Contract Overview
Balance:
0 ETH
ETH Value:
$0.00
My Name Tag:
Not Available
Txn Hash | Method |
Block
|
From
|
To
|
Value | [Txn Fee] | |||
---|---|---|---|---|---|---|---|---|---|
0x94365c037c6082346f07915bd7792478f6a2264e60ccf2e71e47058a43dba13b | 0x60806040 | 35279685 | 145 days 21 hrs ago | 0xb013abd83f0bd173e9f14ce7d6e420ad711483b4 | IN | Create: TreasureNFTPriceTracker | 0 ETH | 0.00031728 |
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Name:
TreasureNFTPriceTracker
Compiler Version
v0.8.12+commit.f00d7308
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.12; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import {PRBMathUD60x18} from "@prb/math/contracts/PRBMathUD60x18.sol"; import {ITreasureNFTPriceTracker, FloorType} from "./interfaces/ITreasureNFTPriceTracker.sol"; import {ILegionMetadataStore, LegionGeneration, LegionRarity} from "./interfaces/ILegionMetadataStore.sol"; contract TreasureNFTPriceTracker is ITreasureNFTPriceTracker, OwnableUpgradeable { using PRBMathUD60x18 for uint256; address public treasureMarketplaceContract; address public legionContract; address public legionMetadata; mapping(address => mapping(FloorType => uint256)) internal collectionToFloorTypeToPriceAvg; /// @notice Perform initial contract setup /// @dev The initializer modifier ensures this is only called once, the owner should confirm this was properly /// performed before publishing this contract address. /// @param _treasureMarketplaceContract address of treasure marketplace /// @param _legionContract address of the legion collection function initialize( address _treasureMarketplaceContract, address _legionContract, address _legionMetadata ) external initializer { require(address(_treasureMarketplaceContract) != address(0), "TreasureNFTPricing: cannot set address(0)"); require(address(_legionContract) != address(0), "TreasureNFTPricing: cannot set address(0)"); __Ownable_init(); treasureMarketplaceContract = _treasureMarketplaceContract; legionContract = _legionContract; legionMetadata = _legionMetadata; } /// @notice Record sale price and update floor pricing averages /// @dev If an average does not yet exist, the new average will be _salePrice /// avg will be stored as FloorType.FLOOR unless special sub-floor criteria is met /// @param _collection Address of the collection that had a token sale /// @param _tokenId The token sold /// @param _salePrice The amount the sale was for function recordSale( address _collection, uint256 _tokenId, uint256 _salePrice ) external { require(msg.sender == treasureMarketplaceContract, "Invalid caller"); if(_collection != legionContract) { return; } (LegionGeneration gen,LegionRarity rarity) = ILegionMetadataStore(legionMetadata).genAndRarityForLegion(_tokenId); if(gen != LegionGeneration.GENESIS) { return; } FloorType floorType; if(rarity == LegionRarity.COMMON) { floorType = FloorType.SUBFLOOR1; } else if(rarity == LegionRarity.UNCOMMON) { floorType = FloorType.SUBFLOOR2; } else if(rarity == LegionRarity.RARE) { floorType = FloorType.SUBFLOOR3; } else { return; } uint256 oldAverage = collectionToFloorTypeToPriceAvg[legionContract][floorType]; uint256 newAverage; if(oldAverage == 0) { newAverage = _salePrice; } else { newAverage = PRBMathUD60x18.avg(oldAverage, _salePrice); } collectionToFloorTypeToPriceAvg[legionContract][floorType] = newAverage; emit AveragePriceUpdated( legionContract, floorType, oldAverage, _salePrice, newAverage ); } /// @notice Return the current floor average for a given collection /// @dev Provide a floor type to receive a recorded sub-floor average /// Collections not containing subfloor records should be queried with FloorType.FLOOR /// @param _collection address of collection to get floor price average of /// @param _floorType the sub-floor average of the given collection function getAveragePriceForCollection(address _collection, FloorType _floorType) external view returns (uint256) { return collectionToFloorTypeToPriceAvg[_collection][_floorType]; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.12; interface ITreasureNFTPriceTracker { event AveragePriceUpdated( address indexed _collection, FloorType indexed _floorType, uint256 _oldAverage, uint256 _salePrice, uint256 _newAverage ); // Saves the given sale of a token in a collection if it meets the saving criteria. function recordSale(address _collection, uint256 _tokenId, uint256 _salePrice) external; // Returns the average price for the given collection in the floor type category. // Can return 0 if asking for a FloorType that isn't being tracked for that given collection function getAveragePriceForCollection(address _collection, FloorType _floorType) external view returns (uint256); } // Allows for customization within tracking floor prices // Ex: Tracking legion genesis commons could be subfloor1, genesis uncommons subfloor2, etc enum FloorType { FLOOR, SUBFLOOR1, SUBFLOOR2, SUBFLOOR3 }
// SPDX-License-Identifier: MIT pragma solidity 0.8.12; interface ILegionMetadataStore { // Returns the generation and rarity for the given legion. function genAndRarityForLegion(uint256 _tokenId) external view returns(LegionGeneration, LegionRarity); } enum LegionRarity { LEGENDARY, RARE, SPECIAL, UNCOMMON, COMMON, RECRUIT } enum LegionGeneration { GENESIS, AUXILIARY, RECRUIT }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.0; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() initializer {} * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { // If the contract is initializing we ignore whether _initialized is set in order to support multiple // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the // contract may have been reentered. require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} modifier, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_collection","type":"address"},{"indexed":true,"internalType":"enum FloorType","name":"_floorType","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"_oldAverage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_salePrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_newAverage","type":"uint256"}],"name":"AveragePriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"_collection","type":"address"},{"internalType":"enum FloorType","name":"_floorType","type":"uint8"}],"name":"getAveragePriceForCollection","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_treasureMarketplaceContract","type":"address"},{"internalType":"address","name":"_legionContract","type":"address"},{"internalType":"address","name":"_legionMetadata","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"legionContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"legionMetadata","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_collection","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"recordSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasureMarketplaceContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b5061098d806100206000396000f3fe608060405234801561001057600080fd5b50600436106100935760003560e01c80638bf69d10116100665780638bf69d10146101065780638da5cb5b14610119578063c0c53b8b1461012a578063c99606091461013d578063f2fde38b1461015057600080fd5b8063086efe05146100985780635a0dd041146100ad5780635c8cd012146100dd578063715018a6146100fe575b600080fd5b6100ab6100a63660046107a3565b610163565b005b6066546100c0906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100f06100eb3660046107d6565b61040a565b6040519081526020016100d4565b6100ab61045d565b6067546100c0906001600160a01b031681565b6033546001600160a01b03166100c0565b6100ab610138366004610811565b6104c3565b6065546100c0906001600160a01b031681565b6100ab61015e366004610854565b610610565b6065546001600160a01b031633146101b35760405162461bcd60e51b815260206004820152600e60248201526d24b73b30b634b21031b0b63632b960911b60448201526064015b60405180910390fd5b6066546001600160a01b038481169116146101cd57505050565b60675460405163058f37e360e51b81526004810184905260009182916001600160a01b039091169063b1e6fc60906024016040805180830381865afa15801561021a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061023e9190610876565b90925090506000826002811115610257576102576108ad565b14610263575050505050565b60006004826005811115610279576102796108ad565b1415610287575060016102d3565b600382600581111561029b5761029b6108ad565b14156102a9575060026102d3565b60018260058111156102bd576102bd6108ad565b14156102cb575060036102d3565b505050505050565b6066546001600160a01b0316600090815260686020526040812081836003811115610300576103006108ad565b6003811115610311576103116108ad565b81526020019081526020016000205490506000816000141561033457508461034e565b61034b8287600182811c82821c0192909116160190565b90505b6066546001600160a01b03166000908152606860205260408120829185600381111561037c5761037c6108ad565b600381111561038d5761038d6108ad565b81526020810191909152604001600020558260038111156103b0576103b06108ad565b60665460408051858152602081018a90529081018490526001600160a01b03909116907f94ce7d95088db68446c2873749e58bf5c6c30caba0b50c329f61a3f54127fe059060600160405180910390a35050505050505050565b6001600160a01b038216600090815260686020526040812081836003811115610435576104356108ad565b6003811115610446576104466108ad565b815260200190815260200160002054905092915050565b6033546001600160a01b031633146104b75760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101aa565b6104c160006106db565b565b600054610100900460ff166104de5760005460ff16156104e2565b303b155b6105455760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084016101aa565b600054610100900460ff16158015610567576000805461ffff19166101011790555b6001600160a01b03841661058d5760405162461bcd60e51b81526004016101aa906108c3565b6001600160a01b0383166105b35760405162461bcd60e51b81526004016101aa906108c3565b6105bb61072d565b606580546001600160a01b038087166001600160a01b031992831617909255606680548684169083161790556067805492851692909116919091179055801561060a576000805461ff00191690555b50505050565b6033546001600160a01b0316331461066a5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101aa565b6001600160a01b0381166106cf5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016101aa565b6106d8816106db565b50565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600054610100900460ff166107545760405162461bcd60e51b81526004016101aa9061090c565b6104c1600054610100900460ff1661077e5760405162461bcd60e51b81526004016101aa9061090c565b6104c1336106db565b80356001600160a01b038116811461079e57600080fd5b919050565b6000806000606084860312156107b857600080fd5b6107c184610787565b95602085013595506040909401359392505050565b600080604083850312156107e957600080fd5b6107f283610787565b915060208301356004811061080657600080fd5b809150509250929050565b60008060006060848603121561082657600080fd5b61082f84610787565b925061083d60208501610787565b915061084b60408501610787565b90509250925092565b60006020828403121561086657600080fd5b61086f82610787565b9392505050565b6000806040838503121561088957600080fd5b82516003811061089857600080fd5b60208401519092506006811061080657600080fd5b634e487b7160e01b600052602160045260246000fd5b60208082526029908201527f54726561737572654e465450726963696e673a2063616e6e6f7420736574206160408201526864647265737328302960b81b606082015260800190565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b60608201526080019056fea264697066735822122046ec08b3c36538031e89cae79425811d6344eedf95cb3dfc629e3fc6b18179b664736f6c634300080c0033
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.