Contract
0x1eFc9b6b5ed42F2E9F200e34854ee8DBd2B4470F
9
Contract Overview
My Name Tag:
Not Available
TokenTracker:
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Minimal Proxy Contract for 0x2c93b8b2085de80891da4cc9bd59956ce842a280
Contract Name:
SsovLp
Compiler Version
v0.8.17+commit.8df45f5f
Contract Source Code (Solidity)
/** *Submitted for verification at Arbiscan.io on 2023-02-01 */ // SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.17; /** ███████╗███████╗ ██████╗ ██╗ ██╗ ██╔════╝██╔════╝██╔═══██╗██║ ██║ ███████╗███████╗██║ ██║██║ ██║ ╚════██║╚════██║██║ ██║╚██╗ ██╔╝ ███████║███████║╚██████╔╝ ╚████╔╝ ╚══════╝╚══════╝ ╚═════╝ ╚═══╝ ██████╗ ██╗ ██████╗ ██╔═══██╗██║ ██╔══██╗ ██║ ██║██║ ██████╔╝ ██║ ██║██║ ██╔═══╝ ╚██████╔╝███████╗██║ ╚═════╝ ╚══════╝╚═╝ SSOV Option Liquidity Pools Allows Lps to add liquidity for select option tokens along with a discount to market price. Option token holders can sell their tokens to Lps at anytime during the option token's epoch. */ // Interfaces /** * @dev Interface of the ERC20 standard as defined in the EIP. * NOTE: Modified to include symbols and decimals. */ interface IERC20 { function totalSupply() external view returns (uint256); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval( address indexed owner, address indexed spender, uint256 value ); } // Libraries // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } } // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol) // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).add( value ); _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).sub( value, "SafeERC20: decreased allowance below zero" ); _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // Contracts // Interfaces interface IAssetSwapper { function swapAsset( address from, address to, uint256 amount, uint256 minAmountOut, uint256 swapperId ) external returns (uint256); } interface IOptionPricing { function getOptionPrice( bool isPut, uint256 expiry, uint256 strike, uint256 lastPrice, uint256 baseIv ) external view returns (uint256); } struct EpochStrikeData { address strikeToken; uint256 totalCollateral; uint256 activeCollateral; uint256 totalPremiums; uint256 checkpointPointer; uint256[] rewardStoredForPremiums; uint256[] rewardDistributionRatiosForPremiums; } struct EpochData { bool expired; uint256 startTime; uint256 expiry; uint256 settlementPrice; uint256 totalCollateralBalance; // Premium + Deposits from all strikes uint256 collateralExchangeRate; // Exchange rate for collateral to underlying (Only applicable to CALL options) uint256 settlementCollateralExchangeRate; // Exchange rate for collateral to underlying on settlement (Only applicable to CALL options) uint256[] strikes; uint256[] totalRewardsCollected; uint256[] rewardDistributionRatios; address[] rewardTokensToDistribute; } interface ISSOV { function getEpochStrikeData(uint256 epoch, uint256 strike) external view returns (EpochStrikeData memory); function getEpochData(uint256 epoch) external view returns (EpochData memory); function currentEpoch() external view returns (uint256); function collateralPrecision() external view returns (uint256); function getVolatility(uint256) external view returns (uint256); function getUnderlyingPrice() external view returns (uint256); function getEpochTimes(uint256 _epoch) external view returns (uint256, uint256); function isPut() external view returns (bool); function underlyingSymbol() external view returns (string memory); function collateralToken() external view returns (address); } // Contracts // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } /// @title Lighter version of the Openzeppelin Pausable contract /// @author witherblock /// @notice Helps pause a contract to block the execution of selected functions /// @dev Difference from the Openzeppelin version is changing the modifiers to internal fns and requires to reverts abstract contract Pausable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Internal function to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ function _whenNotPaused() internal view { if (paused()) revert ContractPaused(); } /** * @dev Internal function to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ function _whenPaused() internal view { if (!paused()) revert ContractNotPaused(); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual { _whenNotPaused(); _paused = true; emit Paused(msg.sender); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual { _whenPaused(); _paused = false; emit Unpaused(msg.sender); } error ContractPaused(); error ContractNotPaused(); } /// @title ContractWhitelist /// @author witherblock /// @notice A helper contract that lets you add a list of whitelisted contracts that should be able to interact with restricited functions abstract contract ContractWhitelist { /// @dev contract => whitelisted or not mapping(address => bool) public whitelistedContracts; /*==== SETTERS ====*/ /// @dev add to the contract whitelist /// @param _contract the address of the contract to add to the contract whitelist function _addToContractWhitelist(address _contract) internal { require(isContract(_contract), "Address must be a contract"); require( !whitelistedContracts[_contract], "Contract already whitelisted" ); whitelistedContracts[_contract] = true; emit AddToContractWhitelist(_contract); } /// @dev remove from the contract whitelist /// @param _contract the address of the contract to remove from the contract whitelist function _removeFromContractWhitelist(address _contract) internal { require(whitelistedContracts[_contract], "Contract not whitelisted"); whitelistedContracts[_contract] = false; emit RemoveFromContractWhitelist(_contract); } // modifier is eligible sender modifier function _isEligibleSender() internal view { // the below condition checks whether the caller is a contract or not if (msg.sender != tx.origin) require( whitelistedContracts[msg.sender], "Contract must be whitelisted" ); } /*==== VIEWS ====*/ /// @dev checks for contract or eoa addresses /// @param addr the address to check /// @return bool whether the passed address is a contract address function isContract(address addr) public view returns (bool) { uint256 size; assembly { size := extcodesize(addr) } return size > 0; } /*==== EVENTS ====*/ event AddToContractWhitelist(address indexed _contract); event RemoveFromContractWhitelist(address indexed _contract); } // Libraries contract BaseSsovLp is Ownable, ReentrancyGuard, Pausable, ContractWhitelist { using SafeERC20 for IERC20; uint256 internal constant MULTI_ADD_LIMIT = 5; uint256 internal constant PERCENT = 1e2; uint256 internal constant USDC_DECIMALS = 1e6; uint256 internal constant PRICE_DECIMALS = 1e8; uint256 internal constant DUST_THRESHOLD = 1e7; // $10 uint256 internal constant TOKEN_DUST_THRESHOLD = 1e15; // 0.001 $token uint256 internal constant AMOUNT_PRICE_TO_USDC_DECIMALS = (1e18 * 1e8) / 1e6; struct OptionTokenInfo { // SSOV for option token address ssov; // Strike price uint256 strike; // USD liquidity uint256 usdLiquidity; // Underlying token liquidity uint256 underlyingLiquidity; } struct Addresses { // USD token address (1e6 precision) address usd; // Underlying token address (1e18 precision) address underlying; // OptionPricing address address optionPricing; // AssetSwapper address address assetSwapper; } Addresses public addresses; /// @dev mapping (option token => OptionTokenInfo) mapping(address => OptionTokenInfo) public getOptionTokenInfo; /// @dev mapping (ssov address => epochs) mapping(address => uint256[]) internal ssovEpochs; /// @dev mapping (ssov address => expires) mapping(address => uint256[]) internal ssovExpiries; /// @dev mapping (token address => (isPut => SSOV address)) mapping(address => mapping(bool => address)) internal tokenVaultRegistry; /*==== EVENTS ====*/ event UsdLiquidityForStrikeAdded( address indexed epochStrikeToken, address indexed buyer, uint256 lpId, uint256 usdLiquidity ); event UnderlyingLiquidityForStrikeAdded( address indexed epochStrikeToken, address indexed buyer, uint256 lpId, uint256 baseLiquidity ); event LpPositionFilled( address indexed epochStrikeToken, uint256 lpId, uint256 amount, uint256 usdPremium, uint256 underlyingPremium, address indexed seller ); event LpPositionKilled(address indexed epochStrikeToken, uint256 index); event LpDustCleared(address indexed epochStrikeToken, uint256 index); event SsovForTokenRegistered(address token, bool isPut, address ssov); event SsovForTokenRemoved(address token, bool isPut, address ssov); event AddressesSet(Addresses _addresses); event SsovExpiryUpdated(address ssov, uint256 expiry); event EmergencyWithdrawn(address caller); /*==== ADMIN METHODS ====*/ /// @notice Pauses the vault for emergency cases /// @dev Can only be called by the owner function pause() external onlyOwner { _pause(); } /// @notice Unpauses the vault /// @dev Can only be called by the owner function unpause() external onlyOwner { _unpause(); } /// @notice Add a contract to the whitelist /// @dev Can only be called by the admin /// @param _contract Address of the contract that needs to be added to the whitelist function addToContractWhitelist(address _contract) external onlyOwner { _addToContractWhitelist(_contract); } /// @notice Remove a contract to the whitelist /// @dev Can only be called by the admin /// @param _contract Address of the contract that needs to be removed from the whitelist function removeFromContractWhitelist(address _contract) external onlyOwner { _removeFromContractWhitelist(_contract); } /// @notice Sets (adds) a list of addresses to the address list /// @dev Can only be called by the owner /// @param _addresses addresses of contracts in the Addresses struct function setAddresses(Addresses calldata _addresses) external onlyOwner { addresses = _addresses; emit AddressesSet(_addresses); } /// @notice Transfers all funds to msg.sender /// @dev Can only be called by the owner /// @param tokens The list of erc20 tokens to withdraw /// @param transferNative Whether should transfer the native currency function emergencyWithdrawn(address[] calldata tokens, bool transferNative) external onlyOwner { _whenPaused(); if (transferNative) payable(msg.sender).transfer(address(this).balance); IERC20 token; for (uint256 i = 0; i < tokens.length; i++) { token = IERC20(tokens[i]); token.safeTransfer(msg.sender, token.balanceOf(address(this))); } emit EmergencyWithdrawn(msg.sender); } /// @notice Register the vault for token /// @param token Token address /// @param vault SSOV address /// @param isPut isPut function registerSsovForToken( address token, address vault, bool isPut ) external onlyOwner { require(isPut == getSsov(vault).isPut(), "invalid isPut"); require( token != address(0) && vault != address(0), "addresses cannot be null" ); tokenVaultRegistry[token][isPut] = vault; emit SsovForTokenRegistered(token, isPut, vault); } /// @notice Unregister the vault for token /// @param token Token address /// @param isPut Is puts function unregisterSsovForToken(address token, bool isPut) external onlyOwner { address toRemoveVault = tokenVaultRegistry[token][isPut]; tokenVaultRegistry[token][isPut] = address(0); emit SsovForTokenRemoved(token, isPut, toRemoveVault); } /*==== BOT METHODS ====*/ /// @notice Updates the list of epoch expiries /// @dev Can be run by a bot /// @param ssov addresses of ssov /// @param epoch epoch to update function updateSsovEpoch(address ssov, uint256 epoch) external returns (bool) { uint256 expiry = getSsovExpiry(ssov, epoch); require(expiry > block.timestamp, "Expiry must be in the future"); if ( ssovExpiries[ssov].length == 0 || ssovExpiries[ssov][ssovExpiries[ssov].length - 1] != expiry ) { ssovExpiries[ssov].push(expiry); ssovEpochs[ssov].push(epoch); emit SsovExpiryUpdated(ssov, expiry); return true; } return false; } /*==== INTERNAL METHODS ====*/ /// @dev Internal function to swap underlying to USD /// @param amount Amount of underlying to swap /// @param minAmountOut Amount of minimum usd to receive (slippage control parameter) /// @param swapperId The swapperId which dictates the amm path to use while swapping /// @return usdReceived The amount of USD received after the swap function _swapUnderlyingToUsd( uint256 amount, uint256 minAmountOut, uint256 swapperId ) internal returns (uint256 usdReceived) { usdReceived = IAssetSwapper(addresses.assetSwapper).swapAsset( addresses.underlying, addresses.usd, amount, minAmountOut, swapperId ); } /// @notice Returns SSOV contract /// @param vault SSOV address function getSsov(address vault) internal pure returns (ISSOV) { return ISSOV(vault); } /*==== SSOV VIEW METHODS ====*/ /// @notice Returns the SSOV expiry /// @param vault SSOV address /// @param epoch SSOV epoch function getSsovExpiry(address vault, uint256 epoch) public view returns (uint256) { (, uint256 expiry) = getSsov(vault).getEpochTimes(epoch); return expiry; } /// @notice Returns the SSOV option token address /// @param vault SSOV address /// @param epoch SSOV epoch /// @param strike SSOV strike function getSsovOptionToken( address vault, uint256 epoch, uint256 strike ) public view returns (address) { return getSsov(vault).getEpochStrikeData(epoch, strike).strikeToken; } /// @notice Returns the SSOV epoch strikes /// @param vault SSOV address /// @param epoch SSOV epoch function getSsovEpochStrikes(address vault, uint256 epoch) public view returns (uint256[] memory strikes) { return getSsov(vault).getEpochData(epoch).strikes; } /// @notice Returns the current SSOV epoch /// @param vault SSOV address function getSsovEpoch(address vault) public view returns (uint256) { return getSsov(vault).currentEpoch(); } /// @notice Returns the current underlying price of an SSOV /// @param vault SSOV address function getSsovUnderlyingPrice(address vault) public view returns (uint256) { return getSsov(vault).getUnderlyingPrice(); } /// @notice Returns true if the epoch has expired for an SSOV /// @param vault SSOV address /// @param epoch SSOV epoch function hasEpochExpired(address vault, uint256 epoch) public view returns (bool) { return getSsovExpiry(vault, epoch) <= block.timestamp; } /// @notice Returns the current volatility of SSOV strike /// @param vault SSOV address /// @param strike SSOV strike function getSsovVolatility(address vault, uint256 strike) public view returns (uint256) { return getSsov(vault).getVolatility(strike); } /// @notice Calculate premium for an option /// @param isPut call or put options /// @param expiry expiry /// @param strike Strike price of the option /// @param amount Amount of options (1e18 precision) /// @param volatility Volatility of the option /// @param vault Address of ssov /// @return premium in USD function calculatePremium( bool isPut, uint256 strike, uint256 expiry, uint256 amount, uint256 volatility, address vault ) public view returns (uint256) { return (IOptionPricing(addresses.optionPricing).getOptionPrice( isPut, expiry, strike, getSsovUnderlyingPrice(vault), volatility ) * amount) / AMOUNT_PRICE_TO_USDC_DECIMALS; } /// @notice Calculate premium for an option /// @param ssov address of ssov /// @param usdPremium premium in USD /// @return premium in underlying function getPremiumInUnderlying(address ssov, uint256 usdPremium) public view returns (uint256) { return Math.mulDiv( usdPremium, PRICE_DECIMALS * (10**IERC20(addresses.underlying).decimals()), getSsovUnderlyingPrice(ssov) * USDC_DECIMALS ); } /// @notice Returns the epochs of an ssov /// @param vault SSOV address function getSsovEpochs(address vault) public view returns (uint256[] memory) { return ssovEpochs[vault]; } /// @notice Returns the expiries of an ssov /// @param vault SSOV address function getSsovEpochExpiries(address vault) external view returns (uint256[] memory) { return ssovExpiries[vault]; } /// @notice Returns the token vault registry /// @param token Token address /// @param isPut isPut function getTokenVaultRegistry(address token, bool isPut) external view returns (address) { return tokenVaultRegistry[token][isPut]; } /// @notice Returns the SSOV option token addresses for an epoch /// @param vault SSOV address /// @param epoch SSOV epoch function getSsovOptionTokens(address vault, uint256 epoch) external view returns (address[] memory tokens) { uint256[] memory strikes = getSsovEpochStrikes(vault, epoch); tokens = new address[](strikes.length); for (uint256 i; i < strikes.length; ++i) { tokens[i] = getSsovOptionToken(vault, epoch, strikes[i]); } } /// @notice Returns the collateral precision of an SSOV /// @param vault SSOV address function getSsovCollateralPrecision(address vault) external view returns (uint256) { return getSsov(vault).collateralPrecision(); } /*==== ERRORS ====*/ error AmountTooSmall(); error InsuffientLiquidity(); error InvalidDiscount(); error InvalidEpochToFill(); error InvalidLiquidity(); error InvalidLpIndex(); error InvalidParams(); error InvalidStrike(); error LpPositionDead(); error OnlyBuyerCanKill(); error SsovDoesNotExist(); error SsovEpochExpired(); } // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } contract SsovLp is BaseSsovLp, Initializable { using SafeERC20 for IERC20; struct LpPosition { // Id for LP position uint256 lpId; // Epoch for Lp position uint256 epoch; // Strike price uint256 strike; // Available usd liquidity in Lp position uint256 usdLiquidity; // Available underlying liquidity in Lp position uint256 underlyingLiquidity; // Amount of usd liquidity used to purchase options uint256 usdLiquidityUsed; // Amount of underlying liquidity used to purchase options uint256 underlyingLiquidityUsed; // Discount in % to market price uint256 discount; // Amount of options purchased uint256 purchased; // maxTokensToFill Max tokens to buy uint256 maxTokensToFill; // Buyer address address buyer; // Is position killed bool killed; } string public name; string public underlyingSymbol; /// @dev mapping (epoch strike token address) => LpPosition[]) mapping(address => LpPosition[]) internal allLpPositions; /// @dev mapping (user => striken token => lpId[]) mapping(address => mapping(address => uint256[])) internal userLpPositions; /*==== INITIALIZE ====*/ /// @dev An SsovLp contract maps to the same underlying and duration. /// @param _name Name of contract, i.e., ETH-MONTHLY, RDPX-WEEKLY /// @param _underlyingSymbol The symbol of the contract /// @param _addresses Addresses of the contract /// @param _sender Deployer address function initialize( string memory _name, string memory _underlyingSymbol, Addresses memory _addresses, address _sender ) external initializer { name = _name; underlyingSymbol = _underlyingSymbol; addresses = _addresses; IERC20(addresses.underlying).safeIncreaseAllowance( addresses.assetSwapper, type(uint256).max ); _transferOwnership(_sender); } /*==== USER METHODS ====*/ /** * Adds multiple new Lp positions for a token * @param token underlying token address * @param isUsd Is the liquidity USD or underlying * @param isPut Is the Lp for puts * @param strike Strike to purchase at * @param liquidity Liquidity per strike. * Must be in 6 decimals if isUsd = true else 18 decimals * @param discount Discount on volatility * @param maxTokensToFill Max tokens to buy * @param to Address to send option tokens to if purchase succeeds * @return Whether new Lp position was created */ function addToLp( address token, bool isUsd, bool isPut, uint256 strike, uint256 liquidity, uint256 discount, uint256 maxTokensToFill, address to ) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); address ssov = tokenVaultRegistry[token][isPut]; if (ssov == address(0)) { revert SsovDoesNotExist(); } if (isUsd) { return _addUsd(ssov, strike, liquidity, discount, maxTokensToFill, to); } return _addUnderlying( ssov, strike, liquidity, discount, maxTokensToFill, to ); } /** * Adds multiple new Lp positions for a token * @param token underlying token address * @param isUsd Is the liquidity USD or underlying * @param isPut Is the Lp for puts * @param strikes Strikes to purchase at * @param liquidity Liquidity per strike. * Must be in 6 decimals if isUsd = true else 18 decimals * @param discount Discount on volatility * @param maxTokensToFill Max tokens to buy * @param to Address to send option tokens to if purchase succeeds * @return Whether new Lp position was created */ function multiAddToLp( address token, bool isUsd, bool isPut, uint256[] memory strikes, uint256[] memory liquidity, uint256[] memory discount, uint256[] memory maxTokensToFill, address to ) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); address ssov = tokenVaultRegistry[token][isPut]; if (ssov == address(0)) { revert SsovDoesNotExist(); } if ( strikes.length == 0 || strikes.length > MULTI_ADD_LIMIT || strikes.length != liquidity.length || liquidity.length != discount.length ) { revert InvalidParams(); } for (uint256 i; i < strikes.length; ++i) { if (isUsd) { _addUsd( ssov, strikes[i], liquidity[i], discount[i], maxTokensToFill[i], to ); } else { _addUnderlying( ssov, strikes[i], liquidity[i], discount[i], maxTokensToFill[i], to ); } } return true; } /// @dev helper function to check if params are valid before adding function _canAddToLp( bool isUsd, address ssov, address strikeToken, uint256 liquidity, uint256 discount, uint256 currentEpoch ) internal view returns (bool) { if (isUsd && liquidity < DUST_THRESHOLD) { revert InvalidLiquidity(); } if (!isUsd && liquidity < TOKEN_DUST_THRESHOLD) { revert InvalidLiquidity(); } if (discount == 0 || discount > 100) { revert InvalidDiscount(); } if (hasEpochExpired(ssov, currentEpoch)) { revert SsovEpochExpired(); } if (strikeToken == address(0)) { revert InvalidStrike(); } return true; } /// @dev helper function to cache unseen tokens function _cacheStrikeToken( address ssov, address strikeToken, uint256 strike ) internal returns (bool) { if (getOptionTokenInfo[strikeToken].ssov == address(0)) { getOptionTokenInfo[strikeToken].ssov = address(ssov); getOptionTokenInfo[strikeToken].strike = strike; } return true; } /// @dev helper function to create an Lp function _createLp( address strikeToken, uint256 strike, uint256 usdLiquidity, uint256 underlyingLiquidity, uint256 discount, uint256 currentEpoch, uint256 maxTokensToFill, address buyer ) internal returns (uint256 lpId, LpPosition memory lp) { lpId = allLpPositions[strikeToken].length; lp.lpId = lpId; lp.epoch = currentEpoch; lp.strike = strike; lp.usdLiquidity = usdLiquidity; lp.underlyingLiquidity = underlyingLiquidity; lp.discount = discount; lp.maxTokensToFill = maxTokensToFill; lp.buyer = buyer; allLpPositions[strikeToken].push(lp); userLpPositions[buyer][strikeToken].push(lpId); } /// @dev helper function to add usd liquidity function _addUsd( address ssov, uint256 strike, uint256 liquidity, uint256 discount, uint256 maxTokensToFill, address buyer ) internal returns (bool) { uint256 currentEpoch = getSsovEpoch(ssov); address strikeToken = getSsovOptionToken(ssov, currentEpoch, strike); _canAddToLp({ isUsd: true, ssov: ssov, strikeToken: strikeToken, liquidity: liquidity, discount: discount, currentEpoch: currentEpoch }); _cacheStrikeToken({ ssov: ssov, strikeToken: strikeToken, strike: strike }); (uint256 lpId, ) = _createLp({ strikeToken: strikeToken, strike: strike, usdLiquidity: liquidity, underlyingLiquidity: 0, discount: discount, currentEpoch: currentEpoch, maxTokensToFill: maxTokensToFill, buyer: buyer }); getOptionTokenInfo[strikeToken].usdLiquidity += liquidity; IERC20(addresses.usd).safeTransferFrom( msg.sender, address(this), liquidity ); emit UsdLiquidityForStrikeAdded(strikeToken, buyer, lpId, liquidity); return true; } /// @dev helper function to add underlying liquidity function _addUnderlying( address ssov, uint256 strike, uint256 liquidity, uint256 discount, uint256 maxTokensToFill, address buyer ) internal returns (bool) { uint256 currentEpoch = getSsovEpoch(ssov); address strikeToken = getSsovOptionToken(ssov, currentEpoch, strike); _canAddToLp({ isUsd: false, ssov: ssov, strikeToken: strikeToken, liquidity: liquidity, discount: discount, currentEpoch: currentEpoch }); _cacheStrikeToken({ ssov: ssov, strikeToken: strikeToken, strike: strike }); (uint256 lpId, ) = _createLp({ strikeToken: strikeToken, strike: strike, usdLiquidity: 0, underlyingLiquidity: liquidity, discount: discount, currentEpoch: currentEpoch, maxTokensToFill: maxTokensToFill, buyer: buyer }); getOptionTokenInfo[strikeToken].underlyingLiquidity += liquidity; IERC20(addresses.underlying).safeTransferFrom( msg.sender, address(this), liquidity ); emit UnderlyingLiquidityForStrikeAdded( strikeToken, buyer, lpId, liquidity ); return true; } /** * Fills an Lp position with available liquidity * @param isPut is put option * @param outUsd give user the option to receive USDC for liquidity in ETH, * @param strikeToken epoch strike token address * @param lpIndex Index of Lp position * @param amount Amount of options to buy from each Lp position * @param minAmountOut The minimum amount of usd to receive if outUsd is true * @param swapperId The swapperId which dictates which amm path will be used * @return Whether Lp positions were filled */ function fillLpPosition( bool isPut, bool outUsd, address strikeToken, uint256 lpIndex, uint256 amount, uint256 minAmountOut, uint256 swapperId ) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); address ssov = getOptionTokenInfo[strikeToken].ssov; if (ssov == address(0)) { revert SsovDoesNotExist(); } _fillLpPosition( isPut, outUsd, ssov, strikeToken, lpIndex, amount, minAmountOut, swapperId ); return true; } /** * Fills multiple Lp positions with available liquidity * @param isPut is put option * @param outUsd give user the option to receive USDC for liquidity in ETH, * @param strikeToken epoch strike token address * @param lpIndices Index of Lp position * @param amount Amount of options to buy from each Lp position * @param minAmountOuts The minimum amount out of usd to receive for each LP position * @param swapperId The swapperId * @return Whether Lp positions were filled */ function multiFillLpPosition( bool isPut, bool outUsd, address strikeToken, uint256[] memory lpIndices, uint256[] memory amount, uint256[] memory minAmountOuts, uint256 swapperId ) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); address ssov = getOptionTokenInfo[strikeToken].ssov; if (ssov == address(0)) { revert SsovDoesNotExist(); } if (lpIndices.length == 0 || lpIndices.length != amount.length) { revert InvalidParams(); } for (uint256 i; i < lpIndices.length; ++i) { _fillLpPosition( isPut, outUsd, ssov, strikeToken, lpIndices[i], amount[i], minAmountOuts[i], swapperId ); } return true; } /// @dev helper function to fill an Lp position at index function _fillLpPosition( bool isPut, bool outUsd, address ssov, address strikeToken, uint256 lpIndex, uint256 amount, uint256 minAmountOut, uint256 swapperId ) internal returns (bool) { if (amount <= TOKEN_DUST_THRESHOLD) { revert AmountTooSmall(); } if (lpIndex >= allLpPositions[strikeToken].length) { revert InvalidLpIndex(); } LpPosition memory lpPosition = allLpPositions[strikeToken][lpIndex]; if (lpPosition.killed) { revert LpPositionDead(); } if (hasEpochExpired(ssov, getSsovEpoch(ssov))) { revert InvalidEpochToFill(); } amount = Math.min(amount, lpPosition.maxTokensToFill); uint256 volatility = getSsovVolatility(ssov, lpPosition.strike); // volatility -= discount volatility -= Math.mulDiv(volatility, lpPosition.discount, PERCENT); uint256 usdPremium = calculatePremium({ isPut: isPut, strike: lpPosition.strike, expiry: getSsovExpiry(ssov, getSsovEpoch(ssov)), amount: amount, volatility: volatility, vault: ssov }); uint256 underlyingPremium; if (lpPosition.usdLiquidity != 0) { _fillUsd({ usdPremium: usdPremium, usdLiquidity: lpPosition.usdLiquidity, strikeToken: strikeToken, lpIndex: lpIndex }); } else { underlyingPremium = getPremiumInUnderlying(ssov, usdPremium); _fillUnderlying({ outUsd: outUsd, strikeToken: strikeToken, premium: underlyingPremium, underlyingLiquidity: lpPosition.underlyingLiquidity, lpIndex: lpIndex, minAmountOut: minAmountOut, swapperId: swapperId }); } allLpPositions[strikeToken][lpIndex].purchased += amount; IERC20(strikeToken).safeTransferFrom( msg.sender, lpPosition.buyer, amount ); emit LpPositionFilled( strikeToken, lpIndex, amount, usdPremium, underlyingPremium, msg.sender ); return true; } /// @dev helper function to fill an Lp position's usd liquidity /// @notice premium is in usd function _fillUsd( uint256 usdPremium, uint256 usdLiquidity, address strikeToken, uint256 lpIndex ) internal returns (bool) { if (usdPremium > usdLiquidity) { revert InsuffientLiquidity(); } allLpPositions[strikeToken][lpIndex].usdLiquidity -= usdPremium; allLpPositions[strikeToken][lpIndex].usdLiquidityUsed += usdPremium; getOptionTokenInfo[strikeToken].usdLiquidity -= usdPremium; if ( allLpPositions[strikeToken][lpIndex].usdLiquidity < DUST_THRESHOLD ) { _clearLpDust(strikeToken, lpIndex); } IERC20(addresses.usd).safeTransfer(msg.sender, usdPremium); return true; } /// @dev helper function to fill an Lp position's underlying liquidity /// @notice premium is in underlying function _fillUnderlying( bool outUsd, address strikeToken, uint256 premium, uint256 underlyingLiquidity, uint256 lpIndex, uint256 minAmountOut, uint256 swapperId ) internal returns (bool) { if (premium > underlyingLiquidity) { revert InsuffientLiquidity(); } allLpPositions[strikeToken][lpIndex].underlyingLiquidity -= premium; allLpPositions[strikeToken][lpIndex].underlyingLiquidityUsed += premium; getOptionTokenInfo[strikeToken].underlyingLiquidity -= premium; if ( allLpPositions[strikeToken][lpIndex].underlyingLiquidity < TOKEN_DUST_THRESHOLD ) { _clearLpDust(strikeToken, lpIndex); } if (outUsd) { uint256 usdPremium = _swapUnderlyingToUsd( premium, minAmountOut, swapperId ); IERC20(addresses.usd).safeTransfer(msg.sender, usdPremium); } else { IERC20(addresses.underlying).safeTransfer(msg.sender, premium); } return true; } /// @dev helper function to clear Lp dust position at index function _clearLpDust(address strikeToken, uint256 lpIndex) internal returns (bool) { LpPosition memory lpPosition = allLpPositions[strikeToken][lpIndex]; _killAndTransfer( strikeToken, lpIndex, lpPosition.buyer, lpPosition.usdLiquidity, lpPosition.underlyingLiquidity ); emit LpDustCleared(strikeToken, lpIndex); return true; } /** * Kills an active Lp position * @param strikeToken epoch strike token address * @param lpIndex Index of Lp position * @return Whether Lp position is killed */ function killLpPosition(address strikeToken, uint256 lpIndex) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); if (getOptionTokenInfo[strikeToken].ssov == address(0)) { revert SsovDoesNotExist(); } _killLpPosition(strikeToken, lpIndex); return true; } /** * Kills multiple active Lp positions * @param strikeToken epoch strike token address * @param lpIndices Indices of Lp position * @return Whether Lp positions are killed */ function multiKillLpPosition( address strikeToken, uint256[] memory lpIndices ) external nonReentrant returns (bool) { _isEligibleSender(); _whenNotPaused(); if (getOptionTokenInfo[strikeToken].ssov == address(0)) { revert SsovDoesNotExist(); } if (lpIndices.length == 0) { revert InvalidParams(); } for (uint256 i; i < lpIndices.length; ++i) { _killLpPosition(strikeToken, lpIndices[i]); } return true; } /// @dev helper function to kill an Lp position at index function _killLpPosition(address strikeToken, uint256 lpIndex) internal returns (bool) { if (lpIndex >= allLpPositions[strikeToken].length) { revert InvalidLpIndex(); } LpPosition memory lpPosition = allLpPositions[strikeToken][lpIndex]; if (lpPosition.buyer != msg.sender) { revert OnlyBuyerCanKill(); } if (lpPosition.killed) { revert LpPositionDead(); } _killAndTransfer( strikeToken, lpIndex, lpPosition.buyer, lpPosition.usdLiquidity, lpPosition.underlyingLiquidity ); emit LpPositionKilled(strikeToken, lpIndex); return true; } /// @dev helper function to kill position and transfer liquidity left in position back to Lp. This does not update liquidity in Lp position. function _killAndTransfer( address strikeToken, uint256 lpIndex, address buyer, uint256 usdLiquidity, uint256 underlyingLiquidity ) internal returns (bool) { allLpPositions[strikeToken][lpIndex].killed = true; if (usdLiquidity != 0) { getOptionTokenInfo[strikeToken].usdLiquidity -= usdLiquidity; IERC20(addresses.usd).safeTransfer(buyer, usdLiquidity); } else if (underlyingLiquidity != 0) { getOptionTokenInfo[strikeToken] .underlyingLiquidity -= underlyingLiquidity; IERC20(addresses.underlying).safeTransfer( buyer, underlyingLiquidity ); } return true; } /*==== VIEW METHODS ====*/ /** * @notice Returns all Lp positions for a given user * @param user address of user * @param strikeToken epoch strike token address * @return positions the user's Lp positions */ function getUserLpPositions(address user, address strikeToken) external view returns (LpPosition[] memory positions) { uint256[] memory userPositionsId = userLpPositions[user][strikeToken]; uint256 numPositions = userPositionsId.length; positions = new LpPosition[](numPositions); for (uint256 i; i < numPositions; ) { positions[i] = allLpPositions[strikeToken][userPositionsId[i]]; unchecked { ++i; } } } /** * @notice Returns all Lp positions for a given strikeToken * @param strikeToken epoch strike token address * @return all Lp positions */ function getAllLpPositions(address strikeToken) external view returns (LpPosition[] memory) { return allLpPositions[strikeToken]; } }
[{"inputs":[],"name":"AmountTooSmall","type":"error"},{"inputs":[],"name":"ContractNotPaused","type":"error"},{"inputs":[],"name":"ContractPaused","type":"error"},{"inputs":[],"name":"InsuffientLiquidity","type":"error"},{"inputs":[],"name":"InvalidDiscount","type":"error"},{"inputs":[],"name":"InvalidEpochToFill","type":"error"},{"inputs":[],"name":"InvalidLiquidity","type":"error"},{"inputs":[],"name":"InvalidLpIndex","type":"error"},{"inputs":[],"name":"InvalidParams","type":"error"},{"inputs":[],"name":"InvalidStrike","type":"error"},{"inputs":[],"name":"LpPositionDead","type":"error"},{"inputs":[],"name":"OnlyBuyerCanKill","type":"error"},{"inputs":[],"name":"SsovDoesNotExist","type":"error"},{"inputs":[],"name":"SsovEpochExpired","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_contract","type":"address"}],"name":"AddToContractWhitelist","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"usd","type":"address"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"optionPricing","type":"address"},{"internalType":"address","name":"assetSwapper","type":"address"}],"indexed":false,"internalType":"struct BaseSsovLp.Addresses","name":"_addresses","type":"tuple"}],"name":"AddressesSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"EmergencyWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"epochStrikeToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"LpDustCleared","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"epochStrikeToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"usdPremium","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"underlyingPremium","type":"uint256"},{"indexed":true,"internalType":"address","name":"seller","type":"address"}],"name":"LpPositionFilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"epochStrikeToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"LpPositionKilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_contract","type":"address"}],"name":"RemoveFromContractWhitelist","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"ssov","type":"address"},{"indexed":false,"internalType":"uint256","name":"expiry","type":"uint256"}],"name":"SsovExpiryUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"isPut","type":"bool"},{"indexed":false,"internalType":"address","name":"ssov","type":"address"}],"name":"SsovForTokenRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"isPut","type":"bool"},{"indexed":false,"internalType":"address","name":"ssov","type":"address"}],"name":"SsovForTokenRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"epochStrikeToken","type":"address"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"baseLiquidity","type":"uint256"}],"name":"UnderlyingLiquidityForStrikeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"epochStrikeToken","type":"address"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"usdLiquidity","type":"uint256"}],"name":"UsdLiquidityForStrikeAdded","type":"event"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"addToContractWhitelist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"isUsd","type":"bool"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"discount","type":"uint256"},{"internalType":"uint256","name":"maxTokensToFill","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"addToLp","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"addresses","outputs":[{"internalType":"address","name":"usd","type":"address"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"optionPricing","type":"address"},{"internalType":"address","name":"assetSwapper","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"volatility","type":"uint256"},{"internalType":"address","name":"vault","type":"address"}],"name":"calculatePremium","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"bool","name":"transferNative","type":"bool"}],"name":"emergencyWithdrawn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"bool","name":"outUsd","type":"bool"},{"internalType":"address","name":"strikeToken","type":"address"},{"internalType":"uint256","name":"lpIndex","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"uint256","name":"swapperId","type":"uint256"}],"name":"fillLpPosition","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"strikeToken","type":"address"}],"name":"getAllLpPositions","outputs":[{"components":[{"internalType":"uint256","name":"lpId","type":"uint256"},{"internalType":"uint256","name":"epoch","type":"uint256"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"uint256","name":"usdLiquidity","type":"uint256"},{"internalType":"uint256","name":"underlyingLiquidity","type":"uint256"},{"internalType":"uint256","name":"usdLiquidityUsed","type":"uint256"},{"internalType":"uint256","name":"underlyingLiquidityUsed","type":"uint256"},{"internalType":"uint256","name":"discount","type":"uint256"},{"internalType":"uint256","name":"purchased","type":"uint256"},{"internalType":"uint256","name":"maxTokensToFill","type":"uint256"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"bool","name":"killed","type":"bool"}],"internalType":"struct SsovLp.LpPosition[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"getOptionTokenInfo","outputs":[{"internalType":"address","name":"ssov","type":"address"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"uint256","name":"usdLiquidity","type":"uint256"},{"internalType":"uint256","name":"underlyingLiquidity","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"ssov","type":"address"},{"internalType":"uint256","name":"usdPremium","type":"uint256"}],"name":"getPremiumInUnderlying","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"getSsovCollateralPrecision","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"getSsovEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"getSsovEpochExpiries","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"getSsovEpochStrikes","outputs":[{"internalType":"uint256[]","name":"strikes","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"getSsovEpochs","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"getSsovExpiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"},{"internalType":"uint256","name":"strike","type":"uint256"}],"name":"getSsovOptionToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"getSsovOptionTokens","outputs":[{"internalType":"address[]","name":"tokens","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"getSsovUnderlyingPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"strike","type":"uint256"}],"name":"getSsovVolatility","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"isPut","type":"bool"}],"name":"getTokenVaultRegistry","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"strikeToken","type":"address"}],"name":"getUserLpPositions","outputs":[{"components":[{"internalType":"uint256","name":"lpId","type":"uint256"},{"internalType":"uint256","name":"epoch","type":"uint256"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"uint256","name":"usdLiquidity","type":"uint256"},{"internalType":"uint256","name":"underlyingLiquidity","type":"uint256"},{"internalType":"uint256","name":"usdLiquidityUsed","type":"uint256"},{"internalType":"uint256","name":"underlyingLiquidityUsed","type":"uint256"},{"internalType":"uint256","name":"discount","type":"uint256"},{"internalType":"uint256","name":"purchased","type":"uint256"},{"internalType":"uint256","name":"maxTokensToFill","type":"uint256"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"bool","name":"killed","type":"bool"}],"internalType":"struct SsovLp.LpPosition[]","name":"positions","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"hasEpochExpired","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_underlyingSymbol","type":"string"},{"components":[{"internalType":"address","name":"usd","type":"address"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"optionPricing","type":"address"},{"internalType":"address","name":"assetSwapper","type":"address"}],"internalType":"struct BaseSsovLp.Addresses","name":"_addresses","type":"tuple"},{"internalType":"address","name":"_sender","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"isContract","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"strikeToken","type":"address"},{"internalType":"uint256","name":"lpIndex","type":"uint256"}],"name":"killLpPosition","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"isUsd","type":"bool"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256[]","name":"strikes","type":"uint256[]"},{"internalType":"uint256[]","name":"liquidity","type":"uint256[]"},{"internalType":"uint256[]","name":"discount","type":"uint256[]"},{"internalType":"uint256[]","name":"maxTokensToFill","type":"uint256[]"},{"internalType":"address","name":"to","type":"address"}],"name":"multiAddToLp","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"bool","name":"outUsd","type":"bool"},{"internalType":"address","name":"strikeToken","type":"address"},{"internalType":"uint256[]","name":"lpIndices","type":"uint256[]"},{"internalType":"uint256[]","name":"amount","type":"uint256[]"},{"internalType":"uint256[]","name":"minAmountOuts","type":"uint256[]"},{"internalType":"uint256","name":"swapperId","type":"uint256"}],"name":"multiFillLpPosition","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"strikeToken","type":"address"},{"internalType":"uint256[]","name":"lpIndices","type":"uint256[]"}],"name":"multiKillLpPosition","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"vault","type":"address"},{"internalType":"bool","name":"isPut","type":"bool"}],"name":"registerSsovForToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"removeFromContractWhitelist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"usd","type":"address"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"optionPricing","type":"address"},{"internalType":"address","name":"assetSwapper","type":"address"}],"internalType":"struct BaseSsovLp.Addresses","name":"_addresses","type":"tuple"}],"name":"setAddresses","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"underlyingSymbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"isPut","type":"bool"}],"name":"unregisterSsovForToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"ssov","type":"address"},{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"updateSsovEpoch","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"whitelistedContracts","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.