Contract Overview
Balance:
0 ETH
ETH Value:
$0.00
My Name Tag:
Not Available
Txn Hash | Method |
Block
|
From
|
To
|
Value | [Txn Fee] | |||
---|---|---|---|---|---|---|---|---|---|
0x0725c0a28e50975cafa137498173a512a6cc3ea513dc392f423ad9e8e4693f40 | 0x60806040 | 25975633 | 137 days 12 hrs ago | 0xa67d0c1180e0e183f482304a9b5436a3478f0674 | IN | Create: VolatilityFeed | 0 ETH | 0.00047701 |
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Name:
VolatilityFeed
Compiler Version
v0.8.14+commit.80d49f37
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.8.9; import "./libraries/AccessControl.sol"; import "./libraries/CustomErrors.sol"; import "./libraries/SABR.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; /** * @title Contract used as the Dynamic Hedging Vault for storing funds, issuing shares and processing options transactions * @dev Interacts with liquidity pool to feed in volatility data. */ contract VolatilityFeed is AccessControl { using PRBMathSD59x18 for int256; using PRBMathUD60x18 for uint256; ////////////////////////// /// settable variables /// ////////////////////////// // Parameters for the sabr volatility model mapping(uint256 => SABRParams) public sabrParams; // keeper mapping mapping(address => bool) public keeper; // expiry array uint256[] public expiries; ////////////////////////// /// constant variables /// ////////////////////////// // number of seconds in a year used for calculations int256 private constant ONE_YEAR_SECONDS = 31557600; int256 private constant BIPS_SCALE = 1e12; int256 private constant BIPS = 1e6; struct SABRParams { int32 callAlpha; // not bigger or less than an int32 and above 0 int32 callBeta; // greater than 0 and less than or equal to 1 int32 callRho; // between 1 and -1 int32 callVolvol; // not bigger or less than an int32 and above 0 int32 putAlpha; int32 putBeta; int32 putRho; int32 putVolvol; } constructor(address _authority) AccessControl(IAuthority(_authority)) {} /////////////// /// setters /// /////////////// error AlphaError(); error BetaError(); error RhoError(); error VolvolError(); event SabrParamsSet( uint256 indexed _expiry, int32 callAlpha, int32 callBeta, int32 callRho, int32 callVolvol, int32 putAlpha, int32 putBeta, int32 putRho, int32 putVolvol ); /** * @notice set the sabr volatility params * @param _sabrParams set the SABR parameters * @param _expiry the expiry that the SABR parameters represent * @dev only keepers can call this function */ function setSabrParameters(SABRParams memory _sabrParams, uint256 _expiry) external { _isKeeper(); if (_sabrParams.callAlpha <= 0 || _sabrParams.putAlpha <= 0) { revert AlphaError(); } if (_sabrParams.callVolvol <= 0 || _sabrParams.putVolvol <= 0) { revert VolvolError(); } if ( _sabrParams.callBeta <= 0 || _sabrParams.callBeta > BIPS || _sabrParams.putBeta <= 0 || _sabrParams.putBeta > BIPS ) { revert BetaError(); } if ( _sabrParams.callRho <= -BIPS || _sabrParams.callRho >= BIPS || _sabrParams.putRho <= -BIPS || _sabrParams.putRho >= BIPS ) { revert RhoError(); } // if the expiry is not already a registered expiry then add it to the expiry list if(sabrParams[_expiry].callAlpha == 0) { expiries.push(_expiry); } sabrParams[_expiry] = _sabrParams; emit SabrParamsSet( _expiry, _sabrParams.callAlpha, _sabrParams.callBeta, _sabrParams.callRho, _sabrParams.callVolvol, _sabrParams.putAlpha, _sabrParams.putBeta, _sabrParams.putRho, _sabrParams.putVolvol ); } /// @notice update the keepers function setKeeper(address _keeper, bool _auth) external { _onlyGovernor(); keeper[_keeper] = _auth; } /////////////////////// /// complex getters /// /////////////////////// /** * @notice get the current implied volatility from the feed * @param isPut Is the option a call or put? * @param underlyingPrice The underlying price * @param strikePrice The strike price of the option * @param expiration expiration timestamp of option as a PRBMath Float * @return Implied volatility adjusted for volatility surface */ function getImpliedVolatility( bool isPut, uint256 underlyingPrice, uint256 strikePrice, uint256 expiration ) external view returns (uint256) { int256 time = (int256(expiration) - int256(block.timestamp)).div(ONE_YEAR_SECONDS); int256 vol; SABRParams memory sabrParams_ = sabrParams[expiration]; if (sabrParams_.callAlpha == 0) { revert CustomErrors.IVNotFound(); } if (!isPut) { vol = SABR.lognormalVol( int256(strikePrice), int256(underlyingPrice), time, sabrParams_.callAlpha * BIPS_SCALE, sabrParams_.callBeta * BIPS_SCALE, sabrParams_.callRho * BIPS_SCALE, sabrParams_.callVolvol * BIPS_SCALE ); } else { vol = SABR.lognormalVol( int256(strikePrice), int256(underlyingPrice), time, sabrParams_.putAlpha * BIPS_SCALE, sabrParams_.putBeta * BIPS_SCALE, sabrParams_.putRho * BIPS_SCALE, sabrParams_.putVolvol * BIPS_SCALE ); } if (vol <= 0) { revert CustomErrors.IVNotFound(); } return uint256(vol); } /** @notice get the expiry array @return the expiry array */ function getExpiries() external view returns (uint256[] memory) { return expiries; } /// @dev keepers, managers or governors can access function _isKeeper() internal view { if ( !keeper[msg.sender] && msg.sender != authority.governor() && msg.sender != authority.manager() ) { revert CustomErrors.NotKeeper(); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface CustomErrors { error NotKeeper(); error IVNotFound(); error NotHandler(); error VaultExpired(); error InvalidInput(); error InvalidPrice(); error InvalidBuyer(); error InvalidOrder(); error OrderExpired(); error InvalidAmount(); error TradingPaused(); error InvalidAddress(); error IssuanceFailed(); error EpochNotClosed(); error InvalidDecimals(); error TradingNotPaused(); error NotLiquidityPool(); error DeltaNotDecreased(); error NonExistentOtoken(); error OrderExpiryTooLong(); error InvalidShareAmount(); error ExistingWithdrawal(); error TotalSupplyReached(); error StrikeAssetInvalid(); error OptionStrikeInvalid(); error OptionExpiryInvalid(); error NoExistingWithdrawal(); error SpotMovedBeyondRange(); error ReactorAlreadyExists(); error CollateralAssetInvalid(); error UnderlyingAssetInvalid(); error CollateralAmountInvalid(); error WithdrawExceedsLiquidity(); error InsufficientShareBalance(); error MaxLiquidityBufferReached(); error LiabilitiesGreaterThanAssets(); error CustomOrderInsufficientPrice(); error CustomOrderInvalidDeltaValue(); error DeltaQuoteError(uint256 quote, int256 delta); error TimeDeltaExceedsThreshold(uint256 timeDelta); error PriceDeltaExceedsThreshold(uint256 priceDelta); error StrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeLiquidity); error MinStrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeAmountMin); error UnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingLiquidity); error MinUnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingAmountMin); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IAuthority.sol"; error UNAUTHORIZED(); /** * @title Contract used for access control functionality, based off of OlympusDao Access Control */ abstract contract AccessControl { /* ========== EVENTS ========== */ event AuthorityUpdated(IAuthority authority); /* ========== STATE VARIABLES ========== */ IAuthority public authority; /* ========== Constructor ========== */ constructor(IAuthority _authority) { authority = _authority; emit AuthorityUpdated(_authority); } /* ========== GOV ONLY ========== */ function setAuthority(IAuthority _newAuthority) external { _onlyGovernor(); authority = _newAuthority; emit AuthorityUpdated(_newAuthority); } /* ========== INTERNAL CHECKS ========== */ function _onlyGovernor() internal view { if (msg.sender != authority.governor()) revert UNAUTHORIZED(); } function _onlyGuardian() internal view { if (!authority.guardian(msg.sender) && msg.sender != authority.governor()) revert UNAUTHORIZED(); } function _onlyManager() internal view { if (msg.sender != authority.manager() && msg.sender != authority.governor()) revert UNAUTHORIZED(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMath.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; library SABR { using PRBMathSD59x18 for int256; int256 private constant eps = 1e11; struct IntermediateVariables { int256 a; int256 b; int256 c; int256 d; int256 v; int256 w; int256 z; int256 k; int256 f; int256 t; } function lognormalVol( int256 k, int256 f, int256 t, int256 alpha, int256 beta, int256 rho, int256 volvol ) internal pure returns (int256 iv) { // Hagan's 2002 SABR lognormal vol expansion. // negative strikes or forwards if (k <= 0 || f <= 0) { return 0; } IntermediateVariables memory vars; vars.k = k; vars.f = f; vars.t = t; if (beta == 1e18) { vars.a = 0; vars.v = 0; vars.w = 0; } else { vars.a = ((1e18 - beta).pow(2e18)).mul(alpha.pow(2e18)).div( int256(24e18).mul(_fkbeta(vars.f, vars.k, beta)) ); vars.v = ((1e18 - beta).pow(2e18)).mul(_logfk(vars.f, vars.k).powu(2)).div(24e18); vars.w = ((1e18 - beta).pow(4e18)).mul(_logfk(vars.f, vars.k).powu(4)).div(1920e18); } vars.b = int256(25e16).mul(rho).mul(beta).mul(volvol).mul(alpha).div( _fkbeta(vars.f, vars.k, beta).sqrt() ); vars.c = (2e18 - int256(3e18).mul(rho.powu(2))).mul(volvol.pow(2e18)).div(24e18); vars.d = _fkbeta(vars.f, vars.k, beta).sqrt(); vars.z = volvol.mul(_fkbeta(vars.f, vars.k, beta).sqrt()).mul(_logfk(vars.f, vars.k)).div(alpha); // if |z| > eps if (vars.z.abs() > eps) { int256 vz = alpha.mul(vars.z).mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div( vars.d.mul(1e18 + vars.v + vars.w).mul(_x(rho, vars.z)) ); return vz; // if |z| <= eps } else { int256 v0 = alpha.mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div( vars.d.mul(1e18 + vars.v + vars.w) ); return v0; } } function _logfk(int256 f, int256 k) internal pure returns (int256) { return (f.div(k)).ln(); } function _fkbeta( int256 f, int256 k, int256 beta ) internal pure returns (int256) { return (f.mul(k)).pow(1e18 - beta); } function _x(int256 rho, int256 z) internal pure returns (int256) { int256 a = (1e18 - 2 * rho.mul(z) + z.powu(2)).sqrt() + z - rho; int256 b = 1e18 - rho; return (a.div(b)).ln(); } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant LOG2_E = 1_442695040888963407; /// @dev Half the SCALE number. int256 internal constant HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev The minimum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev How many trailing decimals can be represented. int256 internal constant SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than MIN_SD59x18. /// /// @param x The number to calculate the absolute value for. /// @param result The absolute value of x. function abs(int256 x) internal pure returns (int256 result) { unchecked { if (x == MIN_SD59x18) { revert PRBMathSD59x18__AbsInputTooSmall(); } result = x < 0 ? -x : x; } } /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number. function avg(int256 x, int256 y) internal pure returns (int256 result) { // The operations can never overflow. unchecked { int256 sum = (x >> 1) + (y >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the // right rounds down to infinity. assembly { result := add(sum, and(or(x, y), 1)) } } else { // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5 // remainder gets truncated twice. result = sum + (x & y & 1); } } } /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number. function ceil(int256 x) internal pure returns (int256 result) { if (x > MAX_WHOLE_SD59x18) { revert PRBMathSD59x18__CeilOverflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x > 0) { result += SCALE; } } } } /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - All from "PRBMath.mulDiv". /// - None of the inputs can be MIN_SD59x18. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from "PRBMath.mulDiv". /// /// @param x The numerator as a signed 59.18-decimal fixed-point number. /// @param y The denominator as a signed 59.18-decimal fixed-point number. /// @param result The quotient as a signed 59.18-decimal fixed-point number. function div(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__DivInputTooSmall(); } // Get hold of the absolute values of x and y. uint256 ax; uint256 ay; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); } // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256. uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__DivOverflow(rAbs); } // Get the signs of x and y. uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result // should be positive. Otherwise, it should be negative. result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (int256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from "exp2". /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59.794705707972522261. if (x < -41_446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathSD59x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^(-x) = 1/2^x. if (x < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (x < -59_794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathSD59x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 192. result = int256(PRBMath.exp2(x192x64)); } } } /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to MIN_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number. function floor(int256 x) internal pure returns (int256 result) { if (x < MIN_WHOLE_SD59x18) { revert PRBMathSD59x18__FloorUnderflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x < 0) { result -= SCALE; } } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number. function frac(int256 x) internal pure returns (int256 result) { unchecked { result = x % SCALE; } } /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE. /// - x must be less than or equal to MAX_SD59x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in signed 59.18-decimal fixed-point representation. function fromInt(int256 x) internal pure returns (int256 result) { unchecked { if (x < MIN_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntUnderflow(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_SD59x18, lest it overflows. /// - x * y cannot be negative. /// /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function gm(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. int256 xy = x * y; if (xy / x != y) { revert PRBMathSD59x18__GmOverflow(x, y); } // The product cannot be negative. if (xy < 0) { revert PRBMathSD59x18__GmNegativeProduct(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = int256(PRBMath.sqrt(uint256(xy))); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as a signed 59.18-decimal fixed-point number. function inv(int256 x) internal pure returns (int256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number. function ln(int256 x) internal pure returns (int256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as a signed 59.18-decimal fixed-point number. function log10(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } default { result := MAX_SD59x18 } } if (result == MAX_SD59x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number. function log2(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } unchecked { // This works because log2(x) = -log2(1/x). int256 sign; if (x >= SCALE) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. assembly { x := div(1000000000000000000000000000000000000, x) } } // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE)); // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1. result = int256(n) * SCALE; // This is y = x * 2^(-n). int256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result * sign; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result *= sign; } } /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal /// fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is /// always 1e18. /// /// Requirements: /// - All from "PRBMath.mulDivFixedPoint". /// - None of the inputs can be MIN_SD59x18 /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// /// @param x The multiplicand as a signed 59.18-decimal fixed-point number. /// @param y The multiplier as a signed 59.18-decimal fixed-point number. /// @return result The product as a signed 59.18-decimal fixed-point number. function mul(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__MulInputTooSmall(); } unchecked { uint256 ax; uint256 ay; ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__MulOverflow(rAbs); } uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } } /// @notice Returns PI as a signed 59.18-decimal fixed-point number. function pi() internal pure returns (int256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// - z cannot be zero. /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number. /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number. /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number. function pow(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { result = y == 0 ? SCALE : int256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from "abs" and "PRBMath.mulDivFixedPoint". /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - All from "PRBMath.mulDivFixedPoint". /// - Assumes 0^0 is 1. /// /// @param x The base as a signed 59.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as a signed 59.18-decimal fixed-point number. function powu(int256 x, uint256 y) internal pure returns (int256 result) { uint256 xAbs = uint256(abs(x)); // Calculate the first iteration of the loop in advance. uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs); } } // The result must fit within the 59.18-decimal fixed-point representation. if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__PowuOverflow(rAbs); } // Is the base negative and the exponent an odd number? bool isNegative = x < 0 && y & 1 == 1; result = isNegative ? -int256(rAbs) : int256(rAbs); } /// @notice Returns 1 as a signed 59.18-decimal fixed-point number. function scale() internal pure returns (int256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative. /// - x must be less than MAX_SD59x18 / SCALE. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as a signed 59.18-decimal fixed-point . function sqrt(int256 x) internal pure returns (int256 result) { unchecked { if (x < 0) { revert PRBMathSD59x18__SqrtNegativeInput(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = int256(PRBMath.sqrt(uint256(x * SCALE))); } } /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The signed 59.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toInt(int256 x) internal pure returns (int256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: AGPL-3.0 pragma solidity >=0.8.0; interface IAuthority { /* ========== EVENTS ========== */ event GovernorPushed(address indexed from, address indexed to); event GuardianPushed(address indexed to); event ManagerPushed(address indexed from, address indexed to); event GovernorPulled(address indexed from, address indexed to); event GuardianRevoked(address indexed to); event ManagerPulled(address indexed from, address indexed to); /* ========== VIEW ========== */ function governor() external view returns (address); function guardian(address _target) external view returns (bool); function manager() external view returns (address); }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_authority","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlphaError","type":"error"},{"inputs":[],"name":"BetaError","type":"error"},{"inputs":[],"name":"IVNotFound","type":"error"},{"inputs":[],"name":"NotKeeper","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__AbsInputTooSmall","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__DivInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__DivOverflow","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__LogInputTooSmall","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__MulInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__MulOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__PowuOverflow","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__SqrtNegativeInput","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__SqrtOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"RhoError","type":"error"},{"inputs":[],"name":"UNAUTHORIZED","type":"error"},{"inputs":[],"name":"VolvolError","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IAuthority","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_expiry","type":"uint256"},{"indexed":false,"internalType":"int32","name":"callAlpha","type":"int32"},{"indexed":false,"internalType":"int32","name":"callBeta","type":"int32"},{"indexed":false,"internalType":"int32","name":"callRho","type":"int32"},{"indexed":false,"internalType":"int32","name":"callVolvol","type":"int32"},{"indexed":false,"internalType":"int32","name":"putAlpha","type":"int32"},{"indexed":false,"internalType":"int32","name":"putBeta","type":"int32"},{"indexed":false,"internalType":"int32","name":"putRho","type":"int32"},{"indexed":false,"internalType":"int32","name":"putVolvol","type":"int32"}],"name":"SabrParamsSet","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract IAuthority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"expiries","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getExpiries","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256","name":"underlyingPrice","type":"uint256"},{"internalType":"uint256","name":"strikePrice","type":"uint256"},{"internalType":"uint256","name":"expiration","type":"uint256"}],"name":"getImpliedVolatility","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"keeper","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"sabrParams","outputs":[{"internalType":"int32","name":"callAlpha","type":"int32"},{"internalType":"int32","name":"callBeta","type":"int32"},{"internalType":"int32","name":"callRho","type":"int32"},{"internalType":"int32","name":"callVolvol","type":"int32"},{"internalType":"int32","name":"putAlpha","type":"int32"},{"internalType":"int32","name":"putBeta","type":"int32"},{"internalType":"int32","name":"putRho","type":"int32"},{"internalType":"int32","name":"putVolvol","type":"int32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IAuthority","name":"_newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"bool","name":"_auth","type":"bool"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int32","name":"callAlpha","type":"int32"},{"internalType":"int32","name":"callBeta","type":"int32"},{"internalType":"int32","name":"callRho","type":"int32"},{"internalType":"int32","name":"callVolvol","type":"int32"},{"internalType":"int32","name":"putAlpha","type":"int32"},{"internalType":"int32","name":"putBeta","type":"int32"},{"internalType":"int32","name":"putRho","type":"int32"},{"internalType":"int32","name":"putVolvol","type":"int32"}],"internalType":"struct VolatilityFeed.SABRParams","name":"_sabrParams","type":"tuple"},{"internalType":"uint256","name":"_expiry","type":"uint256"}],"name":"setSabrParameters","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50604051620023ab380380620023ab8339810160408190526100319161008b565b600080546001600160a01b0319166001600160a01b03831690811790915560405190815281907f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150506100bb565b60006020828403121561009d57600080fd5b81516001600160a01b03811681146100b457600080fd5b9392505050565b6122e080620000cb6000396000f3fe608060405234801561001057600080fd5b50600436106100935760003560e01c8063bf7e214f11610066578063bf7e214f146100f9578063d1b9e85314610124578063e444c02914610137578063e8cf8608146101b7578063fca7cd88146101ea57600080fd5b806367a35e47146100985780637a9e5e4b146100be5780638915a461146100d3578063b9cce328146100e6575b600080fd5b6100ab6100a6366004611ef2565b6101ff565b6040519081526020015b60405180910390f35b6100d16100cc366004611f43565b6103d7565b005b6100d16100e1366004611f72565b610433565b6100ab6100f4366004612059565b6107b4565b60005461010c906001600160a01b031681565b6040516001600160a01b0390911681526020016100b5565b6100d1610132366004612072565b6107d5565b6101a3610145366004612059565b600160205260009081526040902054600381810b916401000000008104820b91600160401b8204810b91600160601b8104820b91600160801b8204810b91600160a01b8104820b91600160c01b8204810b91600160e01b9004900b88565b6040516100b59897969594939291906120a7565b6101da6101c5366004611f43565b60026020526000908152604090205460ff1681565b60405190151581526020016100b5565b6101f2610808565b6040516100b591906120eb565b60008061021a6301e187e06102144286612145565b90610860565b60008481526001602090815260408083208151610100810183529054600381810b8084526401000000008304820b95840195909552600160401b8204810b93830193909352600160601b8104830b6060830152600160801b8104830b6080830152600160a01b8104830b60a0830152600160c01b8104830b60c0830152600160e01b900490910b60e082015292935090919082036102cb576040516304485c2d60e41b815260040160405180910390fd5b876103425761033b86888564e8d4a51000856000015160030b6102ee9190612184565b64e8d4a51000866020015160030b6103069190612184565b64e8d4a51000876040015160030b61031e9190612184565b64e8d4a51000886060015160030b6103369190612184565b610937565b91506103ab565b6103a886888564e8d4a51000856080015160030b6103609190612184565b64e8d4a510008660a0015160030b6103789190612184565b64e8d4a510008760c0015160030b6103909190612184565b64e8d4a510008860e0015160030b6103369190612184565b91505b600082136103cc576040516304485c2d60e41b815260040160405180910390fd5b509695505050505050565b6103df610d15565b600080546001600160a01b0319166001600160a01b0383169081179091556040519081527f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150565b61043b610dbd565b6000826000015160030b13158061045a57506000826080015160030b13155b1561047857604051632d2a75a760e11b815260040160405180910390fd5b6000826060015160030b131580610497575060008260e0015160030b13155b156104b557604051637e5528f560e01b815260040160405180910390fd5b6000826020015160030b1315806104d55750620f4240826020015160030b135b806104e8575060008260a0015160030b13155b806104fc5750620f42408260a0015160030b135b1561051a57604051631906f32160e01b815260040160405180910390fd5b610526620f4240612209565b826040015160030b1315806105455750620f4240826040015160030b12155b806105625750610557620f4240612209565b8260c0015160030b13155b806105775750620f42408260c0015160030b12155b156105955760405163d2e5a34b60e01b815260040160405180910390fd5b60008181526001602052604081205460030b90036105e357600380546001810182556000919091527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b018190555b816001600083815260200190815260200160002060008201518160000160006101000a81548163ffffffff021916908360030b63ffffffff16021790555060208201518160000160046101000a81548163ffffffff021916908360030b63ffffffff16021790555060408201518160000160086101000a81548163ffffffff021916908360030b63ffffffff160217905550606082015181600001600c6101000a81548163ffffffff021916908360030b63ffffffff16021790555060808201518160000160106101000a81548163ffffffff021916908360030b63ffffffff16021790555060a08201518160000160146101000a81548163ffffffff021916908360030b63ffffffff16021790555060c08201518160000160186101000a81548163ffffffff021916908360030b63ffffffff16021790555060e082015181600001601c6101000a81548163ffffffff021916908360030b63ffffffff160217905550905050807f2bca5ff04d6da9c02a5ac9fcecc01e66cce19bf28e768e3c9ef529a4713fe2f5836000015184602001518560400151866060015187608001518860a001518960c001518a60e001516040516107a89897969594939291906120a7565b60405180910390a25050565b600381815481106107c457600080fd5b600091825260209091200154905081565b6107dd610d15565b6001600160a01b03919091166000908152600260205260409020805460ff1916911515919091179055565b6060600380548060200260200160405190810160405280929190818152602001828054801561085657602002820191906000526020600020905b815481526020019060010190808311610842575b5050505050905090565b6000600160ff1b8314806108775750600160ff1b82145b156108955760405163b3c754a360e01b815260040160405180910390fd5b600080600085126108a657846108ab565b846000035b9150600084126108bb57836108c0565b836000035b905060006108d783670de0b6b3a764000084610f13565b90506001600160ff1b0381111561090957604051637cb4bef560e01b8152600481018290526024015b60405180910390fd5b600019808713908613808218600114610922578261092b565b61092b83612209565b98975050505050505050565b60008088131580610949575060008713155b1561095657506000610d0a565b6109ac604051806101400160405280600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081525090565b60e0810189905261010081018890526101208101879052670de0b6b3a76400008590036109e95760008082526080820181905260a0820152610ade565b610a52610a13610a038361010001518460e0015189610fe6565b68014d1120d7b16000009061100f565b610214610a2889671bc16d674ec800006110d1565b610a4c671bc16d674ec80000610a468b670de0b6b3a7640000612145565b906110d1565b9061100f565b816000018181525050610a8968014d1120d7b1600000610214610a286002610a838661010001518760e0015161111c565b90611130565b816080018181525050610ad86868155a43676e000000610214610aba6004610a838661010001518760e0015161111c565b610a4c673782dace9d900000610a468b670de0b6b3a7640000612145565b60a08201525b610b17610afd610af88361010001518460e0015189610fe6565b6111ea565b61021488610a4c87818b816703782dace9d900008d61100f565b6020820152610b6d68014d1120d7b1600000610214610b3e86671bc16d674ec800006110d1565b610b5b610b4c896002611130565b6729a2241af62c00009061100f565b610a4c90671bc16d674ec80000612145565b604082015261010081015160e0820151610b8b91610af89188610fe6565b816060018181525050610bcf86610214610bae8461010001518560e0015161111c565b610a4c610bc8610af88761010001518860e001518d610fe6565b889061100f565b60c0820181905264174876e80090610be690611260565b1315610c92576000610c88610c37610c02878560c0015161129b565b610a4c8560a001518660800151670de0b6b3a7640000610c22919061221e565b610c2c919061221e565b60608701519061100f565b610214610c66856101200151866040015187602001518860000151610c5c919061221e565b610a4c919061221e565b610c7890670de0b6b3a764000061221e565b60c0860151610a4c908c9061100f565b9250610d0a915050565b6000610c88610ccc8360a001518460800151670de0b6b3a7640000610cb7919061221e565b610cc1919061221e565b60608501519061100f565b610214610cf1856101200151866040015187602001518860000151610c5c919061221e565b610d0390670de0b6b3a764000061221e565b8a9061100f565b979650505050505050565b60008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d66573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d8a919061225f565b6001600160a01b0316336001600160a01b031614610dbb5760405163075fd2b160e01b815260040160405180910390fd5b565b3360009081526002602052604090205460ff16158015610e63575060008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e29573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4d919061225f565b6001600160a01b0316336001600160a01b031614155b8015610ef5575060008054906101000a90046001600160a01b03166001600160a01b031663481c6a756040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ebb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610edf919061225f565b6001600160a01b0316336001600160a01b031614155b15610dbb57604051631ea2564f60e31b815260040160405180910390fd5b6000808060001985870985870292508281108382030391505080600003610f4d57838281610f4357610f4361227c565b0492505050610fdf565b838110610f7757604051631dcf306360e21b81526004810182905260248101859052604401610900565b600084868809851960019081018716968790049682860381900495909211909303600082900391909104909201919091029190911760038402600290811880860282030280860282030280860282030280860282030280860282030280860290910302029150505b9392505050565b6000611007610ffd83670de0b6b3a7640000612145565b610a46868661100f565b949350505050565b6000600160ff1b8314806110265750600160ff1b82145b1561104457604051630d01a11b60e21b815260040160405180910390fd5b60008060008512611055578461105a565b846000035b91506000841261106a578361106f565b836000035b9050600061107d8383611321565b90506001600160ff1b038111156110aa5760405163bf79e8d960e01b815260048101829052602401610900565b6000198087139086138082186001146110c3578261092b565b505060000395945050505050565b6000826000036110f95781156110e85760006110f2565b670de0b6b3a76400005b9050611116565b61111361110e611108856113e7565b8461100f565b6114cc565b90505b92915050565b600061111361112b8484610860565b61156d565b60008061113c84611260565b9050600080846001161161115857670de0b6b3a764000061115a565b815b9050600184901c5b8015611192576111728384611321565b9250600181161561118a576111878284611321565b91505b60011c611162565b6001600160ff1b038211156111c0576040516001624ea43360e01b0319815260048101839052602401610900565b600080871280156111d45750856001166001145b9050806111e15782610d0a565b610d0a83612209565b6000808212156112105760405163608c83ff60e11b815260048101839052602401610900565b7809392ee8e921d5d073aff322e62439fcf32d7f344649470f9082131561124d57604051632c482c3960e01b815260048101839052602401610900565b611116670de0b6b3a76400008302611598565b6000600160ff1b820361128657604051631d0742e360e21b815260040160405180910390fd5b600082126112945781611116565b5060000390565b60008083836112df6112ae826002611130565b6112b8888861100f565b6112c3906002612184565b6112d590670de0b6b3a7640000612145565b610af8919061221e565b6112e9919061221e565b6112f39190612145565b9050600061130985670de0b6b3a7640000612145565b905061131861112b8383610860565b95945050505050565b60008080600019848609848602925082811083820303915050670de0b6b3a764000081106113655760405163698d9a0160e11b815260048101829052602401610900565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff82119050826000036113a35780670de0b6b3a7640000850401945050505050611116565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b600080821361140c5760405163309fa7dd60e11b815260048101839052602401610900565b6000670de0b6b3a764000083126114255750600161143f565b6000199050826ec097ce7bc90715b34b9f10000000000492505b6000611454670de0b6b3a76400008505611707565b670de0b6b3a764000081029350905083811d670de0b6b3a763ffff19810161147e57505002919050565b6706f05b59d3b200005b60008113156114c357670de0b6b3a7640000828002059150671bc16d674ec8000082126114bb579384019360019190911d905b60011d611488565b50505002919050565b6000808212156115205768033dd1780914b97114198212156114f057506000919050565b6114fc826000036114cc565b6ec097ce7bc90715b34b9f1000000000816115195761151961227c565b0592915050565b680a688906bd8b000000821261154c5760405163e69458f960e01b815260048101839052602401610900565b670de0b6b3a7640000604083901b04611564816117e6565b9150505b919050565b60006714057b7ef767814f670de0b6b3a764000061158a846113e7565b02816115195761151961227c565b6000816000036115aa57506000919050565b50600181600160801b81106115c45760409190911b9060801c5b600160401b81106115da5760209190911b9060401c5b64010000000081106115f15760109190911b9060201c5b6201000081106116065760089190911b9060101c5b610100811061161a5760049190911b9060081c5b6010811061162d5760029190911b9060041c5b6008811061163d57600182901b91505b600182848161164e5761164e61227c565b048301901c915060018284816116665761166661227c565b048301901c9150600182848161167e5761167e61227c565b048301901c915060018284816116965761169661227c565b048301901c915060018284816116ae576116ae61227c565b048301901c915060018284816116c6576116c661227c565b048301901c915060018284816116de576116de61227c565b048301901c915060008284816116f6576116f661227c565b04905080831015610fdf5782611007565b6000600160801b821061172757608091821c916117249082612292565b90505b600160401b821061174557604091821c916117429082612292565b90505b640100000000821061176457602091821c916117619082612292565b90505b62010000821061178157601091821c9161177e9082612292565b90505b610100821061179d57600891821c9161179a9082612292565b90505b601082106117b857600491821c916117b59082612292565b90505b600482106117d357600291821c916117d09082612292565b90505b6002821061156857611116600182612292565b600160bf1b67800000000000000082161561180a5768016a09e667f3bcc9090260401c5b674000000000000000821615611829576801306fe0a31b7152df0260401c5b672000000000000000821615611848576801172b83c7d517adce0260401c5b6710000000000000008216156118675768010b5586cf9890f62a0260401c5b670800000000000000821615611886576801059b0d31585743ae0260401c5b6704000000000000008216156118a557680102c9a3e778060ee70260401c5b6702000000000000008216156118c45768010163da9fb33356d80260401c5b6701000000000000008216156118e357680100b1afa5abcbed610260401c5b66800000000000008216156119015768010058c86da1c09ea20260401c5b664000000000000082161561191f576801002c605e2e8cec500260401c5b662000000000000082161561193d57680100162f3904051fa10260401c5b661000000000000082161561195b576801000b175effdc76ba0260401c5b660800000000000082161561197957680100058ba01fb9f96d0260401c5b66040000000000008216156119975768010002c5cc37da94920260401c5b66020000000000008216156119b5576801000162e525ee05470260401c5b66010000000000008216156119d35768010000b17255775c040260401c5b658000000000008216156119f0576801000058b91b5bc9ae0260401c5b65400000000000821615611a0d57680100002c5c89d5ec6d0260401c5b65200000000000821615611a2a5768010000162e43f4f8310260401c5b65100000000000821615611a4757680100000b1721bcfc9a0260401c5b65080000000000821615611a645768010000058b90cf1e6e0260401c5b65040000000000821615611a81576801000002c5c863b73f0260401c5b65020000000000821615611a9e57680100000162e430e5a20260401c5b65010000000000821615611abb576801000000b1721835510260401c5b648000000000821615611ad757680100000058b90c0b490260401c5b644000000000821615611af35768010000002c5c8601cc0260401c5b642000000000821615611b0f576801000000162e42fff00260401c5b641000000000821615611b2b5768010000000b17217fbb0260401c5b640800000000821615611b47576801000000058b90bfce0260401c5b640400000000821615611b6357680100000002c5c85fe30260401c5b640200000000821615611b7f5768010000000162e42ff10260401c5b640100000000821615611b9b57680100000000b17217f80260401c5b6380000000821615611bb65768010000000058b90bfc0260401c5b6340000000821615611bd1576801000000002c5c85fe0260401c5b6320000000821615611bec57680100000000162e42ff0260401c5b6310000000821615611c07576801000000000b17217f0260401c5b6308000000821615611c2257680100000000058b90c00260401c5b6304000000821615611c3d5768010000000002c5c8600260401c5b6302000000821615611c58576801000000000162e4300260401c5b6301000000821615611c735768010000000000b172180260401c5b62800000821615611c8d576801000000000058b90c0260401c5b62400000821615611ca757680100000000002c5c860260401c5b62200000821615611cc15768010000000000162e430260401c5b62100000821615611cdb57680100000000000b17210260401c5b62080000821615611cf55768010000000000058b910260401c5b62040000821615611d0f576801000000000002c5c80260401c5b62020000821615611d2957680100000000000162e40260401c5b62010000821615611d43576801000000000000b1720260401c5b618000821615611d5c57680100000000000058b90260401c5b614000821615611d755768010000000000002c5d0260401c5b612000821615611d8e576801000000000000162e0260401c5b611000821615611da75768010000000000000b170260401c5b610800821615611dc0576801000000000000058c0260401c5b610400821615611dd957680100000000000002c60260401c5b610200821615611df257680100000000000001630260401c5b610100821615611e0b57680100000000000000b10260401c5b6080821615611e2357680100000000000000590260401c5b6040821615611e3b576801000000000000002c0260401c5b6020821615611e5357680100000000000000160260401c5b6010821615611e6b576801000000000000000b0260401c5b6008821615611e8357680100000000000000060260401c5b6004821615611e9b57680100000000000000030260401c5b6002821615611eb357680100000000000000010260401c5b6001821615611ecb57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b8035801515811461156857600080fd5b60008060008060808587031215611f0857600080fd5b611f1185611ee2565b966020860135965060408601359560600135945092505050565b6001600160a01b0381168114611f4057600080fd5b50565b600060208284031215611f5557600080fd5b8135610fdf81611f2b565b8035600381900b811461156857600080fd5b600080828403610120811215611f8757600080fd5b61010080821215611f9757600080fd5b604051915080820182811067ffffffffffffffff82111715611fc957634e487b7160e01b600052604160045260246000fd5b604052611fd585611f60565b8252611fe360208601611f60565b6020830152611ff460408601611f60565b604083015261200560608601611f60565b606083015261201660808601611f60565b608083015261202760a08601611f60565b60a083015261203860c08601611f60565b60c083015261204960e08601611f60565b60e0830152909593013593505050565b60006020828403121561206b57600080fd5b5035919050565b6000806040838503121561208557600080fd5b823561209081611f2b565b915061209e60208401611ee2565b90509250929050565b600398890b815296880b602088015294870b604087015292860b606086015290850b6080850152840b60a0840152830b60c083015290910b60e08201526101000190565b6020808252825182820181905260009190848201906040850190845b8181101561212357835183529284019291840191600101612107565b50909695505050505050565b634e487b7160e01b600052601160045260246000fd5b60008083128015600160ff1b8501841216156121635761216361212f565b6001600160ff1b038401831381161561217e5761217e61212f565b50500390565b60006001600160ff1b03818413828413808216868404861116156121aa576121aa61212f565b600160ff1b60008712828116878305891216156121c9576121c961212f565b600087129250878205871284841616156121e5576121e561212f565b878505871281841616156121fb576121fb61212f565b505050929093029392505050565b6000600160ff1b82016112945761129461212f565b600080821280156001600160ff1b03849003851316156122405761224061212f565b600160ff1b83900384128116156122595761225961212f565b50500190565b60006020828403121561227157600080fd5b8151610fdf81611f2b565b634e487b7160e01b600052601260045260246000fd5b600082198211156122a5576122a561212f565b50019056fea26469706673582212208920ec81745df4e4065ab00e9706ac2986dc71929640e314c95132b0489c75b764736f6c634300080e00330000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
-----Decoded View---------------
Arg [0] : _authority (address): 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd2
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.