fe112b4c5facb71d5aecbcaeecef24a33e0edaa59e6b6753a645c064736f6c63430008090033000000000000000000000000ad74c7c6485b65dc1e38342d390f72d85dee3411

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000ad74c7c6485b65dc1e38342d390f72d85dee3411

-----Decoded View---------------
Arg [0] : diamond (address): 0xad74c7c6485b65dc1e38342d390f72d85dee3411

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ad74c7c6485b65dc1e38342d390f72d85dee3411


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.