Contract 0x3099900e3e9fa62b291586f5046a09cf5b0bccb9

 
Txn Hash Method
Block
From
To
Value [Txn Fee]
0x0725c0a28e50975cafa137498173a512a6cc3ea513dc392f423ad9e8e4693f400x60806040259756332022-09-22 13:58:11137 days 12 hrs ago0xa67d0c1180e0e183f482304a9b5436a3478f0674 IN  Create: VolatilityFeed0 ETH0.00047701
[ Download CSV Export 
Latest 25 internal transaction
Parent Txn Hash Block From To Value
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0x3099900e3e9fa62b291586f5046a09cf5b0bccb9 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd20 ETH
0x3fb9356d7a2a3b56eb71b96208b3cb92ae19b9e7ed51ab2ecb30523305b4c8fe528424712023-01-13 19:43:1724 days 6 hrs ago 0xfbde2e477ed031f54ed5ad52f35ee43cd82cf2a6 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x640dd2170538d6dee952b94f9d3657f0720c96ab5db18c17eacc129e4cbe4768512686912023-01-06 17:21:2231 days 8 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x640dd2170538d6dee952b94f9d3657f0720c96ab5db18c17eacc129e4cbe4768512686912023-01-06 17:21:2231 days 8 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x640dd2170538d6dee952b94f9d3657f0720c96ab5db18c17eacc129e4cbe4768512686912023-01-06 17:21:2231 days 8 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x640dd2170538d6dee952b94f9d3657f0720c96ab5db18c17eacc129e4cbe4768512686912023-01-06 17:21:2231 days 8 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0x3099900e3e9fa62b291586f5046a09cf5b0bccb9 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd20 ETH
0x57e25c0e9d022bb24fc3e3e968c86c08b5976d83e2e62e984896e463dff938a1512542192023-01-06 16:07:2131 days 9 hrs ago 0xfbde2e477ed031f54ed5ad52f35ee43cd82cf2a6 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x275a7318affab3d9a3ae39350f4cb5ea1c1b563d43f7723432cd485091f3a3fe498335372022-12-30 16:36:0838 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x275a7318affab3d9a3ae39350f4cb5ea1c1b563d43f7723432cd485091f3a3fe498335372022-12-30 16:36:0838 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x275a7318affab3d9a3ae39350f4cb5ea1c1b563d43f7723432cd485091f3a3fe498335372022-12-30 16:36:0838 days 9 hrs ago 0x3099900e3e9fa62b291586f5046a09cf5b0bccb9 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd20 ETH
0x275a7318affab3d9a3ae39350f4cb5ea1c1b563d43f7723432cd485091f3a3fe498335372022-12-30 16:36:0838 days 9 hrs ago 0xfbde2e477ed031f54ed5ad52f35ee43cd82cf2a6 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x94857f345f1902eb3746c659aea0ebcd232319c50e519baef773559b3fdf878a483187702022-12-23 16:13:2745 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x94857f345f1902eb3746c659aea0ebcd232319c50e519baef773559b3fdf878a483187702022-12-23 16:13:2745 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
0x94857f345f1902eb3746c659aea0ebcd232319c50e519baef773559b3fdf878a483187702022-12-23 16:13:2745 days 9 hrs ago 0x14ef340b33bd4f64c160e3bfcd2b84d67e9b33df 0x3099900e3e9fa62b291586f5046a09cf5b0bccb90 ETH
[ Download CSV Export 
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
VolatilityFeed

Compiler Version
v0.8.14+commit.80d49f37

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 8 : VolatilityFeed.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.9;

import "./libraries/AccessControl.sol";
import "./libraries/CustomErrors.sol";
import "./libraries/SABR.sol";

import "prb-math/contracts/PRBMathSD59x18.sol";
import "prb-math/contracts/PRBMathUD60x18.sol";

/**
 *  @title Contract used as the Dynamic Hedging Vault for storing funds, issuing shares and processing options transactions
 *  @dev Interacts with liquidity pool to feed in volatility data.
 */
contract VolatilityFeed is AccessControl {
	using PRBMathSD59x18 for int256;
	using PRBMathUD60x18 for uint256;

	//////////////////////////
	/// settable variables ///
	//////////////////////////

	// Parameters for the sabr volatility model
	mapping(uint256 => SABRParams) public sabrParams;
	// keeper mapping
	mapping(address => bool) public keeper;
	// expiry array
	uint256[] public expiries;

	//////////////////////////
	/// constant variables ///
	//////////////////////////

	// number of seconds in a year used for calculations
	int256 private constant ONE_YEAR_SECONDS = 31557600;
	int256 private constant BIPS_SCALE = 1e12;
	int256 private constant BIPS = 1e6;

	struct SABRParams {
		int32 callAlpha; // not bigger or less than an int32 and above 0
		int32 callBeta; // greater than 0 and less than or equal to 1
		int32 callRho; // between 1 and -1
		int32 callVolvol; // not bigger or less than an int32 and above 0
		int32 putAlpha;
		int32 putBeta;
		int32 putRho;
		int32 putVolvol;
	}

	constructor(address _authority) AccessControl(IAuthority(_authority)) {}

	///////////////
	/// setters ///
	///////////////

	error AlphaError();
	error BetaError();
	error RhoError();
	error VolvolError();

	event SabrParamsSet(
		uint256 indexed _expiry,
		int32 callAlpha,
		int32 callBeta,
		int32 callRho,
		int32 callVolvol,
		int32 putAlpha,
		int32 putBeta,
		int32 putRho,
		int32 putVolvol
	);

	/**
	 * @notice set the sabr volatility params
	 * @param _sabrParams set the SABR parameters
	 * @param _expiry the expiry that the SABR parameters represent
	 * @dev   only keepers can call this function
	 */
	function setSabrParameters(SABRParams memory _sabrParams, uint256 _expiry) external {
		_isKeeper();
		if (_sabrParams.callAlpha <= 0 || _sabrParams.putAlpha <= 0) {
			revert AlphaError();
		}
		if (_sabrParams.callVolvol <= 0 || _sabrParams.putVolvol <= 0) {
			revert VolvolError();
		}
		if (
			_sabrParams.callBeta <= 0 ||
			_sabrParams.callBeta > BIPS ||
			_sabrParams.putBeta <= 0 ||
			_sabrParams.putBeta > BIPS
		) {
			revert BetaError();
		}
		if (
			_sabrParams.callRho <= -BIPS ||
			_sabrParams.callRho >= BIPS ||
			_sabrParams.putRho <= -BIPS ||
			_sabrParams.putRho >= BIPS
		) {
			revert RhoError();
		}
		// if the expiry is not already a registered expiry then add it to the expiry list
		if(sabrParams[_expiry].callAlpha == 0) {
			expiries.push(_expiry);
		}
		sabrParams[_expiry] = _sabrParams;
		emit SabrParamsSet(
			_expiry,
			_sabrParams.callAlpha,
			_sabrParams.callBeta,
			_sabrParams.callRho,
			_sabrParams.callVolvol,
			_sabrParams.putAlpha,
			_sabrParams.putBeta,
			_sabrParams.putRho,
			_sabrParams.putVolvol
		);
	}

	/// @notice update the keepers
	function setKeeper(address _keeper, bool _auth) external {
		_onlyGovernor();
		keeper[_keeper] = _auth;
	}

	///////////////////////
	/// complex getters ///
	///////////////////////

	/**
	 * @notice get the current implied volatility from the feed
	 * @param isPut Is the option a call or put?
	 * @param underlyingPrice The underlying price
	 * @param strikePrice The strike price of the option
	 * @param expiration expiration timestamp of option as a PRBMath Float
	 * @return Implied volatility adjusted for volatility surface
	 */
	function getImpliedVolatility(
		bool isPut,
		uint256 underlyingPrice,
		uint256 strikePrice,
		uint256 expiration
	) external view returns (uint256) {
		int256 time = (int256(expiration) - int256(block.timestamp)).div(ONE_YEAR_SECONDS);
		int256 vol;
		SABRParams memory sabrParams_ = sabrParams[expiration];
		if (sabrParams_.callAlpha == 0) {
			revert CustomErrors.IVNotFound();
		}
		if (!isPut) {
			vol = SABR.lognormalVol(
				int256(strikePrice),
				int256(underlyingPrice),
				time,
				sabrParams_.callAlpha * BIPS_SCALE,
				sabrParams_.callBeta * BIPS_SCALE,
				sabrParams_.callRho * BIPS_SCALE,
				sabrParams_.callVolvol * BIPS_SCALE
			);
		} else {
			vol = SABR.lognormalVol(
				int256(strikePrice),
				int256(underlyingPrice),
				time,
				sabrParams_.putAlpha * BIPS_SCALE,
				sabrParams_.putBeta * BIPS_SCALE,
				sabrParams_.putRho * BIPS_SCALE,
				sabrParams_.putVolvol * BIPS_SCALE
			);
		}
		if (vol <= 0) {
			revert CustomErrors.IVNotFound();
		}
		return uint256(vol);
	}

	/**
	 @notice get the expiry array
	 @return the expiry array
	 */
	function getExpiries() external view returns (uint256[] memory) {
		return expiries;
	}

	/// @dev keepers, managers or governors can access
	function _isKeeper() internal view {
		if (
			!keeper[msg.sender] && msg.sender != authority.governor() && msg.sender != authority.manager()
		) {
			revert CustomErrors.NotKeeper();
		}
	}
}

File 2 of 8 : CustomErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

interface CustomErrors {
	error NotKeeper();
	error IVNotFound();
	error NotHandler();
	error VaultExpired();
	error InvalidInput();
	error InvalidPrice();
	error InvalidBuyer();
	error InvalidOrder();
	error OrderExpired();
	error InvalidAmount();
	error TradingPaused();
	error InvalidAddress();
	error IssuanceFailed();
	error EpochNotClosed();
	error InvalidDecimals();
	error TradingNotPaused();
	error NotLiquidityPool();
	error DeltaNotDecreased();
	error NonExistentOtoken();
	error OrderExpiryTooLong();
	error InvalidShareAmount();
	error ExistingWithdrawal();
	error TotalSupplyReached();
	error StrikeAssetInvalid();
	error OptionStrikeInvalid();
	error OptionExpiryInvalid();
	error NoExistingWithdrawal();
	error SpotMovedBeyondRange();
	error ReactorAlreadyExists();
	error CollateralAssetInvalid();
	error UnderlyingAssetInvalid();
	error CollateralAmountInvalid();
	error WithdrawExceedsLiquidity();
	error InsufficientShareBalance();
	error MaxLiquidityBufferReached();
	error LiabilitiesGreaterThanAssets();
	error CustomOrderInsufficientPrice();
	error CustomOrderInvalidDeltaValue();
	error DeltaQuoteError(uint256 quote, int256 delta);
	error TimeDeltaExceedsThreshold(uint256 timeDelta);
	error PriceDeltaExceedsThreshold(uint256 priceDelta);
	error StrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeLiquidity);
	error MinStrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeAmountMin);
	error UnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingLiquidity);
	error MinUnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingAmountMin);
}

File 3 of 8 : AccessControl.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import "../interfaces/IAuthority.sol";

error UNAUTHORIZED();

/**
 *  @title Contract used for access control functionality, based off of OlympusDao Access Control
 */
abstract contract AccessControl {
	/* ========== EVENTS ========== */

	event AuthorityUpdated(IAuthority authority);

	/* ========== STATE VARIABLES ========== */

	IAuthority public authority;

	/* ========== Constructor ========== */

	constructor(IAuthority _authority) {
		authority = _authority;
		emit AuthorityUpdated(_authority);
	}

	/* ========== GOV ONLY ========== */

	function setAuthority(IAuthority _newAuthority) external {
		_onlyGovernor();
		authority = _newAuthority;
		emit AuthorityUpdated(_newAuthority);
	}

	/* ========== INTERNAL CHECKS ========== */

	function _onlyGovernor() internal view {
		if (msg.sender != authority.governor()) revert UNAUTHORIZED();
	}

	function _onlyGuardian() internal view {
		if (!authority.guardian(msg.sender) && msg.sender != authority.governor()) revert UNAUTHORIZED();
	}

	function _onlyManager() internal view {
		if (msg.sender != authority.manager() && msg.sender != authority.governor())
			revert UNAUTHORIZED();
	}
}

File 4 of 8 : SABR.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import "prb-math/contracts/PRBMath.sol";
import "prb-math/contracts/PRBMathSD59x18.sol";

library SABR {
	using PRBMathSD59x18 for int256;

	int256 private constant eps = 1e11;

	struct IntermediateVariables {
		int256 a;
		int256 b;
		int256 c;
		int256 d;
		int256 v;
		int256 w;
		int256 z;
		int256 k;
		int256 f;
		int256 t;
	}

	function lognormalVol(
		int256 k,
		int256 f,
		int256 t,
		int256 alpha,
		int256 beta,
		int256 rho,
		int256 volvol
	) internal pure returns (int256 iv) {
		// Hagan's 2002 SABR lognormal vol expansion.

		// negative strikes or forwards
		if (k <= 0 || f <= 0) {
			return 0;
		}

		IntermediateVariables memory vars;

		vars.k = k;
		vars.f = f;
		vars.t = t;
		if (beta == 1e18) {
			vars.a = 0;
			vars.v = 0;
			vars.w = 0;
		} else {
			vars.a = ((1e18 - beta).pow(2e18)).mul(alpha.pow(2e18)).div(
				int256(24e18).mul(_fkbeta(vars.f, vars.k, beta))
			);
			vars.v = ((1e18 - beta).pow(2e18)).mul(_logfk(vars.f, vars.k).powu(2)).div(24e18);
			vars.w = ((1e18 - beta).pow(4e18)).mul(_logfk(vars.f, vars.k).powu(4)).div(1920e18);
		}
		vars.b = int256(25e16).mul(rho).mul(beta).mul(volvol).mul(alpha).div(
			_fkbeta(vars.f, vars.k, beta).sqrt()
		);
		vars.c = (2e18 - int256(3e18).mul(rho.powu(2))).mul(volvol.pow(2e18)).div(24e18);
		vars.d = _fkbeta(vars.f, vars.k, beta).sqrt();
		vars.z = volvol.mul(_fkbeta(vars.f, vars.k, beta).sqrt()).mul(_logfk(vars.f, vars.k)).div(alpha);

		// if |z| > eps
		if (vars.z.abs() > eps) {
			int256 vz = alpha.mul(vars.z).mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div(
				vars.d.mul(1e18 + vars.v + vars.w).mul(_x(rho, vars.z))
			);
			return vz;
			// if |z| <= eps
		} else {
			int256 v0 = alpha.mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div(
				vars.d.mul(1e18 + vars.v + vars.w)
			);
			return v0;
		}
	}

	function _logfk(int256 f, int256 k) internal pure returns (int256) {
		return (f.div(k)).ln();
	}

	function _fkbeta(
		int256 f,
		int256 k,
		int256 beta
	) internal pure returns (int256) {
		return (f.mul(k)).pow(1e18 - beta);
	}

	function _x(int256 rho, int256 z) internal pure returns (int256) {
		int256 a = (1e18 - 2 * rho.mul(z) + z.powu(2)).sqrt() + z - rho;
		int256 b = 1e18 - rho;
		return (a.div(b)).ln();
	}
}

File 5 of 8 : PRBMathUD60x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
    /// @dev Half the SCALE number.
    uint256 internal constant HALF_SCALE = 5e17;

    /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
    uint256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_584007913129639935;

    /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_WHOLE_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // The operations can never overflow.
        unchecked {
            // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
            // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
            result = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_UD60x18.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function ceil(uint256 x) internal pure returns (uint256 result) {
        if (x > MAX_WHOLE_UD60x18) {
            revert PRBMathUD60x18__CeilOverflow(x);
        }
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "SCALE - remainder" but faster.
            let delta := sub(SCALE, remainder)

            // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }

    /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
    ///
    /// @dev Uses mulDiv to enable overflow-safe multiplication and division.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    ///
    /// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
    /// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
    /// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
    function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, SCALE, y);
    }

    /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (uint256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp(uint256 x) internal pure returns (uint256 result) {
        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathUD60x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            uint256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_UD60x18.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
        if (x >= 192e18) {
            revert PRBMathUD60x18__Exp2InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x192x64 = (x << 64) / SCALE;

            // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
            result = PRBMath.exp2(x192x64);
        }
    }

    /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The unsigned 60.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function floor(uint256 x) internal pure returns (uint256 result) {
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }

    /// @notice Yields the excess beyond the floor of x.
    /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
    function frac(uint256 x) internal pure returns (uint256 result) {
        assembly {
            result := mod(x, SCALE)
        }
    }

    /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in unsigned 60.18-decimal fixed-point representation.
    function fromUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__FromUintOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_UD60x18, lest it overflows.
    ///
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathUD60x18__GmOverflow(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = PRBMath.sqrt(xy);
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
    function inv(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
    function ln(uint256 x) internal pure returns (uint256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 196205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
    function log10(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
        // in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
            default {
                result := MAX_UD60x18
            }
        }

        if (result == MAX_UD60x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than or equal to SCALE, otherwise the result would be negative.
    ///
    /// Caveats:
    /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
    function log2(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(x / SCALE);

            // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255 and SCALE is 1e18.
            result = n * SCALE;

            // This is y = x * 2^(-n).
            uint256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
        }
    }

    /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
    /// fixed-point number.
    /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The product as an unsigned 60.18-decimal fixed-point number.
    function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDivFixedPoint(x, y);
    }

    /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
    function pi() internal pure returns (uint256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
    /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
    function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : uint256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - The result must fit within MAX_UD60x18.
    ///
    /// Caveats:
    /// - All from "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as an unsigned 60.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // Calculate the first iteration of the loop in advance.
        result = y & 1 > 0 ? x : SCALE;

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        for (y >>= 1; y > 0; y >>= 1) {
            x = PRBMath.mulDivFixedPoint(x, x);

            // Equivalent to "y % 2 == 1" but faster.
            if (y & 1 > 0) {
                result = PRBMath.mulDivFixedPoint(result, x);
            }
        }
    }

    /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
    function scale() internal pure returns (uint256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x must be less than MAX_UD60x18 / SCALE.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as an unsigned 60.18-decimal fixed-point .
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
            // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = PRBMath.sqrt(x * SCALE);
        }
    }

    /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The unsigned 60.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

File 6 of 8 : PRBMathSD59x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathSD59x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18
/// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have
/// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers
/// are bound by the minimum and the maximum values permitted by the Solidity type int256.
library PRBMathSD59x18 {
    /// @dev log2(e) as a signed 59.18-decimal fixed-point number.
    int256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev Half the SCALE number.
    int256 internal constant HALF_SCALE = 5e17;

    /// @dev The maximum value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MAX_SD59x18 =
        57896044618658097711785492504343953926634992332820282019728_792003956564819967;

    /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MAX_WHOLE_SD59x18 =
        57896044618658097711785492504343953926634992332820282019728_000000000000000000;

    /// @dev The minimum value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MIN_SD59x18 =
        -57896044618658097711785492504343953926634992332820282019728_792003956564819968;

    /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MIN_WHOLE_SD59x18 =
        -57896044618658097711785492504343953926634992332820282019728_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    int256 internal constant SCALE = 1e18;

    /// INTERNAL FUNCTIONS ///

    /// @notice Calculate the absolute value of x.
    ///
    /// @dev Requirements:
    /// - x must be greater than MIN_SD59x18.
    ///
    /// @param x The number to calculate the absolute value for.
    /// @param result The absolute value of x.
    function abs(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x == MIN_SD59x18) {
                revert PRBMathSD59x18__AbsInputTooSmall();
            }
            result = x < 0 ? -x : x;
        }
    }

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as a signed 59.18-decimal fixed-point number.
    /// @param y The second operand as a signed 59.18-decimal fixed-point number.
    /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number.
    function avg(int256 x, int256 y) internal pure returns (int256 result) {
        // The operations can never overflow.
        unchecked {
            int256 sum = (x >> 1) + (y >> 1);
            if (sum < 0) {
                // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the
                // right rounds down to infinity.
                assembly {
                    result := add(sum, and(or(x, y), 1))
                }
            } else {
                // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5
                // remainder gets truncated twice.
                result = sum + (x & y & 1);
            }
        }
    }

    /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_SD59x18.
    ///
    /// @param x The signed 59.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number.
    function ceil(int256 x) internal pure returns (int256 result) {
        if (x > MAX_WHOLE_SD59x18) {
            revert PRBMathSD59x18__CeilOverflow(x);
        }
        unchecked {
            int256 remainder = x % SCALE;
            if (remainder == 0) {
                result = x;
            } else {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                result = x - remainder;
                if (x > 0) {
                    result += SCALE;
                }
            }
        }
    }

    /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number.
    ///
    /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - All from "PRBMath.mulDiv".
    /// - None of the inputs can be MIN_SD59x18.
    /// - The denominator cannot be zero.
    /// - The result must fit within int256.
    ///
    /// Caveats:
    /// - All from "PRBMath.mulDiv".
    ///
    /// @param x The numerator as a signed 59.18-decimal fixed-point number.
    /// @param y The denominator as a signed 59.18-decimal fixed-point number.
    /// @param result The quotient as a signed 59.18-decimal fixed-point number.
    function div(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == MIN_SD59x18 || y == MIN_SD59x18) {
            revert PRBMathSD59x18__DivInputTooSmall();
        }

        // Get hold of the absolute values of x and y.
        uint256 ax;
        uint256 ay;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
        }

        // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256.
        uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay);
        if (rAbs > uint256(MAX_SD59x18)) {
            revert PRBMathSD59x18__DivOverflow(rAbs);
        }

        // Get the signs of x and y.
        uint256 sx;
        uint256 sy;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
        }

        // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result
        // should be positive. Otherwise, it should be negative.
        result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (int256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// Caveats:
    /// - All from "exp2".
    /// - For any x less than -41.446531673892822322, the result is zero.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp(int256 x) internal pure returns (int256 result) {
        // Without this check, the value passed to "exp2" would be less than -59.794705707972522261.
        if (x < -41_446531673892822322) {
            return 0;
        }

        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathSD59x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            int256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - For any x less than -59.794705707972522261, the result is zero.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp2(int256 x) internal pure returns (int256 result) {
        // This works because 2^(-x) = 1/2^x.
        if (x < 0) {
            // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero.
            if (x < -59_794705707972522261) {
                return 0;
            }

            // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
            unchecked {
                result = 1e36 / exp2(-x);
            }
        } else {
            // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
            if (x >= 192e18) {
                revert PRBMathSD59x18__Exp2InputTooBig(x);
            }

            unchecked {
                // Convert x to the 192.64-bit fixed-point format.
                uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE);

                // Safe to convert the result to int256 directly because the maximum input allowed is 192.
                result = int256(PRBMath.exp2(x192x64));
            }
        }
    }

    /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be greater than or equal to MIN_WHOLE_SD59x18.
    ///
    /// @param x The signed 59.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number.
    function floor(int256 x) internal pure returns (int256 result) {
        if (x < MIN_WHOLE_SD59x18) {
            revert PRBMathSD59x18__FloorUnderflow(x);
        }
        unchecked {
            int256 remainder = x % SCALE;
            if (remainder == 0) {
                result = x;
            } else {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                result = x - remainder;
                if (x < 0) {
                    result -= SCALE;
                }
            }
        }
    }

    /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right
    /// of the radix point for negative numbers.
    /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
    /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number.
    function frac(int256 x) internal pure returns (int256 result) {
        unchecked {
            result = x % SCALE;
        }
    }

    /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE.
    /// - x must be less than or equal to MAX_SD59x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in signed 59.18-decimal fixed-point representation.
    function fromInt(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x < MIN_SD59x18 / SCALE) {
                revert PRBMathSD59x18__FromIntUnderflow(x);
            }
            if (x > MAX_SD59x18 / SCALE) {
                revert PRBMathSD59x18__FromIntOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_SD59x18, lest it overflows.
    /// - x * y cannot be negative.
    ///
    /// @param x The first operand as a signed 59.18-decimal fixed-point number.
    /// @param y The second operand as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function gm(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            int256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathSD59x18__GmOverflow(x, y);
            }

            // The product cannot be negative.
            if (xy < 0) {
                revert PRBMathSD59x18__GmNegativeProduct(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = int256(PRBMath.sqrt(uint256(xy)));
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as a signed 59.18-decimal fixed-point number.
    function inv(int256 x) internal pure returns (int256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number.
    function ln(int256 x) internal pure returns (int256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 195205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as a signed 59.18-decimal fixed-point number.
    function log10(int256 x) internal pure returns (int256 result) {
        if (x <= 0) {
            revert PRBMathSD59x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            default {
                result := MAX_SD59x18
            }
        }

        if (result == MAX_SD59x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than zero.
    ///
    /// Caveats:
    /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number.
    function log2(int256 x) internal pure returns (int256 result) {
        if (x <= 0) {
            revert PRBMathSD59x18__LogInputTooSmall(x);
        }
        unchecked {
            // This works because log2(x) = -log2(1/x).
            int256 sign;
            if (x >= SCALE) {
                sign = 1;
            } else {
                sign = -1;
                // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
                assembly {
                    x := div(1000000000000000000000000000000000000, x)
                }
            }

            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE));

            // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1.
            result = int256(n) * SCALE;

            // This is y = x * 2^(-n).
            int256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result * sign;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
            result *= sign;
        }
    }

    /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal
    /// fixed-point number.
    ///
    /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is
    /// always 1e18.
    ///
    /// Requirements:
    /// - All from "PRBMath.mulDivFixedPoint".
    /// - None of the inputs can be MIN_SD59x18
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    ///
    /// @param x The multiplicand as a signed 59.18-decimal fixed-point number.
    /// @param y The multiplier as a signed 59.18-decimal fixed-point number.
    /// @return result The product as a signed 59.18-decimal fixed-point number.
    function mul(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == MIN_SD59x18 || y == MIN_SD59x18) {
            revert PRBMathSD59x18__MulInputTooSmall();
        }

        unchecked {
            uint256 ax;
            uint256 ay;
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);

            uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay);
            if (rAbs > uint256(MAX_SD59x18)) {
                revert PRBMathSD59x18__MulOverflow(rAbs);
            }

            uint256 sx;
            uint256 sy;
            assembly {
                sx := sgt(x, sub(0, 1))
                sy := sgt(y, sub(0, 1))
            }
            result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
        }
    }

    /// @notice Returns PI as a signed 59.18-decimal fixed-point number.
    function pi() internal pure returns (int256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    /// - z cannot be zero.
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number.
    /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number.
    function pow(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : int256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - All from "abs" and "PRBMath.mulDivFixedPoint".
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - All from "PRBMath.mulDivFixedPoint".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as a signed 59.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function powu(int256 x, uint256 y) internal pure returns (int256 result) {
        uint256 xAbs = uint256(abs(x));

        // Calculate the first iteration of the loop in advance.
        uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE);

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        uint256 yAux = y;
        for (yAux >>= 1; yAux > 0; yAux >>= 1) {
            xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs);

            // Equivalent to "y % 2 == 1" but faster.
            if (yAux & 1 > 0) {
                rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs);
            }
        }

        // The result must fit within the 59.18-decimal fixed-point representation.
        if (rAbs > uint256(MAX_SD59x18)) {
            revert PRBMathSD59x18__PowuOverflow(rAbs);
        }

        // Is the base negative and the exponent an odd number?
        bool isNegative = x < 0 && y & 1 == 1;
        result = isNegative ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Returns 1 as a signed 59.18-decimal fixed-point number.
    function scale() internal pure returns (int256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x cannot be negative.
    /// - x must be less than MAX_SD59x18 / SCALE.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as a signed 59.18-decimal fixed-point .
    function sqrt(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x < 0) {
                revert PRBMathSD59x18__SqrtNegativeInput(x);
            }
            if (x > MAX_SD59x18 / SCALE) {
                revert PRBMathSD59x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed
            // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = int256(PRBMath.sqrt(uint256(x * SCALE)));
        }
    }

    /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The signed 59.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toInt(int256 x) internal pure returns (int256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

File 7 of 8 : IAuthority.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;

interface IAuthority {
	/* ========== EVENTS ========== */

	event GovernorPushed(address indexed from, address indexed to);
	event GuardianPushed(address indexed to);
	event ManagerPushed(address indexed from, address indexed to);

	event GovernorPulled(address indexed from, address indexed to);
	event GuardianRevoked(address indexed to);
	event ManagerPulled(address indexed from, address indexed to);

	/* ========== VIEW ========== */

	function governor() external view returns (address);

	function guardian(address _target) external view returns (bool);

	function manager() external view returns (address);
}

File 8 of 8 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_authority","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlphaError","type":"error"},{"inputs":[],"name":"BetaError","type":"error"},{"inputs":[],"name":"IVNotFound","type":"error"},{"inputs":[],"name":"NotKeeper","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__AbsInputTooSmall","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__DivInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__DivOverflow","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__LogInputTooSmall","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__MulInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__MulOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__PowuOverflow","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__SqrtNegativeInput","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__SqrtOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"RhoError","type":"error"},{"inputs":[],"name":"UNAUTHORIZED","type":"error"},{"inputs":[],"name":"VolvolError","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IAuthority","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_expiry","type":"uint256"},{"indexed":false,"internalType":"int32","name":"callAlpha","type":"int32"},{"indexed":false,"internalType":"int32","name":"callBeta","type":"int32"},{"indexed":false,"internalType":"int32","name":"callRho","type":"int32"},{"indexed":false,"internalType":"int32","name":"callVolvol","type":"int32"},{"indexed":false,"internalType":"int32","name":"putAlpha","type":"int32"},{"indexed":false,"internalType":"int32","name":"putBeta","type":"int32"},{"indexed":false,"internalType":"int32","name":"putRho","type":"int32"},{"indexed":false,"internalType":"int32","name":"putVolvol","type":"int32"}],"name":"SabrParamsSet","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract IAuthority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"expiries","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getExpiries","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256","name":"underlyingPrice","type":"uint256"},{"internalType":"uint256","name":"strikePrice","type":"uint256"},{"internalType":"uint256","name":"expiration","type":"uint256"}],"name":"getImpliedVolatility","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"keeper","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"sabrParams","outputs":[{"internalType":"int32","name":"callAlpha","type":"int32"},{"internalType":"int32","name":"callBeta","type":"int32"},{"internalType":"int32","name":"callRho","type":"int32"},{"internalType":"int32","name":"callVolvol","type":"int32"},{"internalType":"int32","name":"putAlpha","type":"int32"},{"internalType":"int32","name":"putBeta","type":"int32"},{"internalType":"int32","name":"putRho","type":"int32"},{"internalType":"int32","name":"putVolvol","type":"int32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IAuthority","name":"_newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"bool","name":"_auth","type":"bool"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int32","name":"callAlpha","type":"int32"},{"internalType":"int32","name":"callBeta","type":"int32"},{"internalType":"int32","name":"callRho","type":"int32"},{"internalType":"int32","name":"callVolvol","type":"int32"},{"internalType":"int32","name":"putAlpha","type":"int32"},{"internalType":"int32","name":"putBeta","type":"int32"},{"internalType":"int32","name":"putRho","type":"int32"},{"internalType":"int32","name":"putVolvol","type":"int32"}],"internalType":"struct VolatilityFeed.SABRParams","name":"_sabrParams","type":"tuple"},{"internalType":"uint256","name":"_expiry","type":"uint256"}],"name":"setSabrParameters","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b50604051620023ab380380620023ab8339810160408190526100319161008b565b600080546001600160a01b0319166001600160a01b03831690811790915560405190815281907f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150506100bb565b60006020828403121561009d57600080fd5b81516001600160a01b03811681146100b457600080fd5b9392505050565b6122e080620000cb6000396000f3fe608060405234801561001057600080fd5b50600436106100935760003560e01c8063bf7e214f11610066578063bf7e214f146100f9578063d1b9e85314610124578063e444c02914610137578063e8cf8608146101b7578063fca7cd88146101ea57600080fd5b806367a35e47146100985780637a9e5e4b146100be5780638915a461146100d3578063b9cce328146100e6575b600080fd5b6100ab6100a6366004611ef2565b6101ff565b6040519081526020015b60405180910390f35b6100d16100cc366004611f43565b6103d7565b005b6100d16100e1366004611f72565b610433565b6100ab6100f4366004612059565b6107b4565b60005461010c906001600160a01b031681565b6040516001600160a01b0390911681526020016100b5565b6100d1610132366004612072565b6107d5565b6101a3610145366004612059565b600160205260009081526040902054600381810b916401000000008104820b91600160401b8204810b91600160601b8104820b91600160801b8204810b91600160a01b8104820b91600160c01b8204810b91600160e01b9004900b88565b6040516100b59897969594939291906120a7565b6101da6101c5366004611f43565b60026020526000908152604090205460ff1681565b60405190151581526020016100b5565b6101f2610808565b6040516100b591906120eb565b60008061021a6301e187e06102144286612145565b90610860565b60008481526001602090815260408083208151610100810183529054600381810b8084526401000000008304820b95840195909552600160401b8204810b93830193909352600160601b8104830b6060830152600160801b8104830b6080830152600160a01b8104830b60a0830152600160c01b8104830b60c0830152600160e01b900490910b60e082015292935090919082036102cb576040516304485c2d60e41b815260040160405180910390fd5b876103425761033b86888564e8d4a51000856000015160030b6102ee9190612184565b64e8d4a51000866020015160030b6103069190612184565b64e8d4a51000876040015160030b61031e9190612184565b64e8d4a51000886060015160030b6103369190612184565b610937565b91506103ab565b6103a886888564e8d4a51000856080015160030b6103609190612184565b64e8d4a510008660a0015160030b6103789190612184565b64e8d4a510008760c0015160030b6103909190612184565b64e8d4a510008860e0015160030b6103369190612184565b91505b600082136103cc576040516304485c2d60e41b815260040160405180910390fd5b509695505050505050565b6103df610d15565b600080546001600160a01b0319166001600160a01b0383169081179091556040519081527f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150565b61043b610dbd565b6000826000015160030b13158061045a57506000826080015160030b13155b1561047857604051632d2a75a760e11b815260040160405180910390fd5b6000826060015160030b131580610497575060008260e0015160030b13155b156104b557604051637e5528f560e01b815260040160405180910390fd5b6000826020015160030b1315806104d55750620f4240826020015160030b135b806104e8575060008260a0015160030b13155b806104fc5750620f42408260a0015160030b135b1561051a57604051631906f32160e01b815260040160405180910390fd5b610526620f4240612209565b826040015160030b1315806105455750620f4240826040015160030b12155b806105625750610557620f4240612209565b8260c0015160030b13155b806105775750620f42408260c0015160030b12155b156105955760405163d2e5a34b60e01b815260040160405180910390fd5b60008181526001602052604081205460030b90036105e357600380546001810182556000919091527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b018190555b816001600083815260200190815260200160002060008201518160000160006101000a81548163ffffffff021916908360030b63ffffffff16021790555060208201518160000160046101000a81548163ffffffff021916908360030b63ffffffff16021790555060408201518160000160086101000a81548163ffffffff021916908360030b63ffffffff160217905550606082015181600001600c6101000a81548163ffffffff021916908360030b63ffffffff16021790555060808201518160000160106101000a81548163ffffffff021916908360030b63ffffffff16021790555060a08201518160000160146101000a81548163ffffffff021916908360030b63ffffffff16021790555060c08201518160000160186101000a81548163ffffffff021916908360030b63ffffffff16021790555060e082015181600001601c6101000a81548163ffffffff021916908360030b63ffffffff160217905550905050807f2bca5ff04d6da9c02a5ac9fcecc01e66cce19bf28e768e3c9ef529a4713fe2f5836000015184602001518560400151866060015187608001518860a001518960c001518a60e001516040516107a89897969594939291906120a7565b60405180910390a25050565b600381815481106107c457600080fd5b600091825260209091200154905081565b6107dd610d15565b6001600160a01b03919091166000908152600260205260409020805460ff1916911515919091179055565b6060600380548060200260200160405190810160405280929190818152602001828054801561085657602002820191906000526020600020905b815481526020019060010190808311610842575b5050505050905090565b6000600160ff1b8314806108775750600160ff1b82145b156108955760405163b3c754a360e01b815260040160405180910390fd5b600080600085126108a657846108ab565b846000035b9150600084126108bb57836108c0565b836000035b905060006108d783670de0b6b3a764000084610f13565b90506001600160ff1b0381111561090957604051637cb4bef560e01b8152600481018290526024015b60405180910390fd5b600019808713908613808218600114610922578261092b565b61092b83612209565b98975050505050505050565b60008088131580610949575060008713155b1561095657506000610d0a565b6109ac604051806101400160405280600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081525090565b60e0810189905261010081018890526101208101879052670de0b6b3a76400008590036109e95760008082526080820181905260a0820152610ade565b610a52610a13610a038361010001518460e0015189610fe6565b68014d1120d7b16000009061100f565b610214610a2889671bc16d674ec800006110d1565b610a4c671bc16d674ec80000610a468b670de0b6b3a7640000612145565b906110d1565b9061100f565b816000018181525050610a8968014d1120d7b1600000610214610a286002610a838661010001518760e0015161111c565b90611130565b816080018181525050610ad86868155a43676e000000610214610aba6004610a838661010001518760e0015161111c565b610a4c673782dace9d900000610a468b670de0b6b3a7640000612145565b60a08201525b610b17610afd610af88361010001518460e0015189610fe6565b6111ea565b61021488610a4c87818b816703782dace9d900008d61100f565b6020820152610b6d68014d1120d7b1600000610214610b3e86671bc16d674ec800006110d1565b610b5b610b4c896002611130565b6729a2241af62c00009061100f565b610a4c90671bc16d674ec80000612145565b604082015261010081015160e0820151610b8b91610af89188610fe6565b816060018181525050610bcf86610214610bae8461010001518560e0015161111c565b610a4c610bc8610af88761010001518860e001518d610fe6565b889061100f565b60c0820181905264174876e80090610be690611260565b1315610c92576000610c88610c37610c02878560c0015161129b565b610a4c8560a001518660800151670de0b6b3a7640000610c22919061221e565b610c2c919061221e565b60608701519061100f565b610214610c66856101200151866040015187602001518860000151610c5c919061221e565b610a4c919061221e565b610c7890670de0b6b3a764000061221e565b60c0860151610a4c908c9061100f565b9250610d0a915050565b6000610c88610ccc8360a001518460800151670de0b6b3a7640000610cb7919061221e565b610cc1919061221e565b60608501519061100f565b610214610cf1856101200151866040015187602001518860000151610c5c919061221e565b610d0390670de0b6b3a764000061221e565b8a9061100f565b979650505050505050565b60008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d66573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d8a919061225f565b6001600160a01b0316336001600160a01b031614610dbb5760405163075fd2b160e01b815260040160405180910390fd5b565b3360009081526002602052604090205460ff16158015610e63575060008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e29573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4d919061225f565b6001600160a01b0316336001600160a01b031614155b8015610ef5575060008054906101000a90046001600160a01b03166001600160a01b031663481c6a756040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ebb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610edf919061225f565b6001600160a01b0316336001600160a01b031614155b15610dbb57604051631ea2564f60e31b815260040160405180910390fd5b6000808060001985870985870292508281108382030391505080600003610f4d57838281610f4357610f4361227c565b0492505050610fdf565b838110610f7757604051631dcf306360e21b81526004810182905260248101859052604401610900565b600084868809851960019081018716968790049682860381900495909211909303600082900391909104909201919091029190911760038402600290811880860282030280860282030280860282030280860282030280860282030280860290910302029150505b9392505050565b6000611007610ffd83670de0b6b3a7640000612145565b610a46868661100f565b949350505050565b6000600160ff1b8314806110265750600160ff1b82145b1561104457604051630d01a11b60e21b815260040160405180910390fd5b60008060008512611055578461105a565b846000035b91506000841261106a578361106f565b836000035b9050600061107d8383611321565b90506001600160ff1b038111156110aa5760405163bf79e8d960e01b815260048101829052602401610900565b6000198087139086138082186001146110c3578261092b565b505060000395945050505050565b6000826000036110f95781156110e85760006110f2565b670de0b6b3a76400005b9050611116565b61111361110e611108856113e7565b8461100f565b6114cc565b90505b92915050565b600061111361112b8484610860565b61156d565b60008061113c84611260565b9050600080846001161161115857670de0b6b3a764000061115a565b815b9050600184901c5b8015611192576111728384611321565b9250600181161561118a576111878284611321565b91505b60011c611162565b6001600160ff1b038211156111c0576040516001624ea43360e01b0319815260048101839052602401610900565b600080871280156111d45750856001166001145b9050806111e15782610d0a565b610d0a83612209565b6000808212156112105760405163608c83ff60e11b815260048101839052602401610900565b7809392ee8e921d5d073aff322e62439fcf32d7f344649470f9082131561124d57604051632c482c3960e01b815260048101839052602401610900565b611116670de0b6b3a76400008302611598565b6000600160ff1b820361128657604051631d0742e360e21b815260040160405180910390fd5b600082126112945781611116565b5060000390565b60008083836112df6112ae826002611130565b6112b8888861100f565b6112c3906002612184565b6112d590670de0b6b3a7640000612145565b610af8919061221e565b6112e9919061221e565b6112f39190612145565b9050600061130985670de0b6b3a7640000612145565b905061131861112b8383610860565b95945050505050565b60008080600019848609848602925082811083820303915050670de0b6b3a764000081106113655760405163698d9a0160e11b815260048101829052602401610900565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff82119050826000036113a35780670de0b6b3a7640000850401945050505050611116565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b600080821361140c5760405163309fa7dd60e11b815260048101839052602401610900565b6000670de0b6b3a764000083126114255750600161143f565b6000199050826ec097ce7bc90715b34b9f10000000000492505b6000611454670de0b6b3a76400008505611707565b670de0b6b3a764000081029350905083811d670de0b6b3a763ffff19810161147e57505002919050565b6706f05b59d3b200005b60008113156114c357670de0b6b3a7640000828002059150671bc16d674ec8000082126114bb579384019360019190911d905b60011d611488565b50505002919050565b6000808212156115205768033dd1780914b97114198212156114f057506000919050565b6114fc826000036114cc565b6ec097ce7bc90715b34b9f1000000000816115195761151961227c565b0592915050565b680a688906bd8b000000821261154c5760405163e69458f960e01b815260048101839052602401610900565b670de0b6b3a7640000604083901b04611564816117e6565b9150505b919050565b60006714057b7ef767814f670de0b6b3a764000061158a846113e7565b02816115195761151961227c565b6000816000036115aa57506000919050565b50600181600160801b81106115c45760409190911b9060801c5b600160401b81106115da5760209190911b9060401c5b64010000000081106115f15760109190911b9060201c5b6201000081106116065760089190911b9060101c5b610100811061161a5760049190911b9060081c5b6010811061162d5760029190911b9060041c5b6008811061163d57600182901b91505b600182848161164e5761164e61227c565b048301901c915060018284816116665761166661227c565b048301901c9150600182848161167e5761167e61227c565b048301901c915060018284816116965761169661227c565b048301901c915060018284816116ae576116ae61227c565b048301901c915060018284816116c6576116c661227c565b048301901c915060018284816116de576116de61227c565b048301901c915060008284816116f6576116f661227c565b04905080831015610fdf5782611007565b6000600160801b821061172757608091821c916117249082612292565b90505b600160401b821061174557604091821c916117429082612292565b90505b640100000000821061176457602091821c916117619082612292565b90505b62010000821061178157601091821c9161177e9082612292565b90505b610100821061179d57600891821c9161179a9082612292565b90505b601082106117b857600491821c916117b59082612292565b90505b600482106117d357600291821c916117d09082612292565b90505b6002821061156857611116600182612292565b600160bf1b67800000000000000082161561180a5768016a09e667f3bcc9090260401c5b674000000000000000821615611829576801306fe0a31b7152df0260401c5b672000000000000000821615611848576801172b83c7d517adce0260401c5b6710000000000000008216156118675768010b5586cf9890f62a0260401c5b670800000000000000821615611886576801059b0d31585743ae0260401c5b6704000000000000008216156118a557680102c9a3e778060ee70260401c5b6702000000000000008216156118c45768010163da9fb33356d80260401c5b6701000000000000008216156118e357680100b1afa5abcbed610260401c5b66800000000000008216156119015768010058c86da1c09ea20260401c5b664000000000000082161561191f576801002c605e2e8cec500260401c5b662000000000000082161561193d57680100162f3904051fa10260401c5b661000000000000082161561195b576801000b175effdc76ba0260401c5b660800000000000082161561197957680100058ba01fb9f96d0260401c5b66040000000000008216156119975768010002c5cc37da94920260401c5b66020000000000008216156119b5576801000162e525ee05470260401c5b66010000000000008216156119d35768010000b17255775c040260401c5b658000000000008216156119f0576801000058b91b5bc9ae0260401c5b65400000000000821615611a0d57680100002c5c89d5ec6d0260401c5b65200000000000821615611a2a5768010000162e43f4f8310260401c5b65100000000000821615611a4757680100000b1721bcfc9a0260401c5b65080000000000821615611a645768010000058b90cf1e6e0260401c5b65040000000000821615611a81576801000002c5c863b73f0260401c5b65020000000000821615611a9e57680100000162e430e5a20260401c5b65010000000000821615611abb576801000000b1721835510260401c5b648000000000821615611ad757680100000058b90c0b490260401c5b644000000000821615611af35768010000002c5c8601cc0260401c5b642000000000821615611b0f576801000000162e42fff00260401c5b641000000000821615611b2b5768010000000b17217fbb0260401c5b640800000000821615611b47576801000000058b90bfce0260401c5b640400000000821615611b6357680100000002c5c85fe30260401c5b640200000000821615611b7f5768010000000162e42ff10260401c5b640100000000821615611b9b57680100000000b17217f80260401c5b6380000000821615611bb65768010000000058b90bfc0260401c5b6340000000821615611bd1576801000000002c5c85fe0260401c5b6320000000821615611bec57680100000000162e42ff0260401c5b6310000000821615611c07576801000000000b17217f0260401c5b6308000000821615611c2257680100000000058b90c00260401c5b6304000000821615611c3d5768010000000002c5c8600260401c5b6302000000821615611c58576801000000000162e4300260401c5b6301000000821615611c735768010000000000b172180260401c5b62800000821615611c8d576801000000000058b90c0260401c5b62400000821615611ca757680100000000002c5c860260401c5b62200000821615611cc15768010000000000162e430260401c5b62100000821615611cdb57680100000000000b17210260401c5b62080000821615611cf55768010000000000058b910260401c5b62040000821615611d0f576801000000000002c5c80260401c5b62020000821615611d2957680100000000000162e40260401c5b62010000821615611d43576801000000000000b1720260401c5b618000821615611d5c57680100000000000058b90260401c5b614000821615611d755768010000000000002c5d0260401c5b612000821615611d8e576801000000000000162e0260401c5b611000821615611da75768010000000000000b170260401c5b610800821615611dc0576801000000000000058c0260401c5b610400821615611dd957680100000000000002c60260401c5b610200821615611df257680100000000000001630260401c5b610100821615611e0b57680100000000000000b10260401c5b6080821615611e2357680100000000000000590260401c5b6040821615611e3b576801000000000000002c0260401c5b6020821615611e5357680100000000000000160260401c5b6010821615611e6b576801000000000000000b0260401c5b6008821615611e8357680100000000000000060260401c5b6004821615611e9b57680100000000000000030260401c5b6002821615611eb357680100000000000000010260401c5b6001821615611ecb57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b8035801515811461156857600080fd5b60008060008060808587031215611f0857600080fd5b611f1185611ee2565b966020860135965060408601359560600135945092505050565b6001600160a01b0381168114611f4057600080fd5b50565b600060208284031215611f5557600080fd5b8135610fdf81611f2b565b8035600381900b811461156857600080fd5b600080828403610120811215611f8757600080fd5b61010080821215611f9757600080fd5b604051915080820182811067ffffffffffffffff82111715611fc957634e487b7160e01b600052604160045260246000fd5b604052611fd585611f60565b8252611fe360208601611f60565b6020830152611ff460408601611f60565b604083015261200560608601611f60565b606083015261201660808601611f60565b608083015261202760a08601611f60565b60a083015261203860c08601611f60565b60c083015261204960e08601611f60565b60e0830152909593013593505050565b60006020828403121561206b57600080fd5b5035919050565b6000806040838503121561208557600080fd5b823561209081611f2b565b915061209e60208401611ee2565b90509250929050565b600398890b815296880b602088015294870b604087015292860b606086015290850b6080850152840b60a0840152830b60c083015290910b60e08201526101000190565b6020808252825182820181905260009190848201906040850190845b8181101561212357835183529284019291840191600101612107565b50909695505050505050565b634e487b7160e01b600052601160045260246000fd5b60008083128015600160ff1b8501841216156121635761216361212f565b6001600160ff1b038401831381161561217e5761217e61212f565b50500390565b60006001600160ff1b03818413828413808216868404861116156121aa576121aa61212f565b600160ff1b60008712828116878305891216156121c9576121c961212f565b600087129250878205871284841616156121e5576121e561212f565b878505871281841616156121fb576121fb61212f565b505050929093029392505050565b6000600160ff1b82016112945761129461212f565b600080821280156001600160ff1b03849003851316156122405761224061212f565b600160ff1b83900384128116156122595761225961212f565b50500190565b60006020828403121561227157600080fd5b8151610fdf81611f2b565b634e487b7160e01b600052601260045260246000fd5b600082198211156122a5576122a561212f565b50019056fea26469706673582212208920ec81745df4e4065ab00e9706ac2986dc71929640e314c95132b0489c75b764736f6c634300080e00330000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2

-----Decoded View---------------
Arg [0] : _authority (address): 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd2

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.