Overview
ETH Balance
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 351 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Approve | 425005141 | 8 days ago | IN | 0 ETH | 0.00000098 | ||||
| Approve | 400079979 | 80 days ago | IN | 0 ETH | 0.00000154 | ||||
| Approve | 395775524 | 92 days ago | IN | 0 ETH | 0.00000049 | ||||
| Approve | 372225828 | 160 days ago | IN | 0 ETH | 0.00000052 | ||||
| Approve | 352128671 | 218 days ago | IN | 0 ETH | 0.00000052 | ||||
| Approve | 352128601 | 218 days ago | IN | 0 ETH | 0.0000003 | ||||
| Approve | 350101128 | 224 days ago | IN | 0 ETH | 0.00000038 | ||||
| Approve | 350101064 | 224 days ago | IN | 0 ETH | 0.00000038 | ||||
| Approve | 315035540 | 326 days ago | IN | 0 ETH | 0.00000054 | ||||
| Transfer | 305782652 | 353 days ago | IN | 0 ETH | 0.00000053 | ||||
| Approve | 304325016 | 357 days ago | IN | 0 ETH | 0.00000033 | ||||
| Approve | 297357887 | 378 days ago | IN | 0 ETH | 0.00000261 | ||||
| Approve | 294329414 | 386 days ago | IN | 0 ETH | 0.00000047 | ||||
| Approve | 271680287 | 452 days ago | IN | 0 ETH | 0.00000391 | ||||
| Approve | 265306505 | 471 days ago | IN | 0 ETH | 0.00000074 | ||||
| Approve | 264722451 | 472 days ago | IN | 0 ETH | 0.00000108 | ||||
| Approve | 257213807 | 494 days ago | IN | 0 ETH | 0.0000024 | ||||
| Approve | 257209976 | 494 days ago | IN | 0 ETH | 0.00000209 | ||||
| Approve | 234359829 | 561 days ago | IN | 0 ETH | 0.00000063 | ||||
| Approve | 211946767 | 626 days ago | IN | 0 ETH | 0.00000063 | ||||
| Approve | 211945503 | 626 days ago | IN | 0 ETH | 0.00000063 | ||||
| Approve | 211019829 | 629 days ago | IN | 0 ETH | 0.00000061 | ||||
| Approve | 195662755 | 674 days ago | IN | 0 ETH | 0.00000306 | ||||
| Approve | 192229922 | 684 days ago | IN | 0 ETH | 0.00000157 | ||||
| Approve | 192229803 | 684 days ago | IN | 0 ETH | 0.00000123 |
Latest 25 internal transactions (View All)
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720335 | 1052 days ago | 0 ETH | ||||
| 70720312 | 1052 days ago | 0 ETH | ||||
| 70720294 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714725 | 1052 days ago | 0 ETH | ||||
| 70714537 | 1052 days ago | 0 ETH | ||||
| 70713804 | 1052 days ago | 0 ETH | ||||
| 70713804 | 1052 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596418 | 1053 days ago | 0 ETH | ||||
| 70596393 | 1053 days ago | 0 ETH | ||||
| 70250640 | 1054 days ago | 0 ETH |
Cross-Chain Transactions
Minimal Proxy Contract for 0xc0409ec303b727bc1f511d7f8c71fd5ead96de1c
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "./interfaces/ISwap.sol";
/**
* @title Liquidity Provider Token
* @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
* It is used to represent user's shares when providing liquidity to swap contracts.
* @dev Only Swap contracts should initialize and own LPToken contracts.
*/
contract LPToken is ERC20BurnableUpgradeable, OwnableUpgradeable {
using SafeMathUpgradeable for uint256;
/**
* @notice Initializes this LPToken contract with the given name and symbol
* @dev The caller of this function will become the owner. A Swap contract should call this
* in its initializer function.
* @param name name of this token
* @param symbol symbol of this token
*/
function initialize(string memory name, string memory symbol)
external
initializer
returns (bool)
{
__Context_init_unchained();
__ERC20_init_unchained(name, symbol);
__Ownable_init_unchained();
return true;
}
/**
* @notice Mints the given amount of LPToken to the recipient.
* @dev only owner can call this mint function
* @param recipient address of account to receive the tokens
* @param amount amount of tokens to mint
*/
function mint(address recipient, uint256 amount) external onlyOwner {
require(amount != 0, "LPToken: cannot mint 0");
_mint(recipient, amount);
}
/**
* @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
* minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime.
* This assumes the owner is set to a Swap contract's address.
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override(ERC20Upgradeable) {
super._beforeTokenTransfer(from, to, amount);
require(to != address(this), "LPToken: cannot send to itself");
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./SwapUtils.sol";
/**
* @title AmplificationUtils library
* @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct.
* This library assumes the struct is fully validated.
*/
library AmplificationUtils {
using SafeMath for uint256;
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
// Constant values used in ramping A calculations
uint256 public constant A_PRECISION = 100;
uint256 public constant MAX_A = 10**6;
uint256 private constant MAX_A_CHANGE = 2;
uint256 private constant MIN_RAMP_TIME = 14 days;
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function getA(SwapUtils.Swap storage self) external view returns (uint256) {
return _getAPrecise(self).div(A_PRECISION);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function getAPrecise(SwapUtils.Swap storage self)
external
view
returns (uint256)
{
return _getAPrecise(self);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function _getAPrecise(SwapUtils.Swap storage self)
internal
view
returns (uint256)
{
uint256 t1 = self.futureATime; // time when ramp is finished
uint256 a1 = self.futureA; // final A value when ramp is finished
if (block.timestamp < t1) {
uint256 t0 = self.initialATime; // time when ramp is started
uint256 a0 = self.initialA; // initial A value when ramp is started
if (a1 > a0) {
// a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
return
a0.add(
a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
} else {
// a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
return
a0.sub(
a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
}
} else {
return a1;
}
}
/**
* @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param self Swap struct to update
* @param futureA_ the new A to ramp towards
* @param futureTime_ timestamp when the new A should be reached
*/
function rampA(
SwapUtils.Swap storage self,
uint256 futureA_,
uint256 futureTime_
) external {
require(
block.timestamp >= self.initialATime.add(1 days),
"Wait 1 day before starting ramp"
);
require(
futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
"Insufficient ramp time"
);
require(
futureA_ > 0 && futureA_ < MAX_A,
"futureA_ must be > 0 and < MAX_A"
);
uint256 initialAPrecise = _getAPrecise(self);
uint256 futureAPrecise = futureA_.mul(A_PRECISION);
if (futureAPrecise < initialAPrecise) {
require(
futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
"futureA_ is too small"
);
} else {
require(
futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
"futureA_ is too large"
);
}
self.initialA = initialAPrecise;
self.futureA = futureAPrecise;
self.initialATime = block.timestamp;
self.futureATime = futureTime_;
emit RampA(
initialAPrecise,
futureAPrecise,
block.timestamp,
futureTime_
);
}
/**
* @notice Stops ramping A immediately. Once this function is called, rampA()
* cannot be called for another 24 hours
* @param self Swap struct to update
*/
function stopRampA(SwapUtils.Swap storage self) external {
require(self.futureATime > block.timestamp, "Ramp is already stopped");
uint256 currentA = _getAPrecise(self);
self.initialA = currentA;
self.futureA = currentA;
self.initialATime = block.timestamp;
self.futureATime = block.timestamp;
emit StopRampA(currentA, block.timestamp);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./AmplificationUtils.sol";
import "./LPToken.sol";
import "./MathUtils.sol";
/**
* @title SwapUtils library
* @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
* @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
* for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
* Admin functions should be protected within contracts using this library.
*/
library SwapUtils {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
/*** EVENTS ***/
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
struct Swap {
// variables around the ramp management of A,
// the amplification coefficient * n * (n - 1)
// see https://www.curve.fi/stableswap-paper.pdf for details
uint256 initialA;
uint256 futureA;
uint256 initialATime;
uint256 futureATime;
// fee calculation
uint256 swapFee;
uint256 adminFee;
LPToken lpToken;
// contract references for all tokens being pooled
IERC20[] pooledTokens;
// multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
// for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
// has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
uint256[] tokenPrecisionMultipliers;
// the pool balance of each token, in the token's precision
// the contract's actual token balance might differ
uint256[] balances;
}
// Struct storing variables used in calculations in the
// calculateWithdrawOneTokenDY function to avoid stack too deep errors
struct CalculateWithdrawOneTokenDYInfo {
uint256 d0;
uint256 d1;
uint256 newY;
uint256 feePerToken;
uint256 preciseA;
}
// Struct storing variables used in calculations in the
// {add,remove}Liquidity functions to avoid stack too deep errors
struct ManageLiquidityInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
LPToken lpToken;
uint256 totalSupply;
uint256[] balances;
uint256[] multipliers;
}
// the precision all pools tokens will be converted to
uint8 public constant POOL_PRECISION_DECIMALS = 18;
// the denominator used to calculate admin and LP fees. For example, an
// LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
uint256 private constant FEE_DENOMINATOR = 10**10;
// Max swap fee is 1% or 100bps of each swap
uint256 public constant MAX_SWAP_FEE = 10**8;
// Max adminFee is 100% of the swapFee
// adminFee does not add additional fee on top of swapFee
// Instead it takes a certain % of the swapFee. Therefore it has no impact on the
// users but only on the earnings of LPs
uint256 public constant MAX_ADMIN_FEE = 10**10;
// Constant value used as max loop limit
uint256 private constant MAX_LOOP_LIMIT = 256;
/*** VIEW & PURE FUNCTIONS ***/
function _getAPrecise(Swap storage self) internal view returns (uint256) {
return AmplificationUtils._getAPrecise(self);
}
/**
* @notice Calculate the dy, the amount of selected token that user receives and
* the fee of withdrawing in one token
* @param tokenAmount the amount to withdraw in the pool's precision
* @param tokenIndex which token will be withdrawn
* @param self Swap struct to read from
* @return the amount of token user will receive
*/
function calculateWithdrawOneToken(
Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256) {
(uint256 availableTokenAmount, ) = _calculateWithdrawOneToken(
self,
tokenAmount,
tokenIndex,
self.lpToken.totalSupply()
);
return availableTokenAmount;
}
function _calculateWithdrawOneToken(
Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 totalSupply
) internal view returns (uint256, uint256) {
uint256 dy;
uint256 newY;
uint256 currentY;
(dy, newY, currentY) = calculateWithdrawOneTokenDY(
self,
tokenIndex,
tokenAmount,
totalSupply
);
// dy_0 (without fees)
// dy, dy_0 - dy
uint256 dySwapFee = currentY
.sub(newY)
.div(self.tokenPrecisionMultipliers[tokenIndex])
.sub(dy);
return (dy, dySwapFee);
}
/**
* @notice Calculate the dy of withdrawing in one token
* @param self Swap struct to read from
* @param tokenIndex which token will be withdrawn
* @param tokenAmount the amount to withdraw in the pools precision
* @return the d and the new y after withdrawing one token
*/
function calculateWithdrawOneTokenDY(
Swap storage self,
uint8 tokenIndex,
uint256 tokenAmount,
uint256 totalSupply
)
internal
view
returns (
uint256,
uint256,
uint256
)
{
// Get the current D, then solve the stableswap invariant
// y_i for D - tokenAmount
uint256[] memory xp = _xp(self);
require(tokenIndex < xp.length, "Token index out of range");
CalculateWithdrawOneTokenDYInfo
memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
v.preciseA = _getAPrecise(self);
v.d0 = getD(xp, v.preciseA);
v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));
require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");
v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);
uint256[] memory xpReduced = new uint256[](xp.length);
v.feePerToken = _feePerToken(self.swapFee, xp.length);
for (uint256 i = 0; i < xp.length; i++) {
uint256 xpi = xp[i];
// if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
// else dxExpected = xp[i] - (xp[i] * d1 / d0)
// xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
xpReduced[i] = xpi.sub(
(
(i == tokenIndex)
? xpi.mul(v.d1).div(v.d0).sub(v.newY)
: xpi.sub(xpi.mul(v.d1).div(v.d0))
).mul(v.feePerToken).div(FEE_DENOMINATOR)
);
}
uint256 dy = xpReduced[tokenIndex].sub(
getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
);
dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);
return (dy, v.newY, xp[tokenIndex]);
}
/**
* @notice Calculate the price of a token in the pool with given
* precision-adjusted balances and a particular D.
*
* @dev This is accomplished via solving the invariant iteratively.
* See the StableSwap paper and Curve.fi implementation for further details.
*
* x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
* x_1**2 + b*x_1 = c
* x_1 = (x_1**2 + c) / (2*x_1 + b)
*
* @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
* @param tokenIndex Index of token we are calculating for.
* @param xp a precision-adjusted set of pool balances. Array should be
* the same cardinality as the pool.
* @param d the stableswap invariant
* @return the price of the token, in the same precision as in xp
*/
function getYD(
uint256 a,
uint8 tokenIndex,
uint256[] memory xp,
uint256 d
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(tokenIndex < numTokens, "Token not found");
uint256 c = d;
uint256 s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < numTokens; i++) {
if (i != tokenIndex) {
s = s.add(xp[i]);
c = c.mul(d).div(xp[i].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
}
c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
* @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
* as the pool.
* @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
* See the StableSwap paper for details
* @return the invariant, at the precision of the pool
*/
function getD(uint256[] memory xp, uint256 a)
internal
pure
returns (uint256)
{
uint256 numTokens = xp.length;
uint256 s;
for (uint256 i = 0; i < numTokens; i++) {
s = s.add(xp[i]);
}
if (s == 0) {
return 0;
}
uint256 prevD;
uint256 d = s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
uint256 dP = d;
for (uint256 j = 0; j < numTokens; j++) {
dP = dP.mul(d).div(xp[j].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// dP = dP * D * D * D * ... overflow!
}
prevD = d;
d = nA
.mul(s)
.div(AmplificationUtils.A_PRECISION)
.add(dP.mul(numTokens))
.mul(d)
.div(
nA
.sub(AmplificationUtils.A_PRECISION)
.mul(d)
.div(AmplificationUtils.A_PRECISION)
.add(numTokens.add(1).mul(dP))
);
if (d.within1(prevD)) {
return d;
}
}
// Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
// with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
// function which does not rely on D.
revert("D does not converge");
}
/**
* @notice Given a set of balances and precision multipliers, return the
* precision-adjusted balances.
*
* @param balances an array of token balances, in their native precisions.
* These should generally correspond with pooled tokens.
*
* @param precisionMultipliers an array of multipliers, corresponding to
* the amounts in the balances array. When multiplied together they
* should yield amounts at the pool's precision.
*
* @return an array of amounts "scaled" to the pool's precision
*/
function _xp(
uint256[] memory balances,
uint256[] memory precisionMultipliers
) internal pure returns (uint256[] memory) {
uint256 numTokens = balances.length;
require(
numTokens == precisionMultipliers.length,
"Balances must match multipliers"
);
uint256[] memory xp = new uint256[](numTokens);
for (uint256 i = 0; i < numTokens; i++) {
xp[i] = balances[i].mul(precisionMultipliers[i]);
}
return xp;
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @return the pool balances "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self) internal view returns (uint256[] memory) {
return _xp(self.balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Get the virtual price, to help calculate profit
* @param self Swap struct to read from
* @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
*/
function getVirtualPrice(Swap storage self)
external
view
returns (uint256)
{
uint256 d = getD(_xp(self), _getAPrecise(self));
LPToken lpToken = self.lpToken;
uint256 supply = lpToken.totalSupply();
if (supply > 0) {
return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply);
}
return 0;
}
/**
* @notice Calculate the new balances of the tokens given the indexes of the token
* that is swapped from (FROM) and the token that is swapped to (TO).
* This function is used as a helper function to calculate how much TO token
* the user should receive on swap.
*
* @param preciseA precise form of amplification coefficient
* @param tokenIndexFrom index of FROM token
* @param tokenIndexTo index of TO token
* @param x the new total amount of FROM token
* @param xp balances of the tokens in the pool
* @return the amount of TO token that should remain in the pool
*/
function getY(
uint256 preciseA,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 x,
uint256[] memory xp
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(
tokenIndexFrom != tokenIndexTo,
"Can't compare token to itself"
);
require(
tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
"Tokens must be in pool"
);
uint256 d = getD(xp, preciseA);
uint256 c = d;
uint256 s;
uint256 nA = numTokens.mul(preciseA);
uint256 _x;
for (uint256 i = 0; i < numTokens; i++) {
if (i == tokenIndexFrom) {
_x = x;
} else if (i != tokenIndexTo) {
_x = xp[i];
} else {
continue;
}
s = s.add(_x);
c = c.mul(d).div(_x.mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
// iterative approximation
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Externally calculates a swap between two tokens.
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256 dy) {
(dy, ) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
dx,
self.balances
);
}
/**
* @notice Internally calculates a swap between two tokens.
*
* @dev The caller is expected to transfer the actual amounts (dx and dy)
* using the token contracts.
*
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
* @return dyFee the associated fee
*/
function _calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256[] memory balances
) internal view returns (uint256 dy, uint256 dyFee) {
uint256[] memory multipliers = self.tokenPrecisionMultipliers;
uint256[] memory xp = _xp(balances, multipliers);
require(
tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
"Token index out of range"
);
uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]);
uint256 y = getY(
_getAPrecise(self),
tokenIndexFrom,
tokenIndexTo,
x,
xp
);
dy = xp[tokenIndexTo].sub(y).sub(1);
dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of
* LP tokens
*
* @param amount the amount of LP tokens that would to be burned on
* withdrawal
* @return array of amounts of tokens user will receive
*/
function calculateRemoveLiquidity(Swap storage self, uint256 amount)
external
view
returns (uint256[] memory)
{
return
_calculateRemoveLiquidity(
self.balances,
amount,
self.lpToken.totalSupply()
);
}
function _calculateRemoveLiquidity(
uint256[] memory balances,
uint256 amount,
uint256 totalSupply
) internal pure returns (uint256[] memory) {
require(amount <= totalSupply, "Cannot exceed total supply");
uint256[] memory amounts = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amounts[i] = balances[i].mul(amount).div(totalSupply);
}
return amounts;
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param self Swap struct to read from
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return if deposit was true, total amount of lp token that will be minted and if
* deposit was false, total amount of lp token that will be burned
*/
function calculateTokenAmount(
Swap storage self,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
uint256 a = _getAPrecise(self);
uint256[] memory balances = self.balances;
uint256[] memory multipliers = self.tokenPrecisionMultipliers;
uint256 d0 = getD(_xp(balances, multipliers), a);
for (uint256 i = 0; i < balances.length; i++) {
if (deposit) {
balances[i] = balances[i].add(amounts[i]);
} else {
balances[i] = balances[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
}
uint256 d1 = getD(_xp(balances, multipliers), a);
uint256 totalSupply = self.lpToken.totalSupply();
if (deposit) {
return d1.sub(d0).mul(totalSupply).div(d0);
} else {
return d0.sub(d1).mul(totalSupply).div(d0);
}
}
/**
* @notice return accumulated amount of admin fees of the token with given index
* @param self Swap struct to read from
* @param index Index of the pooled token
* @return admin balance in the token's precision
*/
function getAdminBalance(Swap storage self, uint256 index)
external
view
returns (uint256)
{
require(index < self.pooledTokens.length, "Token index out of range");
return
self.pooledTokens[index].balanceOf(address(this)).sub(
self.balances[index]
);
}
/**
* @notice internal helper function to calculate fee per token multiplier used in
* swap fee calculations
* @param swapFee swap fee for the tokens
* @param numTokens number of tokens pooled
*/
function _feePerToken(uint256 swapFee, uint256 numTokens)
internal
pure
returns (uint256)
{
return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4));
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice swap two tokens in the pool
* @param self Swap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
{
IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
require(
dx <= tokenFrom.balanceOf(msg.sender),
"Cannot swap more than you own"
);
// Transfer tokens first to see if a fee was charged on transfer
uint256 beforeBalance = tokenFrom.balanceOf(address(this));
tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
// Use the actual transferred amount for AMM math
dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance);
}
uint256 dy;
uint256 dyFee;
uint256[] memory balances = self.balances;
(dy, dyFee) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
dx,
balances
);
require(dy >= minDy, "Swap didn't result in min tokens");
uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
self.tokenPrecisionMultipliers[tokenIndexTo]
);
self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx);
self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub(
dyAdminFee
);
self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);
emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo);
return dy;
}
/**
* @notice Add liquidity to the pool
* @param self Swap struct to read from and write to
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
* @return amount of LP token user received
*/
function addLiquidity(
Swap storage self,
uint256[] memory amounts,
uint256 minToMint
) external returns (uint256) {
IERC20[] memory pooledTokens = self.pooledTokens;
require(
amounts.length == pooledTokens.length,
"Amounts must match pooled tokens"
);
// current state
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
_getAPrecise(self),
self.lpToken,
0,
self.balances,
self.tokenPrecisionMultipliers
);
v.totalSupply = v.lpToken.totalSupply();
if (v.totalSupply != 0) {
v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
}
uint256[] memory newBalances = new uint256[](pooledTokens.length);
for (uint256 i = 0; i < pooledTokens.length; i++) {
require(
v.totalSupply != 0 || amounts[i] > 0,
"Must supply all tokens in pool"
);
// Transfer tokens first to see if a fee was charged on transfer
if (amounts[i] != 0) {
uint256 beforeBalance = pooledTokens[i].balanceOf(
address(this)
);
pooledTokens[i].safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
// Update the amounts[] with actual transfer amount
amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
beforeBalance
);
}
newBalances[i] = v.balances[i].add(amounts[i]);
}
// invariant after change
v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA);
require(v.d1 > v.d0, "D should increase");
// updated to reflect fees and calculate the user's LP tokens
v.d2 = v.d1;
uint256[] memory fees = new uint256[](pooledTokens.length);
if (v.totalSupply != 0) {
uint256 feePerToken = _feePerToken(
self.swapFee,
pooledTokens.length
);
for (uint256 i = 0; i < pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
fees[i] = feePerToken
.mul(idealBalance.difference(newBalances[i]))
.div(FEE_DENOMINATOR);
self.balances[i] = newBalances[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
newBalances[i] = newBalances[i].sub(fees[i]);
}
v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA);
} else {
// the initial depositor doesn't pay fees
self.balances = newBalances;
}
uint256 toMint;
if (v.totalSupply == 0) {
toMint = v.d1;
} else {
toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
}
require(toMint >= minToMint, "Couldn't mint min requested");
// mint the user's LP tokens
v.lpToken.mint(msg.sender, toMint);
emit AddLiquidity(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.add(toMint)
);
return toMint;
}
/**
* @notice Burn LP tokens to remove liquidity from the pool.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param self Swap struct to read from and write to
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @return amounts of tokens the user received
*/
function removeLiquidity(
Swap storage self,
uint256 amount,
uint256[] calldata minAmounts
) external returns (uint256[] memory) {
LPToken lpToken = self.lpToken;
IERC20[] memory pooledTokens = self.pooledTokens;
require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(
minAmounts.length == pooledTokens.length,
"minAmounts must match poolTokens"
);
uint256[] memory balances = self.balances;
uint256 totalSupply = lpToken.totalSupply();
uint256[] memory amounts = _calculateRemoveLiquidity(
balances,
amount,
totalSupply
);
for (uint256 i = 0; i < amounts.length; i++) {
require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
self.balances[i] = balances[i].sub(amounts[i]);
pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
lpToken.burnFrom(msg.sender, amount);
emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount));
return amounts;
}
/**
* @notice Remove liquidity from the pool all in one token.
* @param self Swap struct to read from and write to
* @param tokenAmount the amount of the lp tokens to burn
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @return amount chosen token that user received
*/
function removeLiquidityOneToken(
Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount
) external returns (uint256) {
LPToken lpToken = self.lpToken;
IERC20[] memory pooledTokens = self.pooledTokens;
require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(tokenIndex < pooledTokens.length, "Token not found");
uint256 totalSupply = lpToken.totalSupply();
(uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(
self,
tokenAmount,
tokenIndex,
totalSupply
);
require(dy >= minAmount, "dy < minAmount");
self.balances[tokenIndex] = self.balances[tokenIndex].sub(
dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
);
lpToken.burnFrom(msg.sender, tokenAmount);
pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);
emit RemoveLiquidityOne(
msg.sender,
tokenAmount,
totalSupply,
tokenIndex,
dy
);
return dy;
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances.
*
* @param self Swap struct to read from and write to
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @return actual amount of LP tokens burned in the withdrawal
*/
function removeLiquidityImbalance(
Swap storage self,
uint256[] memory amounts,
uint256 maxBurnAmount
) public returns (uint256) {
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
_getAPrecise(self),
self.lpToken,
0,
self.balances,
self.tokenPrecisionMultipliers
);
v.totalSupply = v.lpToken.totalSupply();
IERC20[] memory pooledTokens = self.pooledTokens;
require(
amounts.length == pooledTokens.length,
"Amounts should match pool tokens"
);
require(
maxBurnAmount <= v.lpToken.balanceOf(msg.sender) &&
maxBurnAmount != 0,
">LP.balanceOf"
);
uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length);
uint256[] memory fees = new uint256[](pooledTokens.length);
{
uint256[] memory balances1 = new uint256[](pooledTokens.length);
v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
for (uint256 i = 0; i < pooledTokens.length; i++) {
balances1[i] = v.balances[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA);
for (uint256 i = 0; i < pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
uint256 difference = idealBalance.difference(balances1[i]);
fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
self.balances[i] = balances1[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
balances1[i] = balances1[i].sub(fees[i]);
}
v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA);
}
uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
require(tokenAmount != 0, "Burnt amount cannot be zero");
tokenAmount = tokenAmount.add(1);
require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");
v.lpToken.burnFrom(msg.sender, tokenAmount);
for (uint256 i = 0; i < pooledTokens.length; i++) {
pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
emit RemoveLiquidityImbalance(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.sub(tokenAmount)
);
return tokenAmount;
}
/**
* @notice withdraw all admin fees to a given address
* @param self Swap struct to withdraw fees from
* @param to Address to send the fees to
*/
function withdrawAdminFees(Swap storage self, address to) external {
IERC20[] memory pooledTokens = self.pooledTokens;
for (uint256 i = 0; i < pooledTokens.length; i++) {
IERC20 token = pooledTokens[i];
uint256 balance = token.balanceOf(address(this)).sub(
self.balances[i]
);
if (balance != 0) {
token.safeTransfer(to, balance);
}
}
}
/**
* @notice Sets the admin fee
* @dev adminFee cannot be higher than 100% of the swap fee
* @param self Swap struct to update
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(Swap storage self, uint256 newAdminFee) external {
require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
self.adminFee = newAdminFee;
emit NewAdminFee(newAdminFee);
}
/**
* @notice update the swap fee
* @dev fee cannot be higher than 1% of each swap
* @param self Swap struct to update
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(Swap storage self, uint256 newSwapFee) external {
require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
self.swapFee = newSwapFee;
emit NewSwapFee(newSwapFee);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @title MathUtils library
* @notice A library to be used in conjunction with SafeMath. Contains functions for calculating
* differences between two uint256.
*/
library MathUtils {
/**
* @notice Compares a and b and returns true if the difference between a and b
* is less than 1 or equal to each other.
* @param a uint256 to compare with
* @param b uint256 to compare with
* @return True if the difference between a and b is less than 1 or equal,
* otherwise return false
*/
function within1(uint256 a, uint256 b) internal pure returns (bool) {
return (difference(a, b) <= 1);
}
/**
* @notice Calculates absolute difference between a and b
* @param a uint256 to compare with
* @param b uint256 to compare with
* @return Difference between a and b
*/
function difference(uint256 a, uint256 b) internal pure returns (uint256) {
if (a > b) {
return a - b;
}
return b - a;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/ContextUpgradeable.sol";
import "./ERC20Upgradeable.sol";
import "../../proxy/Initializable.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
function __ERC20Burnable_init() internal initializer {
__Context_init_unchained();
__ERC20Burnable_init_unchained();
}
function __ERC20Burnable_init_unchained() internal initializer {
}
using SafeMathUpgradeable for uint256;
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
_approve(account, _msgSender(), decreasedAllowance);
_burn(account, amount);
}
uint256[50] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal initializer {
__Context_init_unchained();
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal initializer {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";
interface ISwap {
// pool data view functions
function getA() external view returns (uint256);
function getAllowlist() external view returns (IAllowlist);
function getToken(uint8 index) external view returns (IERC20);
function getTokenIndex(address tokenAddress) external view returns (uint8);
function getTokenBalance(uint8 index) external view returns (uint256);
function getVirtualPrice() external view returns (uint256);
function isGuarded() external view returns (bool);
// min return calculation functions
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256);
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
returns (uint256);
function calculateRemoveLiquidity(uint256 amount)
external
view
returns (uint256[] memory);
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 availableTokenAmount);
// state modifying functions
function initialize(
IERC20[] memory pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 a,
uint256 fee,
uint256 adminFee,
address lpTokenTargetAddress
) external;
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external returns (uint256);
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
) external returns (uint256);
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external returns (uint256[] memory);
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
) external returns (uint256);
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
) external returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal initializer {
__Context_init_unchained();
}
function __Context_init_unchained() internal initializer {
}
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
uint256[50] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/ContextUpgradeable.sol";
import "./IERC20Upgradeable.sol";
import "../../math/SafeMathUpgradeable.sol";
import "../../proxy/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable {
using SafeMathUpgradeable for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
__Context_init_unchained();
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
uint256[44] private __gap;
}// SPDX-License-Identifier: MIT
// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;
import "../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
return !AddressUpgradeable.isContract(address(this));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMathUpgradeable {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
interface IAllowlist {
function getPoolAccountLimit(address poolAddress)
external
view
returns (uint256);
function getPoolCap(address poolAddress) external view returns (uint256);
function verifyAddress(address account, bytes32[] calldata merkleProof)
external
returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "./OwnerPausableUpgradeable.sol";
import "./SwapUtils.sol";
import "./AmplificationUtils.sol";
/**
* @title Swap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract Swap is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using SwapUtils for SwapUtils.Swap;
using AmplificationUtils for SwapUtils.Swap;
// Struct storing data responsible for automatic market maker functionalities. In order to
// access this data, this contract uses SwapUtils library. For more details, see SwapUtils.sol
SwapUtils.Swap public swapStorage;
// Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
// getTokenIndex function also relies on this mapping to retrieve token index.
mapping(address => uint8) private tokenIndexes;
/*** EVENTS ***/
// events replicated from SwapUtils to make the ABI easier for dumb
// clients
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
/**
* @notice Initializes this Swap contract with the given parameters.
* This will also clone a LPToken contract that represents users'
* LP positions. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint/burn tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
* @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
*/
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress
) public virtual initializer {
__OwnerPausable_init();
__ReentrancyGuard_init();
// Check _pooledTokens and precisions parameter
require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
require(
_pooledTokens.length == decimals.length,
"_pooledTokens decimals mismatch"
);
uint256[] memory precisionMultipliers = new uint256[](decimals.length);
for (uint8 i = 0; i < _pooledTokens.length; i++) {
if (i > 0) {
// Check if index is already used. Check if 0th element is a duplicate.
require(
tokenIndexes[address(_pooledTokens[i])] == 0 &&
_pooledTokens[0] != _pooledTokens[i],
"Duplicate tokens"
);
}
require(
address(_pooledTokens[i]) != address(0),
"The 0 address isn't an ERC-20"
);
require(
decimals[i] <= SwapUtils.POOL_PRECISION_DECIMALS,
"Token decimals exceeds max"
);
precisionMultipliers[i] =
10 **
uint256(SwapUtils.POOL_PRECISION_DECIMALS).sub(
uint256(decimals[i])
);
tokenIndexes[address(_pooledTokens[i])] = i;
}
// Check _a, _fee, _adminFee, _withdrawFee parameters
require(_a < AmplificationUtils.MAX_A, "_a exceeds maximum");
require(_fee < SwapUtils.MAX_SWAP_FEE, "_fee exceeds maximum");
require(
_adminFee < SwapUtils.MAX_ADMIN_FEE,
"_adminFee exceeds maximum"
);
// Clone and initialize a LPToken contract
LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress));
require(
lpToken.initialize(lpTokenName, lpTokenSymbol),
"could not init lpToken clone"
);
// Initialize swapStorage struct
swapStorage.lpToken = lpToken;
swapStorage.pooledTokens = _pooledTokens;
swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
swapStorage.balances = new uint256[](_pooledTokens.length);
swapStorage.initialA = _a.mul(AmplificationUtils.A_PRECISION);
swapStorage.futureA = _a.mul(AmplificationUtils.A_PRECISION);
// swapStorage.initialATime = 0;
// swapStorage.futureATime = 0;
swapStorage.swapFee = _fee;
swapStorage.adminFee = _adminFee;
}
/*** MODIFIERS ***/
/**
* @notice Modifier to check deadline against current timestamp
* @param deadline latest timestamp to accept this transaction
*/
modifier deadlineCheck(uint256 deadline) {
require(block.timestamp <= deadline, "Deadline not met");
_;
}
/*** VIEW FUNCTIONS ***/
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @return A parameter
*/
function getA() external view virtual returns (uint256) {
return swapStorage.getA();
}
/**
* @notice Return A in its raw precision form
* @dev See the StableSwap paper for details
* @return A parameter in its raw precision form
*/
function getAPrecise() external view virtual returns (uint256) {
return swapStorage.getAPrecise();
}
/**
* @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
* @param index the index of the token
* @return address of the token at given index
*/
function getToken(uint8 index) public view virtual returns (IERC20) {
require(index < swapStorage.pooledTokens.length, "Out of range");
return swapStorage.pooledTokens[index];
}
/**
* @notice Return the index of the given token address. Reverts if no matching
* token is found.
* @param tokenAddress address of the token
* @return the index of the given token address
*/
function getTokenIndex(address tokenAddress)
public
view
virtual
returns (uint8)
{
uint8 index = tokenIndexes[tokenAddress];
require(
address(getToken(index)) == tokenAddress,
"Token does not exist"
);
return index;
}
/**
* @notice Return current balance of the pooled token at given index
* @param index the index of the token
* @return current balance of the pooled token at given index with token's native precision
*/
function getTokenBalance(uint8 index)
external
view
virtual
returns (uint256)
{
require(index < swapStorage.pooledTokens.length, "Index out of range");
return swapStorage.balances[index];
}
/**
* @notice Get the virtual price, to help calculate profit
* @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
*/
function getVirtualPrice() external view virtual returns (uint256) {
return swapStorage.getVirtualPrice();
}
/**
* @notice Calculate amount of tokens you receive on swap
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view virtual returns (uint256) {
return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return token amount the user will receive
*/
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
virtual
returns (uint256)
{
return swapStorage.calculateTokenAmount(amounts, deposit);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of LP tokens
* @param amount the amount of LP tokens that would be burned on withdrawal
* @return array of token balances that the user will receive
*/
function calculateRemoveLiquidity(uint256 amount)
external
view
virtual
returns (uint256[] memory)
{
return swapStorage.calculateRemoveLiquidity(amount);
}
/**
* @notice Calculate the amount of underlying token available to withdraw
* when withdrawing via only single token
* @param tokenAmount the amount of LP token to burn
* @param tokenIndex index of which token will be withdrawn
* @return availableTokenAmount calculated amount of underlying token
* available to withdraw
*/
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view virtual returns (uint256 availableTokenAmount) {
return swapStorage.calculateWithdrawOneToken(tokenAmount, tokenIndex);
}
/**
* @notice This function reads the accumulated amount of admin fees of the token with given index
* @param index Index of the pooled token
* @return admin's token balance in the token's precision
*/
function getAdminBalance(uint256 index)
external
view
virtual
returns (uint256)
{
return swapStorage.getAdminBalance(index);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice Swap two tokens using this pool
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
}
/**
* @notice Add liquidity to the pool with the given amounts of tokens
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amount of LP token user minted and received
*/
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.addLiquidity(amounts, minToMint);
}
/**
* @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amounts of tokens user received
*/
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
)
external
virtual
nonReentrant
deadlineCheck(deadline)
returns (uint256[] memory)
{
return swapStorage.removeLiquidity(amount, minAmounts);
}
/**
* @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param tokenAmount the amount of the token you want to receive
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @param deadline latest timestamp to accept this transaction
* @return amount of chosen token user received
*/
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
swapStorage.removeLiquidityOneToken(
tokenAmount,
tokenIndex,
minAmount
);
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @param deadline latest timestamp to accept this transaction
* @return amount of LP tokens burned
*/
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
}
/*** ADMIN FUNCTIONS ***/
/**
* @notice Withdraw all admin fees to the contract owner
*/
function withdrawAdminFees() external onlyOwner {
swapStorage.withdrawAdminFees(owner());
}
/**
* @notice Update the admin fee. Admin fee takes portion of the swap fee.
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(uint256 newAdminFee) external onlyOwner {
swapStorage.setAdminFee(newAdminFee);
}
/**
* @notice Update the swap fee to be applied on swaps
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(uint256 newSwapFee) external onlyOwner {
swapStorage.setSwapFee(newSwapFee);
}
/**
* @notice Start ramping up or down A parameter towards given futureA and futureTime
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param futureA the new A to ramp towards
* @param futureTime timestamp when the new A should be reached
*/
function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
swapStorage.rampA(futureA, futureTime);
}
/**
* @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
*/
function stopRampA() external onlyOwner {
swapStorage.stopRampA();
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*
* _Available since v3.4._
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `master`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address master) internal returns (address instance) {
// solhint-disable-next-line no-inline-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
mstore(add(ptr, 0x14), shl(0x60, master))
mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
instance := create(0, ptr, 0x37)
}
require(instance != address(0), "ERC1167: create failed");
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `master`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `master` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address master, bytes32 salt) internal returns (address instance) {
// solhint-disable-next-line no-inline-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
mstore(add(ptr, 0x14), shl(0x60, master))
mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
instance := create2(0, ptr, 0x37, salt)
}
require(instance != address(0), "ERC1167: create2 failed");
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(address master, bytes32 salt, address deployer) internal pure returns (address predicted) {
// solhint-disable-next-line no-inline-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
mstore(add(ptr, 0x14), shl(0x60, master))
mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000)
mstore(add(ptr, 0x38), shl(0x60, deployer))
mstore(add(ptr, 0x4c), salt)
mstore(add(ptr, 0x6c), keccak256(ptr, 0x37))
predicted := keccak256(add(ptr, 0x37), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(address master, bytes32 salt) internal view returns (address predicted) {
return predictDeterministicAddress(master, salt, address(this));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal initializer {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal initializer {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
/**
* @title OwnerPausable
* @notice An ownable contract allows the owner to pause and unpause the
* contract without a delay.
* @dev Only methods using the provided modifiers will be paused.
*/
abstract contract OwnerPausableUpgradeable is
OwnableUpgradeable,
PausableUpgradeable
{
function __OwnerPausable_init() internal initializer {
__Context_init_unchained();
__Ownable_init_unchained();
__Pausable_init_unchained();
}
/**
* @notice Pause the contract. Revert if already paused.
*/
function pause() external onlyOwner {
PausableUpgradeable._pause();
}
/**
* @notice Unpause the contract. Revert if already unpaused.
*/
function unpause() external onlyOwner {
PausableUpgradeable._unpause();
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal initializer {
__Context_init_unchained();
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal initializer {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT WITH AGPL-3.0-only
pragma solidity 0.6.12;
import "./Swap.sol";
import "./interfaces/IFlashLoanReceiver.sol";
/**
* @title Swap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract SwapFlashLoan is Swap {
// Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee.
// This fee is split between the protocol and the pool.
uint256 public flashLoanFeeBPS;
// Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated
// to the protocol rather than the pool.
uint256 public protocolFeeShareBPS;
// Max BPS for limiting flash loan fee settings.
uint256 public constant MAX_BPS = 10000;
/*** EVENTS ***/
event FlashLoan(
address indexed receiver,
uint8 tokenIndex,
uint256 amount,
uint256 amountFee,
uint256 protocolFee
);
/**
* @notice Initializes this Swap contract with the given parameters.
* This will also clone a LPToken contract that represents users'
* LP positions. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint/burn tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
* @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
*/
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress
) public virtual override initializer {
Swap.initialize(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
lpTokenTargetAddress
);
flashLoanFeeBPS = 8; // 8 bps
protocolFeeShareBPS = 0; // 0 bps
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice Borrow the specified token from this pool for this transaction only. This function will call
* `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token
* and the associated fee by the end of the callback transaction. If the conditions are not met, this call
* is reverted.
* @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver
* interface and the callback function `executeOperation`.
* @param token the protocol fee in bps to be applied on the total flash loan fee
* @param amount the total amount to borrow in this transaction
* @param params optional data to pass along to the callback function
*/
function flashLoan(
address receiver,
IERC20 token,
uint256 amount,
bytes memory params
) external nonReentrant {
uint8 tokenIndex = getTokenIndex(address(token));
uint256 availableLiquidityBefore = token.balanceOf(address(this));
uint256 protocolBalanceBefore = availableLiquidityBefore.sub(
swapStorage.balances[tokenIndex]
);
require(
amount > 0 && availableLiquidityBefore >= amount,
"invalid amount"
);
// Calculate the additional amount of tokens the pool should end up with
uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000);
// Calculate the portion of the fee that will go to the protocol
uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000);
require(amountFee > 0, "amount is small for a flashLoan");
// Transfer the requested amount of tokens
token.safeTransfer(receiver, amount);
// Execute callback function on receiver
IFlashLoanReceiver(receiver).executeOperation(
address(this),
address(token),
amount,
amountFee,
params
);
uint256 availableLiquidityAfter = token.balanceOf(address(this));
require(
availableLiquidityAfter >= availableLiquidityBefore.add(amountFee),
"flashLoan fee is not met"
);
swapStorage.balances[tokenIndex] = availableLiquidityAfter
.sub(protocolBalanceBefore)
.sub(protocolFee);
emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee);
}
/*** ADMIN FUNCTIONS ***/
/**
* @notice Updates the flash loan fee parameters. This function can only be called by the owner.
* @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans
* @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee
*/
function setFlashLoanFees(
uint256 newFlashLoanFeeBPS,
uint256 newProtocolFeeShareBPS
) external onlyOwner {
require(
newFlashLoanFeeBPS > 0 &&
newFlashLoanFeeBPS <= MAX_BPS &&
newProtocolFeeShareBPS <= MAX_BPS,
"fees are not in valid range"
);
flashLoanFeeBPS = newFlashLoanFeeBPS;
protocolFeeShareBPS = newProtocolFeeShareBPS;
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity 0.6.12;
/**
* @title IFlashLoanReceiver interface
* @notice Interface for the Saddle fee IFlashLoanReceiver. Modified from Aave's IFlashLoanReceiver interface.
* https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/flashloan/interfaces/IFlashLoanReceiver.sol
* @author Aave
* @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract
**/
interface IFlashLoanReceiver {
function executeOperation(
address pool,
address token,
uint256 amount,
uint256 fee,
bytes calldata params
) external;
}// SPDX-License-Identifier: MIT WITH AGPL-3.0-only
pragma solidity 0.6.12;
import "./SwapV1.sol";
import "./interfaces/IFlashLoanReceiver.sol";
/**
* @title Swap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract SwapFlashLoanV1 is SwapV1 {
// Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee.
// This fee is split between the protocol and the pool.
uint256 public flashLoanFeeBPS;
// Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated
// to the protocol rather than the pool.
uint256 public protocolFeeShareBPS;
// Max BPS for limiting flash loan fee settings.
uint256 public constant MAX_BPS = 10000;
/*** EVENTS ***/
event FlashLoan(
address indexed receiver,
uint8 tokenIndex,
uint256 amount,
uint256 amountFee,
uint256 protocolFee
);
/**
* @notice Initializes this Swap contract with the given parameters.
* This will also clone a LPToken contract that represents users'
* LP positions. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint/burn tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
* @param _withdrawFee default withdrawFee to be initialized with
* @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
*/
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
uint256 _withdrawFee,
address lpTokenTargetAddress
) public virtual override initializer {
SwapV1.initialize(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
_withdrawFee,
lpTokenTargetAddress
);
flashLoanFeeBPS = 8; // 8 bps
protocolFeeShareBPS = 0; // 0 bps
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice Borrow the specified token from this pool for this transaction only. This function will call
* `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token
* and the associated fee by the end of the callback transaction. If the conditions are not met, this call
* is reverted.
* @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver
* interface and the callback function `executeOperation`.
* @param token the protocol fee in bps to be applied on the total flash loan fee
* @param amount the total amount to borrow in this transaction
* @param params optional data to pass along to the callback function
*/
function flashLoan(
address receiver,
IERC20 token,
uint256 amount,
bytes memory params
) external nonReentrant {
uint8 tokenIndex = getTokenIndex(address(token));
uint256 availableLiquidityBefore = token.balanceOf(address(this));
uint256 protocolBalanceBefore = availableLiquidityBefore.sub(
swapStorage.balances[tokenIndex]
);
require(
amount > 0 && availableLiquidityBefore >= amount,
"invalid amount"
);
// Calculate the additional amount of tokens the pool should end up with
uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000);
// Calculate the portion of the fee that will go to the protocol
uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000);
require(amountFee > 0, "amount is small for a flashLoan");
// Transfer the requested amount of tokens
token.safeTransfer(receiver, amount);
// Execute callback function on receiver
IFlashLoanReceiver(receiver).executeOperation(
address(this),
address(token),
amount,
amountFee,
params
);
uint256 availableLiquidityAfter = token.balanceOf(address(this));
require(
availableLiquidityAfter >= availableLiquidityBefore.add(amountFee),
"flashLoan fee is not met"
);
swapStorage.balances[tokenIndex] = availableLiquidityAfter
.sub(protocolBalanceBefore)
.sub(protocolFee);
emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee);
}
/*** ADMIN FUNCTIONS ***/
/**
* @notice Updates the flash loan fee parameters. This function can only be called by the owner.
* @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans
* @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee
*/
function setFlashLoanFees(
uint256 newFlashLoanFeeBPS,
uint256 newProtocolFeeShareBPS
) external onlyOwner {
require(
newFlashLoanFeeBPS > 0 &&
newFlashLoanFeeBPS <= MAX_BPS &&
newProtocolFeeShareBPS <= MAX_BPS,
"fees are not in valid range"
);
flashLoanFeeBPS = newFlashLoanFeeBPS;
protocolFeeShareBPS = newProtocolFeeShareBPS;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "./OwnerPausableUpgradeable.sol";
import "./SwapUtilsV1.sol";
import "./AmplificationUtilsV1.sol";
/**
* @title Swap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract SwapV1 is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using SwapUtilsV1 for SwapUtilsV1.Swap;
using AmplificationUtilsV1 for SwapUtilsV1.Swap;
// Struct storing data responsible for automatic market maker functionalities. In order to
// access this data, this contract uses SwapUtils library. For more details, see SwapUtilsV1.sol
SwapUtilsV1.Swap public swapStorage;
// Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
// getTokenIndex function also relies on this mapping to retrieve token index.
mapping(address => uint8) private tokenIndexes;
/*** EVENTS ***/
// events replicated from SwapUtils to make the ABI easier for dumb
// clients
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
/**
* @notice Initializes this Swap contract with the given parameters.
* This will also clone a LPToken contract that represents users'
* LP positions. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint/burn tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
* @param _withdrawFee default withdrawFee to be initialized with
* @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
*/
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
uint256 _withdrawFee,
address lpTokenTargetAddress
) public virtual initializer {
__OwnerPausable_init();
__ReentrancyGuard_init();
// Check _pooledTokens and precisions parameter
require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
require(
_pooledTokens.length == decimals.length,
"_pooledTokens decimals mismatch"
);
uint256[] memory precisionMultipliers = new uint256[](decimals.length);
for (uint8 i = 0; i < _pooledTokens.length; i++) {
if (i > 0) {
// Check if index is already used. Check if 0th element is a duplicate.
require(
tokenIndexes[address(_pooledTokens[i])] == 0 &&
_pooledTokens[0] != _pooledTokens[i],
"Duplicate tokens"
);
}
require(
address(_pooledTokens[i]) != address(0),
"The 0 address isn't an ERC-20"
);
require(
decimals[i] <= SwapUtilsV1.POOL_PRECISION_DECIMALS,
"Token decimals exceeds max"
);
precisionMultipliers[i] =
10 **
uint256(SwapUtilsV1.POOL_PRECISION_DECIMALS).sub(
uint256(decimals[i])
);
tokenIndexes[address(_pooledTokens[i])] = i;
}
// Check _a, _fee, _adminFee, _withdrawFee parameters
require(_a < AmplificationUtilsV1.MAX_A, "_a exceeds maximum");
require(_fee < SwapUtilsV1.MAX_SWAP_FEE, "_fee exceeds maximum");
require(
_adminFee < SwapUtilsV1.MAX_ADMIN_FEE,
"_adminFee exceeds maximum"
);
require(
_withdrawFee < SwapUtilsV1.MAX_WITHDRAW_FEE,
"_withdrawFee exceeds maximum"
);
// Clone and initialize a LPToken contract
LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress));
require(
lpToken.initialize(lpTokenName, lpTokenSymbol),
"could not init lpToken clone"
);
// Initialize swapStorage struct
swapStorage.lpToken = lpToken;
swapStorage.pooledTokens = _pooledTokens;
swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
swapStorage.balances = new uint256[](_pooledTokens.length);
swapStorage.initialA = _a.mul(AmplificationUtilsV1.A_PRECISION);
swapStorage.futureA = _a.mul(AmplificationUtilsV1.A_PRECISION);
// swapStorage.initialATime = 0;
// swapStorage.futureATime = 0;
swapStorage.swapFee = _fee;
swapStorage.adminFee = _adminFee;
swapStorage.defaultWithdrawFee = _withdrawFee;
}
/*** MODIFIERS ***/
/**
* @notice Modifier to check deadline against current timestamp
* @param deadline latest timestamp to accept this transaction
*/
modifier deadlineCheck(uint256 deadline) {
require(block.timestamp <= deadline, "Deadline not met");
_;
}
/*** VIEW FUNCTIONS ***/
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @return A parameter
*/
function getA() external view virtual returns (uint256) {
return swapStorage.getA();
}
/**
* @notice Return A in its raw precision form
* @dev See the StableSwap paper for details
* @return A parameter in its raw precision form
*/
function getAPrecise() external view virtual returns (uint256) {
return swapStorage.getAPrecise();
}
/**
* @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
* @param index the index of the token
* @return address of the token at given index
*/
function getToken(uint8 index) public view virtual returns (IERC20) {
require(index < swapStorage.pooledTokens.length, "Out of range");
return swapStorage.pooledTokens[index];
}
/**
* @notice Return the index of the given token address. Reverts if no matching
* token is found.
* @param tokenAddress address of the token
* @return the index of the given token address
*/
function getTokenIndex(address tokenAddress)
public
view
virtual
returns (uint8)
{
uint8 index = tokenIndexes[tokenAddress];
require(
address(getToken(index)) == tokenAddress,
"Token does not exist"
);
return index;
}
/**
* @notice Return timestamp of last deposit of given address
* @return timestamp of the last deposit made by the given address
*/
function getDepositTimestamp(address user)
external
view
virtual
returns (uint256)
{
return swapStorage.getDepositTimestamp(user);
}
/**
* @notice Return current balance of the pooled token at given index
* @param index the index of the token
* @return current balance of the pooled token at given index with token's native precision
*/
function getTokenBalance(uint8 index)
external
view
virtual
returns (uint256)
{
require(index < swapStorage.pooledTokens.length, "Index out of range");
return swapStorage.balances[index];
}
/**
* @notice Get the virtual price, to help calculate profit
* @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
*/
function getVirtualPrice() external view virtual returns (uint256) {
return swapStorage.getVirtualPrice();
}
/**
* @notice Calculate amount of tokens you receive on swap
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view virtual returns (uint256) {
return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param account address that is depositing or withdrawing tokens
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return token amount the user will receive
*/
function calculateTokenAmount(
address account,
uint256[] calldata amounts,
bool deposit
) external view virtual returns (uint256) {
return swapStorage.calculateTokenAmount(account, amounts, deposit);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of LP tokens
* @param account the address that is withdrawing tokens
* @param amount the amount of LP tokens that would be burned on withdrawal
* @return array of token balances that the user will receive
*/
function calculateRemoveLiquidity(address account, uint256 amount)
external
view
virtual
returns (uint256[] memory)
{
return swapStorage.calculateRemoveLiquidity(account, amount);
}
/**
* @notice Calculate the amount of underlying token available to withdraw
* when withdrawing via only single token
* @param account the address that is withdrawing tokens
* @param tokenAmount the amount of LP token to burn
* @param tokenIndex index of which token will be withdrawn
* @return availableTokenAmount calculated amount of underlying token
* available to withdraw
*/
function calculateRemoveLiquidityOneToken(
address account,
uint256 tokenAmount,
uint8 tokenIndex
) external view virtual returns (uint256 availableTokenAmount) {
return
swapStorage.calculateWithdrawOneToken(
account,
tokenAmount,
tokenIndex
);
}
/**
* @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee
* decays linearly over period of 4 weeks. For example, depositing and withdrawing right away
* will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you
* no additional fees.
* @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals
* @param user address you want to calculate withdraw fee of
* @return current withdraw fee of the user
*/
function calculateCurrentWithdrawFee(address user)
external
view
virtual
returns (uint256)
{
return swapStorage.calculateCurrentWithdrawFee(user);
}
/**
* @notice This function reads the accumulated amount of admin fees of the token with given index
* @param index Index of the pooled token
* @return admin's token balance in the token's precision
*/
function getAdminBalance(uint256 index)
external
view
virtual
returns (uint256)
{
return swapStorage.getAdminBalance(index);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice Swap two tokens using this pool
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
}
/**
* @notice Add liquidity to the pool with the given amounts of tokens
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amount of LP token user minted and received
*/
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.addLiquidity(amounts, minToMint);
}
/**
* @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amounts of tokens user received
*/
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
)
external
virtual
nonReentrant
deadlineCheck(deadline)
returns (uint256[] memory)
{
return swapStorage.removeLiquidity(amount, minAmounts);
}
/**
* @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param tokenAmount the amount of the token you want to receive
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @param deadline latest timestamp to accept this transaction
* @return amount of chosen token user received
*/
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
swapStorage.removeLiquidityOneToken(
tokenAmount,
tokenIndex,
minAmount
);
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @param deadline latest timestamp to accept this transaction
* @return amount of LP tokens burned
*/
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
}
/*** ADMIN FUNCTIONS ***/
/**
* @notice Updates the user withdraw fee. This function can only be called by
* the pool token. Should be used to update the withdraw fee on transfer of pool tokens.
* Transferring your pool token will reset the 4 weeks period. If the recipient is already
* holding some pool tokens, the withdraw fee will be discounted in respective amounts.
* @param recipient address of the recipient of pool token
* @param transferAmount amount of pool token to transfer
*/
function updateUserWithdrawFee(address recipient, uint256 transferAmount)
external
{
require(
msg.sender == address(swapStorage.lpToken),
"Only callable by pool token"
);
swapStorage.updateUserWithdrawFee(recipient, transferAmount);
}
/**
* @notice Withdraw all admin fees to the contract owner
*/
function withdrawAdminFees() external onlyOwner {
swapStorage.withdrawAdminFees(owner());
}
/**
* @notice Update the admin fee. Admin fee takes portion of the swap fee.
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(uint256 newAdminFee) external onlyOwner {
swapStorage.setAdminFee(newAdminFee);
}
/**
* @notice Update the swap fee to be applied on swaps
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(uint256 newSwapFee) external onlyOwner {
swapStorage.setSwapFee(newSwapFee);
}
/**
* @notice Update the withdraw fee. This fee decays linearly over 4 weeks since
* user's last deposit.
* @param newWithdrawFee new withdraw fee to be applied on future deposits
*/
function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner {
swapStorage.setDefaultWithdrawFee(newWithdrawFee);
}
/**
* @notice Start ramping up or down A parameter towards given futureA and futureTime
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param futureA the new A to ramp towards
* @param futureTime timestamp when the new A should be reached
*/
function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
swapStorage.rampA(futureA, futureTime);
}
/**
* @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
*/
function stopRampA() external onlyOwner {
swapStorage.stopRampA();
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./AmplificationUtilsV1.sol";
import "./LPToken.sol";
import "./MathUtils.sol";
/**
* @title SwapUtils library
* @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
* @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
* for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
* Admin functions should be protected within contracts using this library.
*/
library SwapUtilsV1 {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
/*** EVENTS ***/
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
struct Swap {
// variables around the ramp management of A,
// the amplification coefficient * n * (n - 1)
// see https://www.curve.fi/stableswap-paper.pdf for details
uint256 initialA;
uint256 futureA;
uint256 initialATime;
uint256 futureATime;
// fee calculation
uint256 swapFee;
uint256 adminFee;
uint256 defaultWithdrawFee;
LPToken lpToken;
// contract references for all tokens being pooled
IERC20[] pooledTokens;
// multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
// for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
// has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
uint256[] tokenPrecisionMultipliers;
// the pool balance of each token, in the token's precision
// the contract's actual token balance might differ
uint256[] balances;
mapping(address => uint256) depositTimestamp;
mapping(address => uint256) withdrawFeeMultiplier;
}
// Struct storing variables used in calculations in the
// calculateWithdrawOneTokenDY function to avoid stack too deep errors
struct CalculateWithdrawOneTokenDYInfo {
uint256 d0;
uint256 d1;
uint256 newY;
uint256 feePerToken;
uint256 preciseA;
}
// Struct storing variables used in calculations in the
// {add,remove}Liquidity functions to avoid stack too deep errors
struct ManageLiquidityInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
LPToken lpToken;
uint256 totalSupply;
uint256[] balances;
uint256[] multipliers;
}
// the precision all pools tokens will be converted to
uint8 public constant POOL_PRECISION_DECIMALS = 18;
// the denominator used to calculate admin and LP fees. For example, an
// LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
uint256 private constant FEE_DENOMINATOR = 10**10;
// Max swap fee is 1% or 100bps of each swap
uint256 public constant MAX_SWAP_FEE = 10**8;
// Max adminFee is 100% of the swapFee
// adminFee does not add additional fee on top of swapFee
// Instead it takes a certain % of the swapFee. Therefore it has no impact on the
// users but only on the earnings of LPs
uint256 public constant MAX_ADMIN_FEE = 10**10;
// Max withdrawFee is 1% of the value withdrawn
// Fee will be redistributed to the LPs in the pool, rewarding
// long term providers.
uint256 public constant MAX_WITHDRAW_FEE = 10**8;
// Constant value used as max loop limit
uint256 private constant MAX_LOOP_LIMIT = 256;
// Time that it should take for the withdraw fee to fully decay to 0
uint256 public constant WITHDRAW_FEE_DECAY_TIME = 4 weeks;
/*** VIEW & PURE FUNCTIONS ***/
/**
* @notice Retrieves the timestamp of last deposit made by the given address
* @param self Swap struct to read from
* @return timestamp of last deposit
*/
function getDepositTimestamp(Swap storage self, address user)
external
view
returns (uint256)
{
return self.depositTimestamp[user];
}
function _getAPrecise(Swap storage self) internal view returns (uint256) {
return AmplificationUtilsV1._getAPrecise(self);
}
/**
* @notice Calculate the dy, the amount of selected token that user receives and
* the fee of withdrawing in one token
* @param account the address that is withdrawing
* @param tokenAmount the amount to withdraw in the pool's precision
* @param tokenIndex which token will be withdrawn
* @param self Swap struct to read from
* @return the amount of token user will receive
*/
function calculateWithdrawOneToken(
Swap storage self,
address account,
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256) {
(uint256 availableTokenAmount, ) = _calculateWithdrawOneToken(
self,
account,
tokenAmount,
tokenIndex,
self.lpToken.totalSupply()
);
return availableTokenAmount;
}
function _calculateWithdrawOneToken(
Swap storage self,
address account,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 totalSupply
) internal view returns (uint256, uint256) {
uint256 dy;
uint256 newY;
uint256 currentY;
(dy, newY, currentY) = calculateWithdrawOneTokenDY(
self,
tokenIndex,
tokenAmount,
totalSupply
);
// dy_0 (without fees)
// dy, dy_0 - dy
uint256 dySwapFee = currentY
.sub(newY)
.div(self.tokenPrecisionMultipliers[tokenIndex])
.sub(dy);
dy = dy
.mul(
FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
return (dy, dySwapFee);
}
/**
* @notice Calculate the dy of withdrawing in one token
* @param self Swap struct to read from
* @param tokenIndex which token will be withdrawn
* @param tokenAmount the amount to withdraw in the pools precision
* @return the d and the new y after withdrawing one token
*/
function calculateWithdrawOneTokenDY(
Swap storage self,
uint8 tokenIndex,
uint256 tokenAmount,
uint256 totalSupply
)
internal
view
returns (
uint256,
uint256,
uint256
)
{
// Get the current D, then solve the stableswap invariant
// y_i for D - tokenAmount
uint256[] memory xp = _xp(self);
require(tokenIndex < xp.length, "Token index out of range");
CalculateWithdrawOneTokenDYInfo
memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
v.preciseA = _getAPrecise(self);
v.d0 = getD(xp, v.preciseA);
v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));
require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");
v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);
uint256[] memory xpReduced = new uint256[](xp.length);
v.feePerToken = _feePerToken(self.swapFee, xp.length);
for (uint256 i = 0; i < xp.length; i++) {
uint256 xpi = xp[i];
// if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
// else dxExpected = xp[i] - (xp[i] * d1 / d0)
// xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
xpReduced[i] = xpi.sub(
(
(i == tokenIndex)
? xpi.mul(v.d1).div(v.d0).sub(v.newY)
: xpi.sub(xpi.mul(v.d1).div(v.d0))
).mul(v.feePerToken).div(FEE_DENOMINATOR)
);
}
uint256 dy = xpReduced[tokenIndex].sub(
getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
);
dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);
return (dy, v.newY, xp[tokenIndex]);
}
/**
* @notice Calculate the price of a token in the pool with given
* precision-adjusted balances and a particular D.
*
* @dev This is accomplished via solving the invariant iteratively.
* See the StableSwap paper and Curve.fi implementation for further details.
*
* x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
* x_1**2 + b*x_1 = c
* x_1 = (x_1**2 + c) / (2*x_1 + b)
*
* @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
* @param tokenIndex Index of token we are calculating for.
* @param xp a precision-adjusted set of pool balances. Array should be
* the same cardinality as the pool.
* @param d the stableswap invariant
* @return the price of the token, in the same precision as in xp
*/
function getYD(
uint256 a,
uint8 tokenIndex,
uint256[] memory xp,
uint256 d
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(tokenIndex < numTokens, "Token not found");
uint256 c = d;
uint256 s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < numTokens; i++) {
if (i != tokenIndex) {
s = s.add(xp[i]);
c = c.mul(d).div(xp[i].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
}
c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div(
nA.mul(numTokens)
);
uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
* @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
* as the pool.
* @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
* See the StableSwap paper for details
* @return the invariant, at the precision of the pool
*/
function getD(uint256[] memory xp, uint256 a)
internal
pure
returns (uint256)
{
uint256 numTokens = xp.length;
uint256 s;
for (uint256 i = 0; i < numTokens; i++) {
s = s.add(xp[i]);
}
if (s == 0) {
return 0;
}
uint256 prevD;
uint256 d = s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
uint256 dP = d;
for (uint256 j = 0; j < numTokens; j++) {
dP = dP.mul(d).div(xp[j].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// dP = dP * D * D * D * ... overflow!
}
prevD = d;
d = nA
.mul(s)
.div(AmplificationUtilsV1.A_PRECISION)
.add(dP.mul(numTokens))
.mul(d)
.div(
nA
.sub(AmplificationUtilsV1.A_PRECISION)
.mul(d)
.div(AmplificationUtilsV1.A_PRECISION)
.add(numTokens.add(1).mul(dP))
);
if (d.within1(prevD)) {
return d;
}
}
// Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
// with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
// function which does not rely on D.
revert("D does not converge");
}
/**
* @notice Given a set of balances and precision multipliers, return the
* precision-adjusted balances.
*
* @param balances an array of token balances, in their native precisions.
* These should generally correspond with pooled tokens.
*
* @param precisionMultipliers an array of multipliers, corresponding to
* the amounts in the balances array. When multiplied together they
* should yield amounts at the pool's precision.
*
* @return an array of amounts "scaled" to the pool's precision
*/
function _xp(
uint256[] memory balances,
uint256[] memory precisionMultipliers
) internal pure returns (uint256[] memory) {
uint256 numTokens = balances.length;
require(
numTokens == precisionMultipliers.length,
"Balances must match multipliers"
);
uint256[] memory xp = new uint256[](numTokens);
for (uint256 i = 0; i < numTokens; i++) {
xp[i] = balances[i].mul(precisionMultipliers[i]);
}
return xp;
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @return the pool balances "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self) internal view returns (uint256[] memory) {
return _xp(self.balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Get the virtual price, to help calculate profit
* @param self Swap struct to read from
* @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
*/
function getVirtualPrice(Swap storage self)
external
view
returns (uint256)
{
uint256 d = getD(_xp(self), _getAPrecise(self));
LPToken lpToken = self.lpToken;
uint256 supply = lpToken.totalSupply();
if (supply > 0) {
return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply);
}
return 0;
}
/**
* @notice Calculate the new balances of the tokens given the indexes of the token
* that is swapped from (FROM) and the token that is swapped to (TO).
* This function is used as a helper function to calculate how much TO token
* the user should receive on swap.
*
* @param preciseA precise form of amplification coefficient
* @param tokenIndexFrom index of FROM token
* @param tokenIndexTo index of TO token
* @param x the new total amount of FROM token
* @param xp balances of the tokens in the pool
* @return the amount of TO token that should remain in the pool
*/
function getY(
uint256 preciseA,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 x,
uint256[] memory xp
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(
tokenIndexFrom != tokenIndexTo,
"Can't compare token to itself"
);
require(
tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
"Tokens must be in pool"
);
uint256 d = getD(xp, preciseA);
uint256 c = d;
uint256 s;
uint256 nA = numTokens.mul(preciseA);
uint256 _x;
for (uint256 i = 0; i < numTokens; i++) {
if (i == tokenIndexFrom) {
_x = x;
} else if (i != tokenIndexTo) {
_x = xp[i];
} else {
continue;
}
s = s.add(_x);
c = c.mul(d).div(_x.mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div(
nA.mul(numTokens)
);
uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
// iterative approximation
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Externally calculates a swap between two tokens.
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256 dy) {
(dy, ) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
dx,
self.balances
);
}
/**
* @notice Internally calculates a swap between two tokens.
*
* @dev The caller is expected to transfer the actual amounts (dx and dy)
* using the token contracts.
*
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
* @return dyFee the associated fee
*/
function _calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256[] memory balances
) internal view returns (uint256 dy, uint256 dyFee) {
uint256[] memory multipliers = self.tokenPrecisionMultipliers;
uint256[] memory xp = _xp(balances, multipliers);
require(
tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
"Token index out of range"
);
uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]);
uint256 y = getY(
_getAPrecise(self),
tokenIndexFrom,
tokenIndexTo,
x,
xp
);
dy = xp[tokenIndexTo].sub(y).sub(1);
dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of
* LP tokens
*
* @param account the address that is removing liquidity. required for withdraw fee calculation
* @param amount the amount of LP tokens that would to be burned on
* withdrawal
* @return array of amounts of tokens user will receive
*/
function calculateRemoveLiquidity(
Swap storage self,
address account,
uint256 amount
) external view returns (uint256[] memory) {
return
_calculateRemoveLiquidity(
self,
self.balances,
account,
amount,
self.lpToken.totalSupply()
);
}
function _calculateRemoveLiquidity(
Swap storage self,
uint256[] memory balances,
address account,
uint256 amount,
uint256 totalSupply
) internal view returns (uint256[] memory) {
require(amount <= totalSupply, "Cannot exceed total supply");
uint256 feeAdjustedAmount = amount
.mul(
FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
uint256[] memory amounts = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amounts[i] = balances[i].mul(feeAdjustedAmount).div(totalSupply);
}
return amounts;
}
/**
* @notice Calculate the fee that is applied when the given user withdraws.
* Withdraw fee decays linearly over WITHDRAW_FEE_DECAY_TIME.
* @param user address you want to calculate withdraw fee of
* @return current withdraw fee of the user
*/
function calculateCurrentWithdrawFee(Swap storage self, address user)
external
view
returns (uint256)
{
return _calculateCurrentWithdrawFee(self, user);
}
function _calculateCurrentWithdrawFee(Swap storage self, address user)
internal
view
returns (uint256)
{
uint256 endTime = self.depositTimestamp[user].add(
WITHDRAW_FEE_DECAY_TIME
);
if (endTime > block.timestamp) {
uint256 timeLeftover = endTime.sub(block.timestamp);
return
self
.defaultWithdrawFee
.mul(self.withdrawFeeMultiplier[user])
.mul(timeLeftover)
.div(WITHDRAW_FEE_DECAY_TIME)
.div(FEE_DENOMINATOR);
}
return 0;
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param self Swap struct to read from
* @param account address of the account depositing or withdrawing tokens
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return if deposit was true, total amount of lp token that will be minted and if
* deposit was false, total amount of lp token that will be burned
*/
function calculateTokenAmount(
Swap storage self,
address account,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
uint256 a = _getAPrecise(self);
uint256[] memory balances = self.balances;
uint256[] memory multipliers = self.tokenPrecisionMultipliers;
uint256 d0 = getD(_xp(balances, multipliers), a);
for (uint256 i = 0; i < balances.length; i++) {
if (deposit) {
balances[i] = balances[i].add(amounts[i]);
} else {
balances[i] = balances[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
}
uint256 d1 = getD(_xp(balances, multipliers), a);
uint256 totalSupply = self.lpToken.totalSupply();
if (deposit) {
return d1.sub(d0).mul(totalSupply).div(d0);
} else {
return
d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div(
FEE_DENOMINATOR.sub(
_calculateCurrentWithdrawFee(self, account)
)
);
}
}
/**
* @notice return accumulated amount of admin fees of the token with given index
* @param self Swap struct to read from
* @param index Index of the pooled token
* @return admin balance in the token's precision
*/
function getAdminBalance(Swap storage self, uint256 index)
external
view
returns (uint256)
{
require(index < self.pooledTokens.length, "Token index out of range");
return
self.pooledTokens[index].balanceOf(address(this)).sub(
self.balances[index]
);
}
/**
* @notice internal helper function to calculate fee per token multiplier used in
* swap fee calculations
* @param swapFee swap fee for the tokens
* @param numTokens number of tokens pooled
*/
function _feePerToken(uint256 swapFee, uint256 numTokens)
internal
pure
returns (uint256)
{
return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4));
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice swap two tokens in the pool
* @param self Swap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
{
IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
require(
dx <= tokenFrom.balanceOf(msg.sender),
"Cannot swap more than you own"
);
// Transfer tokens first to see if a fee was charged on transfer
uint256 beforeBalance = tokenFrom.balanceOf(address(this));
tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
// Use the actual transferred amount for AMM math
dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance);
}
uint256 dy;
uint256 dyFee;
uint256[] memory balances = self.balances;
(dy, dyFee) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
dx,
balances
);
require(dy >= minDy, "Swap didn't result in min tokens");
uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
self.tokenPrecisionMultipliers[tokenIndexTo]
);
self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx);
self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub(
dyAdminFee
);
self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);
emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo);
return dy;
}
/**
* @notice Add liquidity to the pool
* @param self Swap struct to read from and write to
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
* @return amount of LP token user received
*/
function addLiquidity(
Swap storage self,
uint256[] memory amounts,
uint256 minToMint
) external returns (uint256) {
IERC20[] memory pooledTokens = self.pooledTokens;
require(
amounts.length == pooledTokens.length,
"Amounts must match pooled tokens"
);
// current state
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
_getAPrecise(self),
self.lpToken,
0,
self.balances,
self.tokenPrecisionMultipliers
);
v.totalSupply = v.lpToken.totalSupply();
if (v.totalSupply != 0) {
v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
}
uint256[] memory newBalances = new uint256[](pooledTokens.length);
for (uint256 i = 0; i < pooledTokens.length; i++) {
require(
v.totalSupply != 0 || amounts[i] > 0,
"Must supply all tokens in pool"
);
// Transfer tokens first to see if a fee was charged on transfer
if (amounts[i] != 0) {
uint256 beforeBalance = pooledTokens[i].balanceOf(
address(this)
);
pooledTokens[i].safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
// Update the amounts[] with actual transfer amount
amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
beforeBalance
);
}
newBalances[i] = v.balances[i].add(amounts[i]);
}
// invariant after change
v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA);
require(v.d1 > v.d0, "D should increase");
// updated to reflect fees and calculate the user's LP tokens
v.d2 = v.d1;
uint256[] memory fees = new uint256[](pooledTokens.length);
if (v.totalSupply != 0) {
uint256 feePerToken = _feePerToken(
self.swapFee,
pooledTokens.length
);
for (uint256 i = 0; i < pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
fees[i] = feePerToken
.mul(idealBalance.difference(newBalances[i]))
.div(FEE_DENOMINATOR);
self.balances[i] = newBalances[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
newBalances[i] = newBalances[i].sub(fees[i]);
}
v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA);
} else {
// the initial depositor doesn't pay fees
self.balances = newBalances;
}
uint256 toMint;
if (v.totalSupply == 0) {
toMint = v.d1;
} else {
toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
}
require(toMint >= minToMint, "Couldn't mint min requested");
// mint the user's LP tokens
v.lpToken.mint(msg.sender, toMint);
emit AddLiquidity(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.add(toMint)
);
return toMint;
}
/**
* @notice Update the withdraw fee for `user`. If the user is currently
* not providing liquidity in the pool, sets to default value. If not, recalculate
* the starting withdraw fee based on the last deposit's time & amount relative
* to the new deposit.
*
* @param self Swap struct to read from and write to
* @param user address of the user depositing tokens
* @param toMint amount of pool tokens to be minted
*/
function updateUserWithdrawFee(
Swap storage self,
address user,
uint256 toMint
) public {
// If token is transferred to address 0 (or burned), don't update the fee.
if (user == address(0)) {
return;
}
if (self.defaultWithdrawFee == 0) {
// If current fee is set to 0%, set multiplier to FEE_DENOMINATOR
self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR;
} else {
// Otherwise, calculate appropriate discount based on last deposit amount
uint256 currentFee = _calculateCurrentWithdrawFee(self, user);
uint256 currentBalance = self.lpToken.balanceOf(user);
// ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR /
// ((toMint + currentBalance) * defaultWithdrawFee)
self.withdrawFeeMultiplier[user] = currentBalance
.mul(currentFee)
.add(toMint.mul(self.defaultWithdrawFee))
.mul(FEE_DENOMINATOR)
.div(toMint.add(currentBalance).mul(self.defaultWithdrawFee));
}
self.depositTimestamp[user] = block.timestamp;
}
/**
* @notice Burn LP tokens to remove liquidity from the pool.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param self Swap struct to read from and write to
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @return amounts of tokens the user received
*/
function removeLiquidity(
Swap storage self,
uint256 amount,
uint256[] calldata minAmounts
) external returns (uint256[] memory) {
LPToken lpToken = self.lpToken;
IERC20[] memory pooledTokens = self.pooledTokens;
require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(
minAmounts.length == pooledTokens.length,
"minAmounts must match poolTokens"
);
uint256[] memory balances = self.balances;
uint256 totalSupply = lpToken.totalSupply();
uint256[] memory amounts = _calculateRemoveLiquidity(
self,
balances,
msg.sender,
amount,
totalSupply
);
for (uint256 i = 0; i < amounts.length; i++) {
require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
self.balances[i] = balances[i].sub(amounts[i]);
pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
lpToken.burnFrom(msg.sender, amount);
emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount));
return amounts;
}
/**
* @notice Remove liquidity from the pool all in one token.
* @param self Swap struct to read from and write to
* @param tokenAmount the amount of the lp tokens to burn
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @return amount chosen token that user received
*/
function removeLiquidityOneToken(
Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount
) external returns (uint256) {
LPToken lpToken = self.lpToken;
IERC20[] memory pooledTokens = self.pooledTokens;
require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(tokenIndex < pooledTokens.length, "Token not found");
uint256 totalSupply = lpToken.totalSupply();
(uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(
self,
msg.sender,
tokenAmount,
tokenIndex,
totalSupply
);
require(dy >= minAmount, "dy < minAmount");
self.balances[tokenIndex] = self.balances[tokenIndex].sub(
dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
);
lpToken.burnFrom(msg.sender, tokenAmount);
pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);
emit RemoveLiquidityOne(
msg.sender,
tokenAmount,
totalSupply,
tokenIndex,
dy
);
return dy;
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances.
*
* @param self Swap struct to read from and write to
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @return actual amount of LP tokens burned in the withdrawal
*/
function removeLiquidityImbalance(
Swap storage self,
uint256[] memory amounts,
uint256 maxBurnAmount
) public returns (uint256) {
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
_getAPrecise(self),
self.lpToken,
0,
self.balances,
self.tokenPrecisionMultipliers
);
v.totalSupply = v.lpToken.totalSupply();
IERC20[] memory pooledTokens = self.pooledTokens;
require(
amounts.length == pooledTokens.length,
"Amounts should match pool tokens"
);
require(
maxBurnAmount <= v.lpToken.balanceOf(msg.sender) &&
maxBurnAmount != 0,
">LP.balanceOf"
);
uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length);
uint256[] memory fees = new uint256[](pooledTokens.length);
{
uint256[] memory balances1 = new uint256[](pooledTokens.length);
v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
for (uint256 i = 0; i < pooledTokens.length; i++) {
balances1[i] = v.balances[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA);
for (uint256 i = 0; i < pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
uint256 difference = idealBalance.difference(balances1[i]);
fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
self.balances[i] = balances1[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
balances1[i] = balances1[i].sub(fees[i]);
}
v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA);
}
uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
require(tokenAmount != 0, "Burnt amount cannot be zero");
tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div(
FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, msg.sender))
);
require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");
v.lpToken.burnFrom(msg.sender, tokenAmount);
for (uint256 i = 0; i < pooledTokens.length; i++) {
pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
emit RemoveLiquidityImbalance(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.sub(tokenAmount)
);
return tokenAmount;
}
/**
* @notice withdraw all admin fees to a given address
* @param self Swap struct to withdraw fees from
* @param to Address to send the fees to
*/
function withdrawAdminFees(Swap storage self, address to) external {
IERC20[] memory pooledTokens = self.pooledTokens;
for (uint256 i = 0; i < pooledTokens.length; i++) {
IERC20 token = pooledTokens[i];
uint256 balance = token.balanceOf(address(this)).sub(
self.balances[i]
);
if (balance != 0) {
token.safeTransfer(to, balance);
}
}
}
/**
* @notice Sets the admin fee
* @dev adminFee cannot be higher than 100% of the swap fee
* @param self Swap struct to update
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(Swap storage self, uint256 newAdminFee) external {
require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
self.adminFee = newAdminFee;
emit NewAdminFee(newAdminFee);
}
/**
* @notice update the swap fee
* @dev fee cannot be higher than 1% of each swap
* @param self Swap struct to update
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(Swap storage self, uint256 newSwapFee) external {
require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
self.swapFee = newSwapFee;
emit NewSwapFee(newSwapFee);
}
/**
* @notice update the default withdraw fee. This also affects deposits made in the past as well.
* @param self Swap struct to update
* @param newWithdrawFee new withdraw fee to be applied
*/
function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee)
external
{
require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high");
self.defaultWithdrawFee = newWithdrawFee;
emit NewWithdrawFee(newWithdrawFee);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./SwapUtilsV1.sol";
/**
* @title AmplificationUtils library
* @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct.
* This library assumes the struct is fully validated.
*/
library AmplificationUtilsV1 {
using SafeMath for uint256;
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
// Constant values used in ramping A calculations
uint256 public constant A_PRECISION = 100;
uint256 public constant MAX_A = 10**6;
uint256 private constant MAX_A_CHANGE = 2;
uint256 private constant MIN_RAMP_TIME = 14 days;
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function getA(SwapUtilsV1.Swap storage self)
external
view
returns (uint256)
{
return _getAPrecise(self).div(A_PRECISION);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function getAPrecise(SwapUtilsV1.Swap storage self)
external
view
returns (uint256)
{
return _getAPrecise(self);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function _getAPrecise(SwapUtilsV1.Swap storage self)
internal
view
returns (uint256)
{
uint256 t1 = self.futureATime; // time when ramp is finished
uint256 a1 = self.futureA; // final A value when ramp is finished
if (block.timestamp < t1) {
uint256 t0 = self.initialATime; // time when ramp is started
uint256 a0 = self.initialA; // initial A value when ramp is started
if (a1 > a0) {
// a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
return
a0.add(
a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
} else {
// a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
return
a0.sub(
a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
}
} else {
return a1;
}
}
/**
* @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param self Swap struct to update
* @param futureA_ the new A to ramp towards
* @param futureTime_ timestamp when the new A should be reached
*/
function rampA(
SwapUtilsV1.Swap storage self,
uint256 futureA_,
uint256 futureTime_
) external {
require(
block.timestamp >= self.initialATime.add(1 days),
"Wait 1 day before starting ramp"
);
require(
futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
"Insufficient ramp time"
);
require(
futureA_ > 0 && futureA_ < MAX_A,
"futureA_ must be > 0 and < MAX_A"
);
uint256 initialAPrecise = _getAPrecise(self);
uint256 futureAPrecise = futureA_.mul(A_PRECISION);
if (futureAPrecise < initialAPrecise) {
require(
futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
"futureA_ is too small"
);
} else {
require(
futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
"futureA_ is too large"
);
}
self.initialA = initialAPrecise;
self.futureA = futureAPrecise;
self.initialATime = block.timestamp;
self.futureATime = futureTime_;
emit RampA(
initialAPrecise,
futureAPrecise,
block.timestamp,
futureTime_
);
}
/**
* @notice Stops ramping A immediately. Once this function is called, rampA()
* cannot be called for another 24 hours
* @param self Swap struct to update
*/
function stopRampA(SwapUtilsV1.Swap storage self) external {
require(self.futureATime > block.timestamp, "Ramp is already stopped");
uint256 currentA = _getAPrecise(self);
self.initialA = currentA;
self.futureA = currentA;
self.initialATime = block.timestamp;
self.futureATime = block.timestamp;
emit StopRampA(currentA, block.timestamp);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "../LPToken.sol";
import "../interfaces/ISwap.sol";
import "../MathUtils.sol";
import "../SwapUtils.sol";
/**
* @title MetaSwapUtils library
* @notice A library to be used within MetaSwap.sol. Contains functions responsible for custody and AMM functionalities.
*
* MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens.
* As an example, if there is a Swap pool consisting of [DAI, USDC, USDT]. Then a MetaSwap pool can be created
* with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD.
*
* @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
* for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
* Admin functions should be protected within contracts using this library.
*/
library MetaSwapUtils {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
using AmplificationUtils for SwapUtils.Swap;
/*** EVENTS ***/
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event TokenSwapUnderlying(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
struct MetaSwap {
// Meta-Swap related parameters
ISwap baseSwap;
uint256 baseVirtualPrice;
uint256 baseCacheLastUpdated;
IERC20[] baseTokens;
}
// Struct storing variables used in calculations in the
// calculateWithdrawOneTokenDY function to avoid stack too deep errors
struct CalculateWithdrawOneTokenDYInfo {
uint256 d0;
uint256 d1;
uint256 newY;
uint256 feePerToken;
uint256 preciseA;
uint256 xpi;
}
// Struct storing variables used in calculation in removeLiquidityImbalance function
// to avoid stack too deep error
struct ManageLiquidityInfo {
uint256 d0;
uint256 d1;
uint256 d2;
LPToken lpToken;
uint256 totalSupply;
uint256 preciseA;
uint256 baseVirtualPrice;
uint256[] tokenPrecisionMultipliers;
uint256[] newBalances;
}
struct SwapUnderlyingInfo {
uint256 x;
uint256 dx;
uint256 dy;
uint256[] tokenPrecisionMultipliers;
uint256[] oldBalances;
IERC20[] baseTokens;
IERC20 tokenFrom;
uint8 metaIndexFrom;
IERC20 tokenTo;
uint8 metaIndexTo;
uint256 baseVirtualPrice;
}
struct CalculateSwapUnderlyingInfo {
uint256 baseVirtualPrice;
ISwap baseSwap;
uint8 baseLPTokenIndex;
uint8 baseTokensLength;
uint8 metaIndexTo;
uint256 x;
uint256 dy;
}
// the denominator used to calculate admin and LP fees. For example, an
// LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
uint256 private constant FEE_DENOMINATOR = 10**10;
// Cache expire time for the stored value of base Swap's virtual price
uint256 public constant BASE_CACHE_EXPIRE_TIME = 10 minutes;
uint256 public constant BASE_VIRTUAL_PRICE_PRECISION = 10**18;
/*** VIEW & PURE FUNCTIONS ***/
/**
* @notice Return the stored value of base Swap's virtual price. If
* value was updated past BASE_CACHE_EXPIRE_TIME, then read it directly
* from the base Swap contract.
* @param metaSwapStorage MetaSwap struct to read from
* @return base Swap's virtual price
*/
function _getBaseVirtualPrice(MetaSwap storage metaSwapStorage)
internal
view
returns (uint256)
{
if (
block.timestamp >
metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
) {
return metaSwapStorage.baseSwap.getVirtualPrice();
}
return metaSwapStorage.baseVirtualPrice;
}
/**
* @notice Calculate how much the user would receive when withdrawing via single token
* @param self Swap struct to read from
* @param metaSwapStorage MetaSwap struct to read from
* @param tokenAmount the amount to withdraw in the pool's precision
* @param tokenIndex which token will be withdrawn
* @return dy the amount of token user will receive
*/
function calculateWithdrawOneToken(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 dy) {
(dy, ) = _calculateWithdrawOneToken(
self,
tokenAmount,
tokenIndex,
_getBaseVirtualPrice(metaSwapStorage),
self.lpToken.totalSupply()
);
}
function _calculateWithdrawOneToken(
SwapUtils.Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 baseVirtualPrice,
uint256 totalSupply
) internal view returns (uint256, uint256) {
uint256 dy;
uint256 dySwapFee;
{
uint256 currentY;
uint256 newY;
// Calculate how much to withdraw
(dy, newY, currentY) = _calculateWithdrawOneTokenDY(
self,
tokenIndex,
tokenAmount,
baseVirtualPrice,
totalSupply
);
// Calculate the associated swap fee
dySwapFee = currentY
.sub(newY)
.div(self.tokenPrecisionMultipliers[tokenIndex])
.sub(dy);
}
return (dy, dySwapFee);
}
/**
* @notice Calculate the dy of withdrawing in one token
* @param self Swap struct to read from
* @param tokenIndex which token will be withdrawn
* @param tokenAmount the amount to withdraw in the pools precision
* @param baseVirtualPrice the virtual price of the base swap's LP token
* @return the dy excluding swap fee, the new y after withdrawing one token, and current y
*/
function _calculateWithdrawOneTokenDY(
SwapUtils.Swap storage self,
uint8 tokenIndex,
uint256 tokenAmount,
uint256 baseVirtualPrice,
uint256 totalSupply
)
internal
view
returns (
uint256,
uint256,
uint256
)
{
// Get the current D, then solve the stableswap invariant
// y_i for D - tokenAmount
uint256[] memory xp = _xp(self, baseVirtualPrice);
require(tokenIndex < xp.length, "Token index out of range");
CalculateWithdrawOneTokenDYInfo
memory v = CalculateWithdrawOneTokenDYInfo(
0,
0,
0,
0,
self._getAPrecise(),
0
);
v.d0 = SwapUtils.getD(xp, v.preciseA);
v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));
require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");
v.newY = SwapUtils.getYD(v.preciseA, tokenIndex, xp, v.d1);
uint256[] memory xpReduced = new uint256[](xp.length);
v.feePerToken = SwapUtils._feePerToken(self.swapFee, xp.length);
for (uint256 i = 0; i < xp.length; i++) {
v.xpi = xp[i];
// if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
// else dxExpected = xp[i] - (xp[i] * d1 / d0)
// xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
xpReduced[i] = v.xpi.sub(
(
(i == tokenIndex)
? v.xpi.mul(v.d1).div(v.d0).sub(v.newY)
: v.xpi.sub(v.xpi.mul(v.d1).div(v.d0))
).mul(v.feePerToken).div(FEE_DENOMINATOR)
);
}
uint256 dy = xpReduced[tokenIndex].sub(
SwapUtils.getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
);
if (tokenIndex == xp.length.sub(1)) {
dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice);
}
dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);
return (dy, v.newY, xp[tokenIndex]);
}
/**
* @notice Given a set of balances and precision multipliers, return the
* precision-adjusted balances. The last element will also get scaled up by
* the given baseVirtualPrice.
*
* @param balances an array of token balances, in their native precisions.
* These should generally correspond with pooled tokens.
*
* @param precisionMultipliers an array of multipliers, corresponding to
* the amounts in the balances array. When multiplied together they
* should yield amounts at the pool's precision.
*
* @param baseVirtualPrice the base virtual price to scale the balance of the
* base Swap's LP token.
*
* @return an array of amounts "scaled" to the pool's precision
*/
function _xp(
uint256[] memory balances,
uint256[] memory precisionMultipliers,
uint256 baseVirtualPrice
) internal pure returns (uint256[] memory) {
uint256[] memory xp = SwapUtils._xp(balances, precisionMultipliers);
uint256 baseLPTokenIndex = balances.length.sub(1);
xp[baseLPTokenIndex] = xp[baseLPTokenIndex].mul(baseVirtualPrice).div(
BASE_VIRTUAL_PRICE_PRECISION
);
return xp;
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @return the pool balances "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(SwapUtils.Swap storage self, uint256 baseVirtualPrice)
internal
view
returns (uint256[] memory)
{
return
_xp(
self.balances,
self.tokenPrecisionMultipliers,
baseVirtualPrice
);
}
/**
* @notice Get the virtual price, to help calculate profit
* @param self Swap struct to read from
* @param metaSwapStorage MetaSwap struct to read from
* @return the virtual price, scaled to precision of BASE_VIRTUAL_PRICE_PRECISION
*/
function getVirtualPrice(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage
) external view returns (uint256) {
uint256 d = SwapUtils.getD(
_xp(
self.balances,
self.tokenPrecisionMultipliers,
_getBaseVirtualPrice(metaSwapStorage)
),
self._getAPrecise()
);
uint256 supply = self.lpToken.totalSupply();
if (supply != 0) {
return d.mul(BASE_VIRTUAL_PRICE_PRECISION).div(supply);
}
return 0;
}
/**
* @notice Externally calculates a swap between two tokens. The SwapUtils.Swap storage and
* MetaSwap storage should be from the same MetaSwap contract.
* @param self Swap struct to read from
* @param metaSwapStorage MetaSwap struct from the same contract
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwap(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256 dy) {
(dy, ) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
dx,
_getBaseVirtualPrice(metaSwapStorage)
);
}
/**
* @notice Internally calculates a swap between two tokens.
*
* @dev The caller is expected to transfer the actual amounts (dx and dy)
* using the token contracts.
*
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param baseVirtualPrice the virtual price of the base LP token
* @return dy the number of tokens the user will get and dyFee the associated fee
*/
function _calculateSwap(
SwapUtils.Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 baseVirtualPrice
) internal view returns (uint256 dy, uint256 dyFee) {
uint256[] memory xp = _xp(self, baseVirtualPrice);
require(
tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
"Token index out of range"
);
uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]).add(
xp[tokenIndexFrom]
);
uint256 y = SwapUtils.getY(
self._getAPrecise(),
tokenIndexFrom,
tokenIndexTo,
x,
xp
);
dy = xp[tokenIndexTo].sub(y).sub(1);
dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
dy = dy.sub(dyFee).div(self.tokenPrecisionMultipliers[tokenIndexTo]);
}
/**
* @notice Calculates the expected return amount from swapping between
* the pooled tokens and the underlying tokens of the base Swap pool.
*
* @param self Swap struct to read from
* @param metaSwapStorage MetaSwap struct from the same contract
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwapUnderlying(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256) {
CalculateSwapUnderlyingInfo memory v = CalculateSwapUnderlyingInfo(
_getBaseVirtualPrice(metaSwapStorage),
metaSwapStorage.baseSwap,
0,
uint8(metaSwapStorage.baseTokens.length),
0,
0,
0
);
uint256[] memory xp = _xp(self, v.baseVirtualPrice);
v.baseLPTokenIndex = uint8(xp.length.sub(1));
{
uint8 maxRange = v.baseLPTokenIndex + v.baseTokensLength;
require(
tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
"Token index out of range"
);
}
if (tokenIndexFrom < v.baseLPTokenIndex) {
// tokenFrom is from this pool
v.x = xp[tokenIndexFrom].add(
dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom])
);
} else {
// tokenFrom is from the base pool
tokenIndexFrom = tokenIndexFrom - v.baseLPTokenIndex;
if (tokenIndexTo < v.baseLPTokenIndex) {
uint256[] memory baseInputs = new uint256[](v.baseTokensLength);
baseInputs[tokenIndexFrom] = dx;
v.x = v
.baseSwap
.calculateTokenAmount(baseInputs, true)
.mul(v.baseVirtualPrice)
.div(BASE_VIRTUAL_PRICE_PRECISION)
.add(xp[v.baseLPTokenIndex]);
} else {
// both from and to are from the base pool
return
v.baseSwap.calculateSwap(
tokenIndexFrom,
tokenIndexTo - v.baseLPTokenIndex,
dx
);
}
tokenIndexFrom = v.baseLPTokenIndex;
}
v.metaIndexTo = v.baseLPTokenIndex;
if (tokenIndexTo < v.baseLPTokenIndex) {
v.metaIndexTo = tokenIndexTo;
}
{
uint256 y = SwapUtils.getY(
self._getAPrecise(),
tokenIndexFrom,
v.metaIndexTo,
v.x,
xp
);
v.dy = xp[v.metaIndexTo].sub(y).sub(1);
uint256 dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
v.dy = v.dy.sub(dyFee);
}
if (tokenIndexTo < v.baseLPTokenIndex) {
// tokenTo is from this pool
v.dy = v.dy.div(self.tokenPrecisionMultipliers[v.metaIndexTo]);
} else {
// tokenTo is from the base pool
v.dy = v.baseSwap.calculateRemoveLiquidityOneToken(
v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(v.baseVirtualPrice),
tokenIndexTo - v.baseLPTokenIndex
);
}
return v.dy;
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param self Swap struct to read from
* @param metaSwapStorage MetaSwap struct to read from
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return if deposit was true, total amount of lp token that will be minted and if
* deposit was false, total amount of lp token that will be burned
*/
function calculateTokenAmount(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
uint256 a = self._getAPrecise();
uint256 d0;
uint256 d1;
{
uint256 baseVirtualPrice = _getBaseVirtualPrice(metaSwapStorage);
uint256[] memory balances1 = self.balances;
uint256[] memory tokenPrecisionMultipliers = self
.tokenPrecisionMultipliers;
uint256 numTokens = balances1.length;
d0 = SwapUtils.getD(
_xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
a
);
for (uint256 i = 0; i < numTokens; i++) {
if (deposit) {
balances1[i] = balances1[i].add(amounts[i]);
} else {
balances1[i] = balances1[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
}
d1 = SwapUtils.getD(
_xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
a
);
}
uint256 totalSupply = self.lpToken.totalSupply();
if (deposit) {
return d1.sub(d0).mul(totalSupply).div(d0);
} else {
return d0.sub(d1).mul(totalSupply).div(d0);
}
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice swap two tokens in the pool
* @param self Swap struct to read from and write to
* @param metaSwapStorage MetaSwap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swap(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
{
uint256 pooledTokensLength = self.pooledTokens.length;
require(
tokenIndexFrom < pooledTokensLength &&
tokenIndexTo < pooledTokensLength,
"Token index is out of range"
);
}
uint256 transferredDx;
{
IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
require(
dx <= tokenFrom.balanceOf(msg.sender),
"Cannot swap more than you own"
);
{
// Transfer tokens first to see if a fee was charged on transfer
uint256 beforeBalance = tokenFrom.balanceOf(address(this));
tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
// Use the actual transferred amount for AMM math
transferredDx = tokenFrom.balanceOf(address(this)).sub(
beforeBalance
);
}
}
(uint256 dy, uint256 dyFee) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
transferredDx,
_updateBaseVirtualPrice(metaSwapStorage)
);
require(dy >= minDy, "Swap didn't result in min tokens");
uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
self.tokenPrecisionMultipliers[tokenIndexTo]
);
self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
transferredDx
);
self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
dyAdminFee
);
self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);
emit TokenSwap(
msg.sender,
transferredDx,
dy,
tokenIndexFrom,
tokenIndexTo
);
return dy;
}
/**
* @notice Swaps with the underlying tokens of the base Swap pool. For this function,
* the token indices are flattened out so that underlying tokens are represented
* in the indices.
* @dev Since this calls multiple external functions during the execution,
* it is recommended to protect any function that depends on this with reentrancy guards.
* @param self Swap struct to read from and write to
* @param metaSwapStorage MetaSwap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swapUnderlying(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
SwapUnderlyingInfo memory v = SwapUnderlyingInfo(
0,
0,
0,
self.tokenPrecisionMultipliers,
self.balances,
metaSwapStorage.baseTokens,
IERC20(address(0)),
0,
IERC20(address(0)),
0,
_updateBaseVirtualPrice(metaSwapStorage)
);
uint8 baseLPTokenIndex = uint8(v.oldBalances.length.sub(1));
{
uint8 maxRange = uint8(baseLPTokenIndex + v.baseTokens.length);
require(
tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
"Token index out of range"
);
}
ISwap baseSwap = metaSwapStorage.baseSwap;
// Find the address of the token swapping from and the index in MetaSwap's token list
if (tokenIndexFrom < baseLPTokenIndex) {
v.tokenFrom = self.pooledTokens[tokenIndexFrom];
v.metaIndexFrom = tokenIndexFrom;
} else {
v.tokenFrom = v.baseTokens[tokenIndexFrom - baseLPTokenIndex];
v.metaIndexFrom = baseLPTokenIndex;
}
// Find the address of the token swapping to and the index in MetaSwap's token list
if (tokenIndexTo < baseLPTokenIndex) {
v.tokenTo = self.pooledTokens[tokenIndexTo];
v.metaIndexTo = tokenIndexTo;
} else {
v.tokenTo = v.baseTokens[tokenIndexTo - baseLPTokenIndex];
v.metaIndexTo = baseLPTokenIndex;
}
// Check for possible fee on transfer
v.dx = v.tokenFrom.balanceOf(address(this));
v.tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
v.dx = v.tokenFrom.balanceOf(address(this)).sub(v.dx); // update dx in case of fee on transfer
if (
tokenIndexFrom < baseLPTokenIndex || tokenIndexTo < baseLPTokenIndex
) {
// Either one of the tokens belongs to the MetaSwap tokens list
uint256[] memory xp = _xp(
v.oldBalances,
v.tokenPrecisionMultipliers,
v.baseVirtualPrice
);
if (tokenIndexFrom < baseLPTokenIndex) {
// Swapping from a MetaSwap token
v.x = xp[tokenIndexFrom].add(
dx.mul(v.tokenPrecisionMultipliers[tokenIndexFrom])
);
} else {
// Swapping from a base Swap token
// This case requires adding the underlying token to the base Swap, then
// using the base LP token to swap to the desired token
uint256[] memory baseAmounts = new uint256[](
v.baseTokens.length
);
baseAmounts[tokenIndexFrom - baseLPTokenIndex] = v.dx;
// Add liquidity to the underlying Swap contract and receive base LP token
v.dx = baseSwap.addLiquidity(baseAmounts, 0, block.timestamp);
// Calculate the value of total amount of baseLPToken we end up with
v.x = v
.dx
.mul(v.baseVirtualPrice)
.div(BASE_VIRTUAL_PRICE_PRECISION)
.add(xp[baseLPTokenIndex]);
}
// Calculate how much to withdraw in MetaSwap level and the the associated swap fee
uint256 dyFee;
{
uint256 y = SwapUtils.getY(
self._getAPrecise(),
v.metaIndexFrom,
v.metaIndexTo,
v.x,
xp
);
v.dy = xp[v.metaIndexTo].sub(y).sub(1);
dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
v.dy = v.dy.sub(dyFee).div(
v.tokenPrecisionMultipliers[v.metaIndexTo]
);
}
if (tokenIndexTo >= baseLPTokenIndex) {
// When swapping to a base Swap token, scale down dy by its virtual price
v.dy = v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(
v.baseVirtualPrice
);
}
// Update the balances array according to the calculated input and output amount
{
uint256 dyAdminFee = dyFee.mul(self.adminFee).div(
FEE_DENOMINATOR
);
dyAdminFee = dyAdminFee.div(
v.tokenPrecisionMultipliers[v.metaIndexTo]
);
self.balances[v.metaIndexFrom] = v
.oldBalances[v.metaIndexFrom]
.add(v.dx);
self.balances[v.metaIndexTo] = v
.oldBalances[v.metaIndexTo]
.sub(v.dy)
.sub(dyAdminFee);
}
if (tokenIndexTo >= baseLPTokenIndex) {
// When swapping to a token that belongs to the base Swap, burn the LP token
// and withdraw the desired token from the base pool
uint256 oldBalance = v.tokenTo.balanceOf(address(this));
baseSwap.removeLiquidityOneToken(
v.dy,
tokenIndexTo - baseLPTokenIndex,
0,
block.timestamp
);
v.dy = v.tokenTo.balanceOf(address(this)) - oldBalance;
}
// Check the amount of token to send meets minDy
require(v.dy >= minDy, "Swap didn't result in min tokens");
} else {
// Both tokens are from the base Swap pool
// Do a swap through the base Swap
v.dy = v.tokenTo.balanceOf(address(this));
baseSwap.swap(
tokenIndexFrom - baseLPTokenIndex,
tokenIndexTo - baseLPTokenIndex,
v.dx,
minDy,
block.timestamp
);
v.dy = v.tokenTo.balanceOf(address(this)).sub(v.dy);
}
// Send the desired token to the caller
v.tokenTo.safeTransfer(msg.sender, v.dy);
emit TokenSwapUnderlying(
msg.sender,
dx,
v.dy,
tokenIndexFrom,
tokenIndexTo
);
return v.dy;
}
/**
* @notice Add liquidity to the pool
* @param self Swap struct to read from and write to
* @param metaSwapStorage MetaSwap struct to read from and write to
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
* @return amount of LP token user received
*/
function addLiquidity(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint256[] memory amounts,
uint256 minToMint
) external returns (uint256) {
IERC20[] memory pooledTokens = self.pooledTokens;
require(
amounts.length == pooledTokens.length,
"Amounts must match pooled tokens"
);
uint256[] memory fees = new uint256[](pooledTokens.length);
// current state
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
self.lpToken,
0,
self._getAPrecise(),
_updateBaseVirtualPrice(metaSwapStorage),
self.tokenPrecisionMultipliers,
self.balances
);
v.totalSupply = v.lpToken.totalSupply();
if (v.totalSupply != 0) {
v.d0 = SwapUtils.getD(
_xp(
v.newBalances,
v.tokenPrecisionMultipliers,
v.baseVirtualPrice
),
v.preciseA
);
}
for (uint256 i = 0; i < pooledTokens.length; i++) {
require(
v.totalSupply != 0 || amounts[i] > 0,
"Must supply all tokens in pool"
);
// Transfer tokens first to see if a fee was charged on transfer
if (amounts[i] != 0) {
uint256 beforeBalance = pooledTokens[i].balanceOf(
address(this)
);
pooledTokens[i].safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
// Update the amounts[] with actual transfer amount
amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
beforeBalance
);
}
v.newBalances[i] = v.newBalances[i].add(amounts[i]);
}
// invariant after change
v.d1 = SwapUtils.getD(
_xp(v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
v.preciseA
);
require(v.d1 > v.d0, "D should increase");
// updated to reflect fees and calculate the user's LP tokens
v.d2 = v.d1;
uint256 toMint;
if (v.totalSupply != 0) {
uint256 feePerToken = SwapUtils._feePerToken(
self.swapFee,
pooledTokens.length
);
for (uint256 i = 0; i < pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
fees[i] = feePerToken
.mul(idealBalance.difference(v.newBalances[i]))
.div(FEE_DENOMINATOR);
self.balances[i] = v.newBalances[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
v.newBalances[i] = v.newBalances[i].sub(fees[i]);
}
v.d2 = SwapUtils.getD(
_xp(
v.newBalances,
v.tokenPrecisionMultipliers,
v.baseVirtualPrice
),
v.preciseA
);
toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
} else {
// the initial depositor doesn't pay fees
self.balances = v.newBalances;
toMint = v.d1;
}
require(toMint >= minToMint, "Couldn't mint min requested");
// mint the user's LP tokens
self.lpToken.mint(msg.sender, toMint);
emit AddLiquidity(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.add(toMint)
);
return toMint;
}
/**
* @notice Remove liquidity from the pool all in one token.
* @param self Swap struct to read from and write to
* @param metaSwapStorage MetaSwap struct to read from and write to
* @param tokenAmount the amount of the lp tokens to burn
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @return amount chosen token that user received
*/
function removeLiquidityOneToken(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount
) external returns (uint256) {
LPToken lpToken = self.lpToken;
uint256 totalSupply = lpToken.totalSupply();
uint256 numTokens = self.pooledTokens.length;
require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(tokenIndex < numTokens, "Token not found");
uint256 dyFee;
uint256 dy;
(dy, dyFee) = _calculateWithdrawOneToken(
self,
tokenAmount,
tokenIndex,
_updateBaseVirtualPrice(metaSwapStorage),
totalSupply
);
require(dy >= minAmount, "dy < minAmount");
// Update balances array
self.balances[tokenIndex] = self.balances[tokenIndex].sub(
dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
);
// Burn the associated LP token from the caller and send the desired token
lpToken.burnFrom(msg.sender, tokenAmount);
self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);
emit RemoveLiquidityOne(
msg.sender,
tokenAmount,
totalSupply,
tokenIndex,
dy
);
return dy;
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances.
*
* @param self Swap struct to read from and write to
* @param metaSwapStorage MetaSwap struct to read from and write to
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @return actual amount of LP tokens burned in the withdrawal
*/
function removeLiquidityImbalance(
SwapUtils.Swap storage self,
MetaSwap storage metaSwapStorage,
uint256[] memory amounts,
uint256 maxBurnAmount
) public returns (uint256) {
// Using this struct to avoid stack too deep error
ManageLiquidityInfo memory v = ManageLiquidityInfo(
0,
0,
0,
self.lpToken,
0,
self._getAPrecise(),
_updateBaseVirtualPrice(metaSwapStorage),
self.tokenPrecisionMultipliers,
self.balances
);
v.totalSupply = v.lpToken.totalSupply();
require(
amounts.length == v.newBalances.length,
"Amounts should match pool tokens"
);
require(maxBurnAmount != 0, "Must burn more than 0");
uint256 feePerToken = SwapUtils._feePerToken(
self.swapFee,
v.newBalances.length
);
// Calculate how much LPToken should be burned
uint256[] memory fees = new uint256[](v.newBalances.length);
{
uint256[] memory balances1 = new uint256[](v.newBalances.length);
v.d0 = SwapUtils.getD(
_xp(
v.newBalances,
v.tokenPrecisionMultipliers,
v.baseVirtualPrice
),
v.preciseA
);
for (uint256 i = 0; i < v.newBalances.length; i++) {
balances1[i] = v.newBalances[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
v.d1 = SwapUtils.getD(
_xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
v.preciseA
);
for (uint256 i = 0; i < v.newBalances.length; i++) {
uint256 idealBalance = v.d1.mul(v.newBalances[i]).div(v.d0);
uint256 difference = idealBalance.difference(balances1[i]);
fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
self.balances[i] = balances1[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
balances1[i] = balances1[i].sub(fees[i]);
}
v.d2 = SwapUtils.getD(
_xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
v.preciseA
);
}
uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
require(tokenAmount != 0, "Burnt amount cannot be zero");
// Scale up by withdraw fee
tokenAmount = tokenAmount.add(1);
// Check for max burn amount
require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");
// Burn the calculated amount of LPToken from the caller and send the desired tokens
v.lpToken.burnFrom(msg.sender, tokenAmount);
for (uint256 i = 0; i < v.newBalances.length; i++) {
self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
emit RemoveLiquidityImbalance(
msg.sender,
amounts,
fees,
v.d1,
v.totalSupply.sub(tokenAmount)
);
return tokenAmount;
}
/**
* @notice Determines if the stored value of base Swap's virtual price is expired.
* If the last update was past the BASE_CACHE_EXPIRE_TIME, then update the stored value.
*
* @param metaSwapStorage MetaSwap struct to read from and write to
* @return base Swap's virtual price
*/
function _updateBaseVirtualPrice(MetaSwap storage metaSwapStorage)
internal
returns (uint256)
{
if (
block.timestamp >
metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
) {
// When the cache is expired, update it
uint256 baseVirtualPrice = ISwap(metaSwapStorage.baseSwap)
.getVirtualPrice();
metaSwapStorage.baseVirtualPrice = baseVirtualPrice;
metaSwapStorage.baseCacheLastUpdated = block.timestamp;
return baseVirtualPrice;
} else {
return metaSwapStorage.baseVirtualPrice;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "../LPToken.sol";
import "../interfaces/ISwap.sol";
import "../interfaces/IMetaSwap.sol";
/**
* @title MetaSwapDeposit
* @notice This contract flattens the LP token in a MetaSwap pool for easier user access. MetaSwap must be
* deployed before this contract can be initialized successfully.
*
* For example, suppose there exists a base Swap pool consisting of [DAI, USDC, USDT].
* Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken] to allow trades between either
* the LP token or the underlying tokens and sUSD.
*
* MetaSwapDeposit flattens the LP token and remaps them to a single array, allowing users
* to ignore the dependency on BaseSwapLPToken. Using the above example, MetaSwapDeposit can act
* as a Swap containing [sUSD, DAI, USDC, USDT] tokens.
*/
contract MetaSwapDeposit is Initializable, ReentrancyGuardUpgradeable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
ISwap public baseSwap;
IMetaSwap public metaSwap;
IERC20[] public baseTokens;
IERC20[] public metaTokens;
IERC20[] public tokens;
IERC20 public metaLPToken;
uint256 constant MAX_UINT256 = 2**256 - 1;
struct RemoveLiquidityImbalanceInfo {
ISwap baseSwap;
IMetaSwap metaSwap;
IERC20 metaLPToken;
uint8 baseLPTokenIndex;
bool withdrawFromBase;
uint256 leftoverMetaLPTokenAmount;
}
/**
* @notice Sets the address for the base Swap contract, MetaSwap contract, and the
* MetaSwap LP token contract.
* @param _baseSwap the address of the base Swap contract
* @param _metaSwap the address of the MetaSwap contract
* @param _metaLPToken the address of the MetaSwap LP token contract
*/
function initialize(
ISwap _baseSwap,
IMetaSwap _metaSwap,
IERC20 _metaLPToken
) external initializer {
__ReentrancyGuard_init();
// Check and approve base level tokens to be deposited to the base Swap contract
{
uint8 i;
for (; i < 32; i++) {
try _baseSwap.getToken(i) returns (IERC20 token) {
baseTokens.push(token);
token.safeApprove(address(_baseSwap), MAX_UINT256);
token.safeApprove(address(_metaSwap), MAX_UINT256);
} catch {
break;
}
}
require(i > 1, "baseSwap must have at least 2 tokens");
}
// Check and approve meta level tokens to be deposited to the MetaSwap contract
IERC20 baseLPToken;
{
uint8 i;
for (; i < 32; i++) {
try _metaSwap.getToken(i) returns (IERC20 token) {
baseLPToken = token;
metaTokens.push(token);
tokens.push(token);
token.safeApprove(address(_metaSwap), MAX_UINT256);
} catch {
break;
}
}
require(i > 1, "metaSwap must have at least 2 tokens");
}
// Flatten baseTokens and append it to tokens array
tokens[tokens.length - 1] = baseTokens[0];
for (uint8 i = 1; i < baseTokens.length; i++) {
tokens.push(baseTokens[i]);
}
// Approve base Swap LP token to be burned by the base Swap contract for withdrawing
baseLPToken.safeApprove(address(_baseSwap), MAX_UINT256);
// Approve MetaSwap LP token to be burned by the MetaSwap contract for withdrawing
_metaLPToken.safeApprove(address(_metaSwap), MAX_UINT256);
// Initialize storage variables
baseSwap = _baseSwap;
metaSwap = _metaSwap;
metaLPToken = _metaLPToken;
}
// Mutative functions
/**
* @notice Swap two underlying tokens using the meta pool and the base pool
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external nonReentrant returns (uint256) {
tokens[tokenIndexFrom].safeTransferFrom(msg.sender, address(this), dx);
uint256 tokenToAmount = metaSwap.swapUnderlying(
tokenIndexFrom,
tokenIndexTo,
dx,
minDy,
deadline
);
tokens[tokenIndexTo].safeTransfer(msg.sender, tokenToAmount);
return tokenToAmount;
}
/**
* @notice Add liquidity to the pool with the given amounts of tokens
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amount of LP token user minted and received
*/
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
) external nonReentrant returns (uint256) {
// Read to memory to save on gas
IERC20[] memory memBaseTokens = baseTokens;
IERC20[] memory memMetaTokens = metaTokens;
uint256 baseLPTokenIndex = memMetaTokens.length - 1;
require(amounts.length == memBaseTokens.length + baseLPTokenIndex);
uint256 baseLPTokenAmount;
{
// Transfer base tokens from the caller and deposit to the base Swap pool
uint256[] memory baseAmounts = new uint256[](memBaseTokens.length);
bool shouldDepositBaseTokens;
for (uint8 i = 0; i < memBaseTokens.length; i++) {
IERC20 token = memBaseTokens[i];
uint256 depositAmount = amounts[baseLPTokenIndex + i];
if (depositAmount > 0) {
token.safeTransferFrom(
msg.sender,
address(this),
depositAmount
);
baseAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer
// if there are any base Swap level tokens, flag it for deposits
shouldDepositBaseTokens = true;
}
}
if (shouldDepositBaseTokens) {
// Deposit any base Swap level tokens and receive baseLPToken
baseLPTokenAmount = baseSwap.addLiquidity(
baseAmounts,
0,
deadline
);
}
}
uint256 metaLPTokenAmount;
{
// Transfer remaining meta level tokens from the caller
uint256[] memory metaAmounts = new uint256[](metaTokens.length);
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
IERC20 token = memMetaTokens[i];
uint256 depositAmount = amounts[i];
if (depositAmount > 0) {
token.safeTransferFrom(
msg.sender,
address(this),
depositAmount
);
metaAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer
}
}
// Update the baseLPToken amount that will be deposited
metaAmounts[baseLPTokenIndex] = baseLPTokenAmount;
// Deposit the meta level tokens and the baseLPToken
metaLPTokenAmount = metaSwap.addLiquidity(
metaAmounts,
minToMint,
deadline
);
}
// Transfer the meta lp token to the caller
metaLPToken.safeTransfer(msg.sender, metaLPTokenAmount);
return metaLPTokenAmount;
}
/**
* @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amounts of tokens user received
*/
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external nonReentrant returns (uint256[] memory) {
IERC20[] memory memBaseTokens = baseTokens;
IERC20[] memory memMetaTokens = metaTokens;
uint256[] memory totalRemovedAmounts;
{
uint256 numOfAllTokens = memBaseTokens.length +
memMetaTokens.length -
1;
require(minAmounts.length == numOfAllTokens, "out of range");
totalRemovedAmounts = new uint256[](numOfAllTokens);
}
// Transfer meta lp token from the caller to this
metaLPToken.safeTransferFrom(msg.sender, address(this), amount);
uint256 baseLPTokenAmount;
{
// Remove liquidity from the MetaSwap pool
uint256[] memory removedAmounts;
uint256 baseLPTokenIndex = memMetaTokens.length - 1;
{
uint256[] memory metaMinAmounts = new uint256[](
memMetaTokens.length
);
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
metaMinAmounts[i] = minAmounts[i];
}
removedAmounts = metaSwap.removeLiquidity(
amount,
metaMinAmounts,
deadline
);
}
// Send the meta level tokens to the caller
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
totalRemovedAmounts[i] = removedAmounts[i];
memMetaTokens[i].safeTransfer(msg.sender, removedAmounts[i]);
}
baseLPTokenAmount = removedAmounts[baseLPTokenIndex];
// Remove liquidity from the base Swap pool
{
uint256[] memory baseMinAmounts = new uint256[](
memBaseTokens.length
);
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
baseMinAmounts[i] = minAmounts[baseLPTokenIndex + i];
}
removedAmounts = baseSwap.removeLiquidity(
baseLPTokenAmount,
baseMinAmounts,
deadline
);
}
// Send the base level tokens to the caller
for (uint8 i = 0; i < memBaseTokens.length; i++) {
totalRemovedAmounts[baseLPTokenIndex + i] = removedAmounts[i];
memBaseTokens[i].safeTransfer(msg.sender, removedAmounts[i]);
}
}
return totalRemovedAmounts;
}
/**
* @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param tokenAmount the amount of the token you want to receive
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @param deadline latest timestamp to accept this transaction
* @return amount of chosen token user received
*/
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
) external nonReentrant returns (uint256) {
uint8 baseLPTokenIndex = uint8(metaTokens.length - 1);
uint8 baseTokensLength = uint8(baseTokens.length);
// Transfer metaLPToken from the caller
metaLPToken.safeTransferFrom(msg.sender, address(this), tokenAmount);
IERC20 token;
if (tokenIndex < baseLPTokenIndex) {
// When the desired token is meta level token, we can just call `removeLiquidityOneToken` directly
metaSwap.removeLiquidityOneToken(
tokenAmount,
tokenIndex,
minAmount,
deadline
);
token = metaTokens[tokenIndex];
} else if (tokenIndex < baseLPTokenIndex + baseTokensLength) {
// When the desired token is a base level token, we need to first withdraw via baseLPToken, then withdraw
// the desired token from the base Swap contract.
uint256 removedBaseLPTokenAmount = metaSwap.removeLiquidityOneToken(
tokenAmount,
baseLPTokenIndex,
0,
deadline
);
baseSwap.removeLiquidityOneToken(
removedBaseLPTokenAmount,
tokenIndex - baseLPTokenIndex,
minAmount,
deadline
);
token = baseTokens[tokenIndex - baseLPTokenIndex];
} else {
revert("out of range");
}
uint256 amountWithdrawn = token.balanceOf(address(this));
token.safeTransfer(msg.sender, amountWithdrawn);
return amountWithdrawn;
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @param deadline latest timestamp to accept this transaction
* @return amount of LP tokens burned
*/
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
) external nonReentrant returns (uint256) {
IERC20[] memory memBaseTokens = baseTokens;
IERC20[] memory memMetaTokens = metaTokens;
uint256[] memory metaAmounts = new uint256[](memMetaTokens.length);
uint256[] memory baseAmounts = new uint256[](memBaseTokens.length);
require(
amounts.length == memBaseTokens.length + memMetaTokens.length - 1,
"out of range"
);
RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo(
baseSwap,
metaSwap,
metaLPToken,
uint8(metaAmounts.length - 1),
false,
0
);
for (uint8 i = 0; i < v.baseLPTokenIndex; i++) {
metaAmounts[i] = amounts[i];
}
for (uint8 i = 0; i < baseAmounts.length; i++) {
baseAmounts[i] = amounts[v.baseLPTokenIndex + i];
if (baseAmounts[i] > 0) {
v.withdrawFromBase = true;
}
}
// Calculate how much base LP token we need to get the desired amount of underlying tokens
if (v.withdrawFromBase) {
metaAmounts[v.baseLPTokenIndex] = v
.baseSwap
.calculateTokenAmount(baseAmounts, false)
.mul(10005)
.div(10000);
}
// Transfer MetaSwap LP token from the caller to this contract
v.metaLPToken.safeTransferFrom(
msg.sender,
address(this),
maxBurnAmount
);
// Withdraw the paired meta level tokens and the base LP token from the MetaSwap pool
uint256 burnedMetaLPTokenAmount = v.metaSwap.removeLiquidityImbalance(
metaAmounts,
maxBurnAmount,
deadline
);
v.leftoverMetaLPTokenAmount = maxBurnAmount.sub(
burnedMetaLPTokenAmount
);
// If underlying tokens are desired, withdraw them from the base Swap pool
if (v.withdrawFromBase) {
v.baseSwap.removeLiquidityImbalance(
baseAmounts,
metaAmounts[v.baseLPTokenIndex],
deadline
);
// Base Swap may require LESS base LP token than the amount we have
// In that case, deposit it to the MetaSwap pool.
uint256[] memory leftovers = new uint256[](metaAmounts.length);
IERC20 baseLPToken = memMetaTokens[v.baseLPTokenIndex];
uint256 leftoverBaseLPTokenAmount = baseLPToken.balanceOf(
address(this)
);
if (leftoverBaseLPTokenAmount > 0) {
leftovers[v.baseLPTokenIndex] = leftoverBaseLPTokenAmount;
v.leftoverMetaLPTokenAmount = v.leftoverMetaLPTokenAmount.add(
v.metaSwap.addLiquidity(leftovers, 0, deadline)
);
}
}
// Transfer all withdrawn tokens to the caller
for (uint8 i = 0; i < amounts.length; i++) {
IERC20 token;
if (i < v.baseLPTokenIndex) {
token = memMetaTokens[i];
} else {
token = memBaseTokens[i - v.baseLPTokenIndex];
}
if (amounts[i] > 0) {
token.safeTransfer(msg.sender, amounts[i]);
}
}
// If there were any extra meta lp token, transfer them back to the caller as well
if (v.leftoverMetaLPTokenAmount > 0) {
v.metaLPToken.safeTransfer(msg.sender, v.leftoverMetaLPTokenAmount);
}
return maxBurnAmount - v.leftoverMetaLPTokenAmount;
}
// VIEW FUNCTIONS
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running. When withdrawing from the base pool in imbalanced
* fashion, the recommended slippage setting is 0.2% or higher.
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return token amount the user will receive
*/
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
returns (uint256)
{
uint256[] memory metaAmounts = new uint256[](metaTokens.length);
uint256[] memory baseAmounts = new uint256[](baseTokens.length);
uint256 baseLPTokenIndex = metaAmounts.length - 1;
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
metaAmounts[i] = amounts[i];
}
for (uint8 i = 0; i < baseAmounts.length; i++) {
baseAmounts[i] = amounts[baseLPTokenIndex + i];
}
uint256 baseLPTokenAmount = baseSwap.calculateTokenAmount(
baseAmounts,
deposit
);
metaAmounts[baseLPTokenIndex] = baseLPTokenAmount;
return metaSwap.calculateTokenAmount(metaAmounts, deposit);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of LP tokens
* @param amount the amount of LP tokens that would be burned on withdrawal
* @return array of token balances that the user will receive
*/
function calculateRemoveLiquidity(uint256 amount)
external
view
returns (uint256[] memory)
{
uint256[] memory metaAmounts = metaSwap.calculateRemoveLiquidity(
amount
);
uint8 baseLPTokenIndex = uint8(metaAmounts.length - 1);
uint256[] memory baseAmounts = baseSwap.calculateRemoveLiquidity(
metaAmounts[baseLPTokenIndex]
);
uint256[] memory totalAmounts = new uint256[](
baseLPTokenIndex + baseAmounts.length
);
for (uint8 i = 0; i < baseLPTokenIndex; i++) {
totalAmounts[i] = metaAmounts[i];
}
for (uint8 i = 0; i < baseAmounts.length; i++) {
totalAmounts[baseLPTokenIndex + i] = baseAmounts[i];
}
return totalAmounts;
}
/**
* @notice Calculate the amount of underlying token available to withdraw
* when withdrawing via only single token
* @param tokenAmount the amount of LP token to burn
* @param tokenIndex index of which token will be withdrawn
* @return availableTokenAmount calculated amount of underlying token
* available to withdraw
*/
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256) {
uint8 baseLPTokenIndex = uint8(metaTokens.length - 1);
if (tokenIndex < baseLPTokenIndex) {
return
metaSwap.calculateRemoveLiquidityOneToken(
tokenAmount,
tokenIndex
);
} else {
uint256 baseLPTokenAmount = metaSwap
.calculateRemoveLiquidityOneToken(
tokenAmount,
baseLPTokenIndex
);
return
baseSwap.calculateRemoveLiquidityOneToken(
baseLPTokenAmount,
tokenIndex - baseLPTokenIndex
);
}
}
/**
* @notice Returns the address of the pooled token at given index. Reverts if tokenIndex is out of range.
* This is a flattened representation of the pooled tokens.
* @param index the index of the token
* @return address of the token at given index
*/
function getToken(uint8 index) external view returns (IERC20) {
require(index < tokens.length, "index out of range");
return tokens[index];
}
/**
* @notice Calculate amount of tokens you receive on swap
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256) {
return
metaSwap.calculateSwapUnderlying(tokenIndexFrom, tokenIndexTo, dx);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./ISwap.sol";
interface IMetaSwap {
// pool data view functions
function getA() external view returns (uint256);
function getToken(uint8 index) external view returns (IERC20);
function getTokenIndex(address tokenAddress) external view returns (uint8);
function getTokenBalance(uint8 index) external view returns (uint256);
function getVirtualPrice() external view returns (uint256);
function isGuarded() external view returns (bool);
// min return calculation functions
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256);
function calculateSwapUnderlying(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256);
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
returns (uint256);
function calculateRemoveLiquidity(uint256 amount)
external
view
returns (uint256[] memory);
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 availableTokenAmount);
// state modifying functions
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress
) external;
function initializeMetaSwap(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress,
ISwap baseSwap
) external;
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external returns (uint256);
function swapUnderlying(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external returns (uint256);
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
) external returns (uint256);
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external returns (uint256[] memory);
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
) external returns (uint256);
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
) external returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./interfaces/ISwap.sol";
import "./interfaces/IMetaSwap.sol";
contract SwapDeployer is Ownable {
event NewSwapPool(
address indexed deployer,
address swapAddress,
IERC20[] pooledTokens
);
event NewClone(address indexed target, address cloneAddress);
constructor() public Ownable() {}
function clone(address target) external returns (address) {
address newClone = _clone(target);
emit NewClone(target, newClone);
return newClone;
}
function _clone(address target) internal returns (address) {
return Clones.clone(target);
}
function deploy(
address swapAddress,
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress
) external returns (address) {
address swapClone = _clone(swapAddress);
ISwap(swapClone).initialize(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
lpTokenTargetAddress
);
Ownable(swapClone).transferOwnership(owner());
emit NewSwapPool(msg.sender, swapClone, _pooledTokens);
return swapClone;
}
function deployMetaSwap(
address metaSwapAddress,
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress,
ISwap baseSwap
) external returns (address) {
address metaSwapClone = _clone(metaSwapAddress);
IMetaSwap(metaSwapClone).initializeMetaSwap(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
lpTokenTargetAddress,
baseSwap
);
Ownable(metaSwapClone).transferOwnership(owner());
emit NewSwapPool(msg.sender, metaSwapClone, _pooledTokens);
return metaSwapClone;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "synthetix/contracts/interfaces/ISynthetix.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
import "../interfaces/ISwap.sol";
/**
* @title SynthSwapper
* @notice Replacement of Virtual Synths in favor of gas savings. Allows swapping synths via the Synthetix protocol
* or Saddle's pools. The `Bridge.sol` contract will deploy minimal clones of this contract upon initiating
* any cross-asset swaps.
*/
contract SynthSwapper is Initializable {
using SafeERC20 for IERC20;
address payable owner;
// SYNTHETIX points to `ProxyERC20` (0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F).
// This contract is a proxy of `Synthetix` and is used to exchange synths.
ISynthetix public constant SYNTHETIX =
ISynthetix(0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F);
// "SADDLE" in bytes32 form
bytes32 public constant TRACKING =
0x534144444c450000000000000000000000000000000000000000000000000000;
/**
* @notice Initializes the contract when deploying this directly. This prevents
* others from calling initialize() on the target contract and setting themself as the owner.
*/
constructor() public {
initialize();
}
/**
* @notice This modifier checks if the caller is the owner
*/
modifier onlyOwner() {
require(msg.sender == owner, "is not owner");
_;
}
/**
* @notice Sets the `owner` as the caller of this function
*/
function initialize() public initializer {
require(owner == address(0), "owner already set");
owner = msg.sender;
}
/**
* @notice Swaps the synth to another synth via the Synthetix protocol.
* @param sourceKey currency key of the source synth
* @param synthAmount amount of the synth to swap
* @param destKey currency key of the destination synth
* @return amount of the destination synth received
*/
function swapSynth(
bytes32 sourceKey,
uint256 synthAmount,
bytes32 destKey
) external onlyOwner returns (uint256) {
return
SYNTHETIX.exchangeWithTracking(
sourceKey,
synthAmount,
destKey,
msg.sender,
TRACKING
);
}
/**
* @notice Approves the given `tokenFrom` and swaps it to another token via the given `swap` pool.
* @param swap the address of a pool to swap through
* @param tokenFrom the address of the stored synth
* @param tokenFromIndex the index of the token to swap from
* @param tokenToIndex the token the user wants to swap to
* @param tokenFromAmount the amount of the token to swap
* @param minAmount the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
* @param recipient the address of the recipient
*/
function swapSynthToToken(
ISwap swap,
IERC20 tokenFrom,
uint8 tokenFromIndex,
uint8 tokenToIndex,
uint256 tokenFromAmount,
uint256 minAmount,
uint256 deadline,
address recipient
) external onlyOwner returns (IERC20, uint256) {
tokenFrom.approve(address(swap), tokenFromAmount);
swap.swap(
tokenFromIndex,
tokenToIndex,
tokenFromAmount,
minAmount,
deadline
);
IERC20 tokenTo = swap.getToken(tokenToIndex);
uint256 balance = tokenTo.balanceOf(address(this));
tokenTo.safeTransfer(recipient, balance);
return (tokenTo, balance);
}
/**
* @notice Withdraws the given amount of `token` to the `recipient`.
* @param token the address of the token to withdraw
* @param recipient the address of the account to receive the token
* @param withdrawAmount the amount of the token to withdraw
* @param shouldDestroy whether this contract should be destroyed after this call
*/
function withdraw(
IERC20 token,
address recipient,
uint256 withdrawAmount,
bool shouldDestroy
) external onlyOwner {
token.safeTransfer(recipient, withdrawAmount);
if (shouldDestroy) {
_destroy();
}
}
/**
* @notice Destroys this contract. Only owner can call this function.
*/
function destroy() external onlyOwner {
_destroy();
}
function _destroy() internal {
selfdestruct(msg.sender);
}
}pragma solidity >=0.4.24;
import "./ISynth.sol";
import "./IVirtualSynth.sol";
// https://docs.synthetix.io/contracts/source/interfaces/isynthetix
interface ISynthetix {
// Views
function anySynthOrSNXRateIsInvalid() external view returns (bool anyRateInvalid);
function availableCurrencyKeys() external view returns (bytes32[] memory);
function availableSynthCount() external view returns (uint);
function availableSynths(uint index) external view returns (ISynth);
function collateral(address account) external view returns (uint);
function collateralisationRatio(address issuer) external view returns (uint);
function debtBalanceOf(address issuer, bytes32 currencyKey) external view returns (uint);
function isWaitingPeriod(bytes32 currencyKey) external view returns (bool);
function maxIssuableSynths(address issuer) external view returns (uint maxIssuable);
function remainingIssuableSynths(address issuer)
external
view
returns (
uint maxIssuable,
uint alreadyIssued,
uint totalSystemDebt
);
function synths(bytes32 currencyKey) external view returns (ISynth);
function synthsByAddress(address synthAddress) external view returns (bytes32);
function totalIssuedSynths(bytes32 currencyKey) external view returns (uint);
function totalIssuedSynthsExcludeEtherCollateral(bytes32 currencyKey) external view returns (uint);
function transferableSynthetix(address account) external view returns (uint transferable);
// Mutative Functions
function burnSynths(uint amount) external;
function burnSynthsOnBehalf(address burnForAddress, uint amount) external;
function burnSynthsToTarget() external;
function burnSynthsToTargetOnBehalf(address burnForAddress) external;
function exchange(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey
) external returns (uint amountReceived);
function exchangeOnBehalf(
address exchangeForAddress,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey
) external returns (uint amountReceived);
function exchangeWithTracking(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address originator,
bytes32 trackingCode
) external returns (uint amountReceived);
function exchangeOnBehalfWithTracking(
address exchangeForAddress,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address originator,
bytes32 trackingCode
) external returns (uint amountReceived);
function exchangeWithVirtual(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
bytes32 trackingCode
) external returns (uint amountReceived, IVirtualSynth vSynth);
function issueMaxSynths() external;
function issueMaxSynthsOnBehalf(address issueForAddress) external;
function issueSynths(uint amount) external;
function issueSynthsOnBehalf(address issueForAddress, uint amount) external;
function mint() external returns (bool);
function settle(bytes32 currencyKey)
external
returns (
uint reclaimed,
uint refunded,
uint numEntries
);
// Liquidations
function liquidateDelinquentAccount(address account, uint susdAmount) external returns (bool);
// Restricted Functions
function mintSecondary(address account, uint amount) external;
function mintSecondaryRewards(uint amount) external;
function burnSecondary(address account, uint amount) external;
}pragma solidity >=0.4.24;
// https://docs.synthetix.io/contracts/source/interfaces/isynth
interface ISynth {
// Views
function currencyKey() external view returns (bytes32);
function transferableSynths(address account) external view returns (uint);
// Mutative functions
function transferAndSettle(address to, uint value) external returns (bool);
function transferFromAndSettle(
address from,
address to,
uint value
) external returns (bool);
// Restricted: used internally to Synthetix
function burn(address account, uint amount) external;
function issue(address account, uint amount) external;
}pragma solidity >=0.4.24;
import "./ISynth.sol";
interface IVirtualSynth {
// Views
function balanceOfUnderlying(address account) external view returns (uint);
function rate() external view returns (uint);
function readyToSettle() external view returns (bool);
function secsLeftInWaitingPeriod() external view returns (uint);
function settled() external view returns (bool);
function synth() external view returns (ISynth);
// Mutative functions
function settle(address account) external;
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "./interfaces/ISwapV1.sol";
/**
* @title Liquidity Provider Token
* @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
* It is used to represent user's shares when providing liquidity to swap contracts.
* @dev Only Swap contracts should initialize and own LPToken contracts.
*/
contract LPTokenV1 is ERC20BurnableUpgradeable, OwnableUpgradeable {
using SafeMathUpgradeable for uint256;
/**
* @notice Initializes this LPToken contract with the given name and symbol
* @dev The caller of this function will become the owner. A Swap contract should call this
* in its initializer function.
* @param name name of this token
* @param symbol symbol of this token
*/
function initialize(string memory name, string memory symbol)
external
initializer
returns (bool)
{
__Context_init_unchained();
__ERC20_init_unchained(name, symbol);
__Ownable_init_unchained();
return true;
}
/**
* @notice Mints the given amount of LPToken to the recipient.
* @dev only owner can call this mint function
* @param recipient address of account to receive the tokens
* @param amount amount of tokens to mint
*/
function mint(address recipient, uint256 amount) external onlyOwner {
require(amount != 0, "LPToken: cannot mint 0");
_mint(recipient, amount);
}
/**
* @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
* minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime.
* This assumes the owner is set to a Swap contract's address.
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override(ERC20Upgradeable) {
super._beforeTokenTransfer(from, to, amount);
require(to != address(this), "LPToken: cannot send to itself");
ISwapV1(owner()).updateUserWithdrawFee(to, amount);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";
interface ISwapV1 {
// pool data view functions
function getA() external view returns (uint256);
function getAllowlist() external view returns (IAllowlist);
function getToken(uint8 index) external view returns (IERC20);
function getTokenIndex(address tokenAddress) external view returns (uint8);
function getTokenBalance(uint8 index) external view returns (uint256);
function getVirtualPrice() external view returns (uint256);
function isGuarded() external view returns (bool);
// min return calculation functions
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256);
function calculateTokenAmount(
address account,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256);
function calculateRemoveLiquidity(address account, uint256 amount)
external
view
returns (uint256[] memory);
function calculateRemoveLiquidityOneToken(
address account,
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 availableTokenAmount);
// state modifying functions
function initialize(
IERC20[] memory pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 a,
uint256 fee,
uint256 adminFee,
uint256 withdrawFee,
address lpTokenTargetAddress
) external;
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external returns (uint256);
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
) external returns (uint256);
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external returns (uint256[] memory);
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
) external returns (uint256);
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
) external returns (uint256);
// withdraw fee update function
function updateUserWithdrawFee(address recipient, uint256 transferAmount)
external;
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./interfaces/ISwapV1.sol";
contract SwapDeployerV1 is Ownable {
event NewSwapPool(
address indexed deployer,
address swapAddress,
IERC20[] pooledTokens
);
constructor() public Ownable() {}
function deploy(
address swapAddress,
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
uint256 _withdrawFee,
address lpTokenTargetAddress
) external returns (address) {
address swapClone = Clones.clone(swapAddress);
ISwapV1(swapClone).initialize(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
_withdrawFee,
lpTokenTargetAddress
);
Ownable(swapClone).transferOwnership(owner());
emit NewSwapPool(msg.sender, swapClone, _pooledTokens);
return swapClone;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "synthetix/contracts/interfaces/IAddressResolver.sol";
import "synthetix/contracts/interfaces/IExchanger.sol";
import "synthetix/contracts/interfaces/IExchangeRates.sol";
import "../interfaces/ISwap.sol";
import "./SynthSwapper.sol";
contract Proxy {
address public target;
}
contract Target {
address public proxy;
}
/**
* @title Bridge
* @notice This contract is responsible for cross-asset swaps using the Synthetix protocol as the bridging exchange.
* There are three types of supported cross-asset swaps, tokenToSynth, synthToToken, and tokenToToken.
*
* 1) tokenToSynth
* Swaps a supported token in a saddle pool to any synthetic asset (e.g. tBTC -> sAAVE).
*
* 2) synthToToken
* Swaps any synthetic asset to a suported token in a saddle pool (e.g. sDEFI -> USDC).
*
* 3) tokenToToken
* Swaps a supported token in a saddle pool to one in another pool (e.g. renBTC -> DAI).
*
* Due to the settlement periods of synthetic assets, the users must wait until the trades can be completed.
* Users will receive an ERC721 token that represents pending cross-asset swap. Once the waiting period is over,
* the trades can be settled and completed by calling the `completeToSynth` or the `completeToToken` function.
* In the cases of pending `synthToToken` or `tokenToToken` swaps, the owners of the pending swaps can also choose
* to withdraw the bridging synthetic assets instead of completing the swap.
*/
contract Bridge is ERC721 {
using SafeMath for uint256;
using SafeERC20 for IERC20;
event SynthIndex(
address indexed swap,
uint8 synthIndex,
bytes32 currencyKey,
address synthAddress
);
event TokenToSynth(
address indexed requester,
uint256 indexed itemId,
ISwap swapPool,
uint8 tokenFromIndex,
uint256 tokenFromInAmount,
bytes32 synthToKey
);
event SynthToToken(
address indexed requester,
uint256 indexed itemId,
ISwap swapPool,
bytes32 synthFromKey,
uint256 synthFromInAmount,
uint8 tokenToIndex
);
event TokenToToken(
address indexed requester,
uint256 indexed itemId,
ISwap[2] swapPools,
uint8 tokenFromIndex,
uint256 tokenFromAmount,
uint8 tokenToIndex
);
event Settle(
address indexed requester,
uint256 indexed itemId,
IERC20 settleFrom,
uint256 settleFromAmount,
IERC20 settleTo,
uint256 settleToAmount,
bool isFinal
);
event Withdraw(
address indexed requester,
uint256 indexed itemId,
IERC20 synth,
uint256 synthAmount,
bool isFinal
);
// The addresses for all Synthetix contracts can be found in the below URL.
// https://docs.synthetix.io/addresses/#mainnet-contracts
//
// Since the Synthetix protocol is upgradable, we must use the proxy pairs of each contract such that
// the composability is not broken after the protocol upgrade.
//
// SYNTHETIX_RESOLVER points to `ReadProxyAddressResolver` (0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2).
// This contract is a read proxy of `AddressResolver` which is responsible for storing the addresses of the contracts
// used by the Synthetix protocol.
IAddressResolver public constant SYNTHETIX_RESOLVER =
IAddressResolver(0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2);
// EXCHANGER points to `Exchanger`. There is no proxy pair for this contract so we need to update this variable
// when the protocol is upgraded. This contract is used to settle synths held by SynthSwapper.
IExchanger public exchanger;
// CONSTANTS
// Available types of cross-asset swaps
enum PendingSwapType {
Null,
TokenToSynth,
SynthToToken,
TokenToToken
}
uint256 public constant MAX_UINT256 = 2**256 - 1;
uint8 public constant MAX_UINT8 = 2**8 - 1;
bytes32 public constant EXCHANGE_RATES_NAME = "ExchangeRates";
bytes32 public constant EXCHANGER_NAME = "Exchanger";
address public immutable SYNTH_SWAPPER_MASTER;
// MAPPINGS FOR STORING PENDING SETTLEMENTS
// The below two mappings never share the same key.
mapping(uint256 => PendingToSynthSwap) public pendingToSynthSwaps;
mapping(uint256 => PendingToTokenSwap) public pendingToTokenSwaps;
uint256 public pendingSwapsLength;
mapping(uint256 => PendingSwapType) private pendingSwapType;
// MAPPINGS FOR STORING SYNTH INFO
mapping(address => SwapContractInfo) private swapContracts;
// Structs holding information about pending settlements
struct PendingToSynthSwap {
SynthSwapper swapper;
bytes32 synthKey;
}
struct PendingToTokenSwap {
SynthSwapper swapper;
bytes32 synthKey;
ISwap swap;
uint8 tokenToIndex;
}
struct SwapContractInfo {
// index of the supported synth + 1
uint8 synthIndexPlusOne;
// address of the supported synth
address synthAddress;
// bytes32 key of the supported synth
bytes32 synthKey;
// array of tokens supported by the contract
IERC20[] tokens;
}
/**
* @notice Deploys this contract and initializes the master version of the SynthSwapper contract. The address to
* the Synthetix protocol's Exchanger contract is also set on deployment.
*/
constructor(address synthSwapperAddress)
public
ERC721("Saddle Cross-Asset Swap", "SaddleSynthSwap")
{
SYNTH_SWAPPER_MASTER = synthSwapperAddress;
updateExchangerCache();
}
/**
* @notice Returns the address of the proxy contract targeting the synthetic asset with the given `synthKey`.
* @param synthKey the currency key of the synth
* @return address of the proxy contract
*/
function getProxyAddressFromTargetSynthKey(bytes32 synthKey)
public
view
returns (IERC20)
{
return IERC20(Target(SYNTHETIX_RESOLVER.getSynth(synthKey)).proxy());
}
/**
* @notice Returns various information of a pending swap represented by the given `itemId`. Information includes
* the type of the pending swap, the number of seconds left until it can be settled, the address and the balance
* of the synth this swap currently holds, and the address of the destination token.
* @param itemId ID of the pending swap
* @return swapType the type of the pending virtual swap,
* secsLeft number of seconds left until this swap can be settled,
* synth address of the synth this swap uses,
* synthBalance amount of the synth this swap holds,
* tokenTo the address of the destination token
*/
function getPendingSwapInfo(uint256 itemId)
external
view
returns (
PendingSwapType swapType,
uint256 secsLeft,
address synth,
uint256 synthBalance,
address tokenTo
)
{
swapType = pendingSwapType[itemId];
require(swapType != PendingSwapType.Null, "invalid itemId");
SynthSwapper synthSwapper;
bytes32 synthKey;
if (swapType == PendingSwapType.TokenToSynth) {
synthSwapper = pendingToSynthSwaps[itemId].swapper;
synthKey = pendingToSynthSwaps[itemId].synthKey;
synth = address(getProxyAddressFromTargetSynthKey(synthKey));
tokenTo = synth;
} else {
PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
itemId
];
synthSwapper = pendingToTokenSwap.swapper;
synthKey = pendingToTokenSwap.synthKey;
synth = address(getProxyAddressFromTargetSynthKey(synthKey));
tokenTo = address(
swapContracts[address(pendingToTokenSwap.swap)].tokens[
pendingToTokenSwap.tokenToIndex
]
);
}
secsLeft = exchanger.maxSecsLeftInWaitingPeriod(
address(synthSwapper),
synthKey
);
synthBalance = IERC20(synth).balanceOf(address(synthSwapper));
}
// Settles the synth only.
function _settle(address synthOwner, bytes32 synthKey) internal {
// Settle synth
exchanger.settle(synthOwner, synthKey);
}
/**
* @notice Settles and withdraws the synthetic asset without swapping it to a token in a Saddle pool. Only the owner
* of the ERC721 token of `itemId` can call this function. Reverts if the given `itemId` does not represent a
* `synthToToken` or a `tokenToToken` swap.
* @param itemId ID of the pending swap
* @param amount the amount of the synth to withdraw
*/
function withdraw(uint256 itemId, uint256 amount) external {
address nftOwner = ownerOf(itemId);
require(nftOwner == msg.sender, "not owner");
require(
pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
"invalid itemId"
);
PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
itemId
];
_settle(
address(pendingToTokenSwap.swapper),
pendingToTokenSwap.synthKey
);
IERC20 synth = getProxyAddressFromTargetSynthKey(
pendingToTokenSwap.synthKey
);
bool shouldDestroy;
if (amount >= synth.balanceOf(address(pendingToTokenSwap.swapper))) {
_burn(itemId);
delete pendingToTokenSwaps[itemId];
delete pendingSwapType[itemId];
shouldDestroy = true;
}
pendingToTokenSwap.swapper.withdraw(
synth,
nftOwner,
amount,
shouldDestroy
);
emit Withdraw(msg.sender, itemId, synth, amount, shouldDestroy);
}
/**
* @notice Completes the pending `tokenToSynth` swap by settling and withdrawing the synthetic asset.
* Reverts if the given `itemId` does not represent a `tokenToSynth` swap.
* @param itemId ERC721 token ID representing a pending `tokenToSynth` swap
*/
function completeToSynth(uint256 itemId) external {
address nftOwner = ownerOf(itemId);
require(nftOwner == msg.sender, "not owner");
require(
pendingSwapType[itemId] == PendingSwapType.TokenToSynth,
"invalid itemId"
);
PendingToSynthSwap memory pendingToSynthSwap = pendingToSynthSwaps[
itemId
];
_settle(
address(pendingToSynthSwap.swapper),
pendingToSynthSwap.synthKey
);
IERC20 synth = getProxyAddressFromTargetSynthKey(
pendingToSynthSwap.synthKey
);
// Burn the corresponding ERC721 token and delete storage for gas
_burn(itemId);
delete pendingToTokenSwaps[itemId];
delete pendingSwapType[itemId];
// After settlement, withdraw the synth and send it to the recipient
uint256 synthBalance = synth.balanceOf(
address(pendingToSynthSwap.swapper)
);
pendingToSynthSwap.swapper.withdraw(
synth,
nftOwner,
synthBalance,
true
);
emit Settle(
msg.sender,
itemId,
synth,
synthBalance,
synth,
synthBalance,
true
);
}
/**
* @notice Calculates the expected amount of the token to receive on calling `completeToToken()` with
* the given `swapAmount`.
* @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap
* @param swapAmount the amount of bridging synth to swap from
* @return expected amount of the token the user will receive
*/
function calcCompleteToToken(uint256 itemId, uint256 swapAmount)
external
view
returns (uint256)
{
require(
pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
"invalid itemId"
);
PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
itemId
];
return
pendingToTokenSwap.swap.calculateSwap(
getSynthIndex(pendingToTokenSwap.swap),
pendingToTokenSwap.tokenToIndex,
swapAmount
);
}
/**
* @notice Completes the pending `SynthToToken` or `TokenToToken` swap by settling the bridging synth and swapping
* it to the desired token. Only the owners of the pending swaps can call this function.
* @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap
* @param swapAmount the amount of bridging synth to swap from
* @param minAmount the minimum amount of the token to receive - reverts if this amount is not reached
* @param deadline the timestamp representing the deadline for this transaction - reverts if deadline is not met
*/
function completeToToken(
uint256 itemId,
uint256 swapAmount,
uint256 minAmount,
uint256 deadline
) external {
require(swapAmount != 0, "amount must be greater than 0");
address nftOwner = ownerOf(itemId);
require(msg.sender == nftOwner, "must own itemId");
require(
pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
"invalid itemId"
);
PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
itemId
];
_settle(
address(pendingToTokenSwap.swapper),
pendingToTokenSwap.synthKey
);
IERC20 synth = getProxyAddressFromTargetSynthKey(
pendingToTokenSwap.synthKey
);
bool shouldDestroyClone;
if (
swapAmount >= synth.balanceOf(address(pendingToTokenSwap.swapper))
) {
_burn(itemId);
delete pendingToTokenSwaps[itemId];
delete pendingSwapType[itemId];
shouldDestroyClone = true;
}
// Try swapping the synth to the desired token via the stored swap pool contract
// If the external call succeeds, send the token to the owner of token with itemId.
(IERC20 tokenTo, uint256 amountOut) = pendingToTokenSwap
.swapper
.swapSynthToToken(
pendingToTokenSwap.swap,
synth,
getSynthIndex(pendingToTokenSwap.swap),
pendingToTokenSwap.tokenToIndex,
swapAmount,
minAmount,
deadline,
nftOwner
);
if (shouldDestroyClone) {
pendingToTokenSwap.swapper.destroy();
}
emit Settle(
msg.sender,
itemId,
synth,
swapAmount,
tokenTo,
amountOut,
shouldDestroyClone
);
}
// Add the given pending synth settlement struct to the list
function _addToPendingSynthSwapList(
PendingToSynthSwap memory pendingToSynthSwap
) internal returns (uint256) {
require(
pendingSwapsLength < MAX_UINT256,
"pendingSwapsLength reached max size"
);
pendingToSynthSwaps[pendingSwapsLength] = pendingToSynthSwap;
return pendingSwapsLength++;
}
// Add the given pending synth to token settlement struct to the list
function _addToPendingSynthToTokenSwapList(
PendingToTokenSwap memory pendingToTokenSwap
) internal returns (uint256) {
require(
pendingSwapsLength < MAX_UINT256,
"pendingSwapsLength reached max size"
);
pendingToTokenSwaps[pendingSwapsLength] = pendingToTokenSwap;
return pendingSwapsLength++;
}
/**
* @notice Calculates the expected amount of the desired synthetic asset the caller will receive after completing
* a `TokenToSynth` swap with the given parameters. This calculation does not consider the settlement periods.
* @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
* @param tokenFromIndex the index of the token to swap from
* @param synthOutKey the currency key of the desired synthetic asset
* @param tokenInAmount the amount of the token to swap form
* @return the expected amount of the desired synth
*/
function calcTokenToSynth(
ISwap swap,
uint8 tokenFromIndex,
bytes32 synthOutKey,
uint256 tokenInAmount
) external view returns (uint256) {
uint8 mediumSynthIndex = getSynthIndex(swap);
uint256 expectedMediumSynthAmount = swap.calculateSwap(
tokenFromIndex,
mediumSynthIndex,
tokenInAmount
);
bytes32 mediumSynthKey = getSynthKey(swap);
IExchangeRates exchangeRates = IExchangeRates(
SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
);
return
exchangeRates.effectiveValue(
mediumSynthKey,
expectedMediumSynthAmount,
synthOutKey
);
}
/**
* @notice Initiates a cross-asset swap from a token supported in the `swap` pool to any synthetic asset.
* The caller will receive an ERC721 token representing their ownership of the pending cross-asset swap.
* @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
* @param tokenFromIndex the index of the token to swap from
* @param synthOutKey the currency key of the desired synthetic asset
* @param tokenInAmount the amount of the token to swap form
* @param minAmount the amount of the token to swap form
* @return ID of the ERC721 token sent to the caller
*/
function tokenToSynth(
ISwap swap,
uint8 tokenFromIndex,
bytes32 synthOutKey,
uint256 tokenInAmount,
uint256 minAmount
) external returns (uint256) {
require(tokenInAmount != 0, "amount must be greater than 0");
// Create a SynthSwapper clone
SynthSwapper synthSwapper = SynthSwapper(
Clones.clone(SYNTH_SWAPPER_MASTER)
);
synthSwapper.initialize();
// Add the synthswapper to the pending settlement list
uint256 itemId = _addToPendingSynthSwapList(
PendingToSynthSwap(synthSwapper, synthOutKey)
);
pendingSwapType[itemId] = PendingSwapType.TokenToSynth;
// Mint an ERC721 token that represents ownership of the pending synth settlement to msg.sender
_mint(msg.sender, itemId);
// Transfer token from msg.sender
IERC20 tokenFrom = swapContracts[address(swap)].tokens[tokenFromIndex]; // revert when token not found in swap pool
tokenFrom.safeTransferFrom(msg.sender, address(this), tokenInAmount);
tokenInAmount = tokenFrom.balanceOf(address(this));
// Swap the synth to the medium synth
uint256 mediumSynthAmount = swap.swap(
tokenFromIndex,
getSynthIndex(swap),
tokenInAmount,
0,
block.timestamp
);
// Swap synths via Synthetix network
IERC20(getSynthAddress(swap)).safeTransfer(
address(synthSwapper),
mediumSynthAmount
);
require(
synthSwapper.swapSynth(
getSynthKey(swap),
mediumSynthAmount,
synthOutKey
) >= minAmount,
"minAmount not reached"
);
// Emit TokenToSynth event with relevant data
emit TokenToSynth(
msg.sender,
itemId,
swap,
tokenFromIndex,
tokenInAmount,
synthOutKey
);
return (itemId);
}
/**
* @notice Calculates the expected amount of the desired token the caller will receive after completing
* a `SynthToToken` swap with the given parameters. This calculation does not consider the settlement periods or
* any potential changes of the `swap` pool composition.
* @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
* @param synthInKey the currency key of the synth to swap from
* @param tokenToIndex the index of the token to swap to
* @param synthInAmount the amount of the synth to swap form
* @return the expected amount of the bridging synth and the expected amount of the desired token
*/
function calcSynthToToken(
ISwap swap,
bytes32 synthInKey,
uint8 tokenToIndex,
uint256 synthInAmount
) external view returns (uint256, uint256) {
IExchangeRates exchangeRates = IExchangeRates(
SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
);
uint8 mediumSynthIndex = getSynthIndex(swap);
bytes32 mediumSynthKey = getSynthKey(swap);
require(synthInKey != mediumSynthKey, "use normal swap");
uint256 expectedMediumSynthAmount = exchangeRates.effectiveValue(
synthInKey,
synthInAmount,
mediumSynthKey
);
return (
expectedMediumSynthAmount,
swap.calculateSwap(
mediumSynthIndex,
tokenToIndex,
expectedMediumSynthAmount
)
);
}
/**
* @notice Initiates a cross-asset swap from a synthetic asset to a supported token. The caller will receive
* an ERC721 token representing their ownership of the pending cross-asset swap.
* @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
* @param synthInKey the currency key of the synth to swap from
* @param tokenToIndex the index of the token to swap to
* @param synthInAmount the amount of the synth to swap form
* @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage
* @return the ID of the ERC721 token sent to the caller
*/
function synthToToken(
ISwap swap,
bytes32 synthInKey,
uint8 tokenToIndex,
uint256 synthInAmount,
uint256 minMediumSynthAmount
) external returns (uint256) {
require(synthInAmount != 0, "amount must be greater than 0");
bytes32 mediumSynthKey = getSynthKey(swap);
require(
synthInKey != mediumSynthKey,
"synth is supported via normal swap"
);
// Create a SynthSwapper clone
SynthSwapper synthSwapper = SynthSwapper(
Clones.clone(SYNTH_SWAPPER_MASTER)
);
synthSwapper.initialize();
// Add the synthswapper to the pending synth to token settlement list
uint256 itemId = _addToPendingSynthToTokenSwapList(
PendingToTokenSwap(synthSwapper, mediumSynthKey, swap, tokenToIndex)
);
pendingSwapType[itemId] = PendingSwapType.SynthToToken;
// Mint an ERC721 token that represents ownership of the pending synth to token settlement to msg.sender
_mint(msg.sender, itemId);
// Receive synth from the user and swap it to another synth
IERC20 synthFrom = getProxyAddressFromTargetSynthKey(synthInKey);
synthFrom.safeTransferFrom(msg.sender, address(this), synthInAmount);
synthFrom.safeTransfer(address(synthSwapper), synthInAmount);
require(
synthSwapper.swapSynth(synthInKey, synthInAmount, mediumSynthKey) >=
minMediumSynthAmount,
"minMediumSynthAmount not reached"
);
// Emit SynthToToken event with relevant data
emit SynthToToken(
msg.sender,
itemId,
swap,
synthInKey,
synthInAmount,
tokenToIndex
);
return (itemId);
}
/**
* @notice Calculates the expected amount of the desired token the caller will receive after completing
* a `TokenToToken` swap with the given parameters. This calculation does not consider the settlement periods or
* any potential changes of the pool compositions.
* @param swaps the addresses of the two Saddle pools used to do the cross-asset swap
* @param tokenFromIndex the index of the token in the first `swaps` pool to swap from
* @param tokenToIndex the index of the token in the second `swaps` pool to swap to
* @param tokenFromAmount the amount of the token to swap from
* @return the expected amount of bridging synth at pre-settlement stage and the expected amount of the desired
* token
*/
function calcTokenToToken(
ISwap[2] calldata swaps,
uint8 tokenFromIndex,
uint8 tokenToIndex,
uint256 tokenFromAmount
) external view returns (uint256, uint256) {
IExchangeRates exchangeRates = IExchangeRates(
SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
);
uint256 firstSynthAmount = swaps[0].calculateSwap(
tokenFromIndex,
getSynthIndex(swaps[0]),
tokenFromAmount
);
uint256 mediumSynthAmount = exchangeRates.effectiveValue(
getSynthKey(swaps[0]),
firstSynthAmount,
getSynthKey(swaps[1])
);
return (
mediumSynthAmount,
swaps[1].calculateSwap(
getSynthIndex(swaps[1]),
tokenToIndex,
mediumSynthAmount
)
);
}
/**
* @notice Initiates a cross-asset swap from a token in one Saddle pool to one in another. The caller will receive
* an ERC721 token representing their ownership of the pending cross-asset swap.
* @param swaps the addresses of the two Saddle pools used to do the cross-asset swap
* @param tokenFromIndex the index of the token in the first `swaps` pool to swap from
* @param tokenToIndex the index of the token in the second `swaps` pool to swap to
* @param tokenFromAmount the amount of the token to swap from
* @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage
* @return the ID of the ERC721 token sent to the caller
*/
function tokenToToken(
ISwap[2] calldata swaps,
uint8 tokenFromIndex,
uint8 tokenToIndex,
uint256 tokenFromAmount,
uint256 minMediumSynthAmount
) external returns (uint256) {
// Create a SynthSwapper clone
require(tokenFromAmount != 0, "amount must be greater than 0");
SynthSwapper synthSwapper = SynthSwapper(
Clones.clone(SYNTH_SWAPPER_MASTER)
);
synthSwapper.initialize();
bytes32 mediumSynthKey = getSynthKey(swaps[1]);
// Add the synthswapper to the pending synth to token settlement list
uint256 itemId = _addToPendingSynthToTokenSwapList(
PendingToTokenSwap(
synthSwapper,
mediumSynthKey,
swaps[1],
tokenToIndex
)
);
pendingSwapType[itemId] = PendingSwapType.TokenToToken;
// Mint an ERC721 token that represents ownership of the pending swap to msg.sender
_mint(msg.sender, itemId);
// Receive token from the user
ISwap swap = swaps[0];
{
IERC20 tokenFrom = swapContracts[address(swap)].tokens[
tokenFromIndex
];
tokenFrom.safeTransferFrom(
msg.sender,
address(this),
tokenFromAmount
);
}
uint256 firstSynthAmount = swap.swap(
tokenFromIndex,
getSynthIndex(swap),
tokenFromAmount,
0,
block.timestamp
);
// Swap the synth to another synth
IERC20(getSynthAddress(swap)).safeTransfer(
address(synthSwapper),
firstSynthAmount
);
require(
synthSwapper.swapSynth(
getSynthKey(swap),
firstSynthAmount,
mediumSynthKey
) >= minMediumSynthAmount,
"minMediumSynthAmount not reached"
);
// Emit TokenToToken event with relevant data
emit TokenToToken(
msg.sender,
itemId,
swaps,
tokenFromIndex,
tokenFromAmount,
tokenToIndex
);
return (itemId);
}
/**
* @notice Registers the index and the address of the supported synth from the given `swap` pool. The matching currency key must
* be supplied for a successful registration.
* @param swap the address of the pool that contains the synth
* @param synthIndex the index of the supported synth in the given `swap` pool
* @param currencyKey the currency key of the synth in bytes32 form
*/
function setSynthIndex(
ISwap swap,
uint8 synthIndex,
bytes32 currencyKey
) external {
require(synthIndex < MAX_UINT8, "index is too large");
SwapContractInfo storage swapContractInfo = swapContracts[
address(swap)
];
// Check if the pool has already been added
require(swapContractInfo.synthIndexPlusOne == 0, "Pool already added");
// Ensure the synth with the same currency key exists at the given `synthIndex`
IERC20 synth = swap.getToken(synthIndex);
require(
ISynth(Proxy(address(synth)).target()).currencyKey() == currencyKey,
"currencyKey does not match"
);
swapContractInfo.synthIndexPlusOne = synthIndex + 1;
swapContractInfo.synthAddress = address(synth);
swapContractInfo.synthKey = currencyKey;
swapContractInfo.tokens = new IERC20[](0);
for (uint8 i = 0; i < MAX_UINT8; i++) {
IERC20 token;
if (i == synthIndex) {
token = synth;
} else {
try swap.getToken(i) returns (IERC20 token_) {
token = token_;
} catch {
break;
}
}
swapContractInfo.tokens.push(token);
token.safeApprove(address(swap), MAX_UINT256);
}
emit SynthIndex(address(swap), synthIndex, currencyKey, address(synth));
}
/**
* @notice Returns the index of the supported synth in the given `swap` pool. Reverts if the `swap` pool
* is not registered.
* @param swap the address of the pool that contains the synth
* @return the index of the supported synth
*/
function getSynthIndex(ISwap swap) public view returns (uint8) {
uint8 synthIndexPlusOne = swapContracts[address(swap)]
.synthIndexPlusOne;
require(synthIndexPlusOne > 0, "synth index not found for given pool");
return synthIndexPlusOne - 1;
}
/**
* @notice Returns the address of the supported synth in the given `swap` pool. Reverts if the `swap` pool
* is not registered.
* @param swap the address of the pool that contains the synth
* @return the address of the supported synth
*/
function getSynthAddress(ISwap swap) public view returns (address) {
address synthAddress = swapContracts[address(swap)].synthAddress;
require(
synthAddress != address(0),
"synth addr not found for given pool"
);
return synthAddress;
}
/**
* @notice Returns the currency key of the supported synth in the given `swap` pool. Reverts if the `swap` pool
* is not registered.
* @param swap the address of the pool that contains the synth
* @return the currency key of the supported synth
*/
function getSynthKey(ISwap swap) public view returns (bytes32) {
bytes32 synthKey = swapContracts[address(swap)].synthKey;
require(synthKey != 0x0, "synth key not found for given pool");
return synthKey;
}
/**
* @notice Updates the stored address of the `EXCHANGER` contract. When the Synthetix team upgrades their protocol,
* a new Exchanger contract is deployed. This function manually updates the stored address.
*/
function updateExchangerCache() public {
exchanger = IExchanger(SYNTHETIX_RESOLVER.getAddress(EXCHANGER_NAME));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/Context.sol";
import "./IERC721.sol";
import "./IERC721Metadata.sol";
import "./IERC721Enumerable.sol";
import "./IERC721Receiver.sol";
import "../../introspection/ERC165.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
import "../../utils/EnumerableSet.sol";
import "../../utils/EnumerableMap.sol";
import "../../utils/Strings.sol";
/**
* @title ERC721 Non-Fungible Token Standard basic implementation
* @dev see https://eips.ethereum.org/EIPS/eip-721
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable {
using SafeMath for uint256;
using Address for address;
using EnumerableSet for EnumerableSet.UintSet;
using EnumerableMap for EnumerableMap.UintToAddressMap;
using Strings for uint256;
// Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
// which can be also obtained as `IERC721Receiver(0).onERC721Received.selector`
bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;
// Mapping from holder address to their (enumerable) set of owned tokens
mapping (address => EnumerableSet.UintSet) private _holderTokens;
// Enumerable mapping from token ids to their owners
EnumerableMap.UintToAddressMap private _tokenOwners;
// Mapping from token ID to approved address
mapping (uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping (address => mapping (address => bool)) private _operatorApprovals;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Optional mapping for token URIs
mapping (uint256 => string) private _tokenURIs;
// Base URI
string private _baseURI;
/*
* bytes4(keccak256('balanceOf(address)')) == 0x70a08231
* bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e
* bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3
* bytes4(keccak256('getApproved(uint256)')) == 0x081812fc
* bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465
* bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5
* bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd
* bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e
* bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde
*
* => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^
* 0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd
*/
bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd;
/*
* bytes4(keccak256('name()')) == 0x06fdde03
* bytes4(keccak256('symbol()')) == 0x95d89b41
* bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd
*
* => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f
*/
bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f;
/*
* bytes4(keccak256('totalSupply()')) == 0x18160ddd
* bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59
* bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7
*
* => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63
*/
bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
// register the supported interfaces to conform to ERC721 via ERC165
_registerInterface(_INTERFACE_ID_ERC721);
_registerInterface(_INTERFACE_ID_ERC721_METADATA);
_registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: balance query for the zero address");
return _holderTokens[owner].length();
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token");
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");
string memory _tokenURI = _tokenURIs[tokenId];
string memory base = baseURI();
// If there is no base URI, return the token URI.
if (bytes(base).length == 0) {
return _tokenURI;
}
// If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked).
if (bytes(_tokenURI).length > 0) {
return string(abi.encodePacked(base, _tokenURI));
}
// If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI.
return string(abi.encodePacked(base, tokenId.toString()));
}
/**
* @dev Returns the base URI set via {_setBaseURI}. This will be
* automatically added as a prefix in {tokenURI} to each token's URI, or
* to the token ID if no specific URI is set for that token ID.
*/
function baseURI() public view virtual returns (string memory) {
return _baseURI;
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
return _holderTokens[owner].at(index);
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
// _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds
return _tokenOwners.length();
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
(uint256 tokenId, ) = _tokenOwners.at(index);
return tokenId;
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not owner nor approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
require(_exists(tokenId), "ERC721: approved query for nonexistent token");
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
require(operator != _msgSender(), "ERC721: approve to caller");
_operatorApprovals[_msgSender()][operator] = approved;
emit ApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_safeTransfer(from, to, tokenId, _data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `_data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _tokenOwners.contains(tokenId);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
require(_exists(tokenId), "ERC721: operator query for nonexistent token");
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender));
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
d*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual {
_mint(to, tokenId);
require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId);
_holderTokens[to].add(tokenId);
_tokenOwners.set(tokenId, to);
emit Transfer(address(0), to, tokenId);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId); // internal owner
_beforeTokenTransfer(owner, address(0), tokenId);
// Clear approvals
_approve(address(0), tokenId);
// Clear metadata (if any)
if (bytes(_tokenURIs[tokenId]).length != 0) {
delete _tokenURIs[tokenId];
}
_holderTokens[owner].remove(tokenId);
_tokenOwners.remove(tokenId);
emit Transfer(owner, address(0), tokenId);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId);
// Clear approvals from the previous owner
_approve(address(0), tokenId);
_holderTokens[from].remove(tokenId);
_holderTokens[to].add(tokenId);
_tokenOwners.set(tokenId, to);
emit Transfer(from, to, tokenId);
}
/**
* @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token");
_tokenURIs[tokenId] = _tokenURI;
}
/**
* @dev Internal function to set the base URI for all token IDs. It is
* automatically added as a prefix to the value returned in {tokenURI},
* or to the token ID if {tokenURI} is empty.
*/
function _setBaseURI(string memory baseURI_) internal virtual {
_baseURI = baseURI_;
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param _data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
private returns (bool)
{
if (!to.isContract()) {
return true;
}
bytes memory returndata = to.functionCall(abi.encodeWithSelector(
IERC721Receiver(to).onERC721Received.selector,
_msgSender(),
from,
tokenId,
_data
), "ERC721: transfer to non ERC721Receiver implementer");
bytes4 retval = abi.decode(returndata, (bytes4));
return (retval == _ERC721_RECEIVED);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, ``from``'s `tokenId` will be burned.
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { }
}pragma solidity >=0.4.24;
// https://docs.synthetix.io/contracts/source/interfaces/iaddressresolver
interface IAddressResolver {
function getAddress(bytes32 name) external view returns (address);
function getSynth(bytes32 key) external view returns (address);
function requireAndGetAddress(bytes32 name, string calldata reason) external view returns (address);
}pragma solidity >=0.4.24;
import "./IVirtualSynth.sol";
// https://docs.synthetix.io/contracts/source/interfaces/iexchanger
interface IExchanger {
// Views
function calculateAmountAfterSettlement(
address from,
bytes32 currencyKey,
uint amount,
uint refunded
) external view returns (uint amountAfterSettlement);
function isSynthRateInvalid(bytes32 currencyKey) external view returns (bool);
function maxSecsLeftInWaitingPeriod(address account, bytes32 currencyKey) external view returns (uint);
function settlementOwing(address account, bytes32 currencyKey)
external
view
returns (
uint reclaimAmount,
uint rebateAmount,
uint numEntries
);
function hasWaitingPeriodOrSettlementOwing(address account, bytes32 currencyKey) external view returns (bool);
function feeRateForExchange(bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey)
external
view
returns (uint exchangeFeeRate);
function getAmountsForExchange(
uint sourceAmount,
bytes32 sourceCurrencyKey,
bytes32 destinationCurrencyKey
)
external
view
returns (
uint amountReceived,
uint fee,
uint exchangeFeeRate
);
function priceDeviationThresholdFactor() external view returns (uint);
function waitingPeriodSecs() external view returns (uint);
// Mutative functions
function exchange(
address from,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address destinationAddress
) external returns (uint amountReceived);
function exchangeOnBehalf(
address exchangeForAddress,
address from,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey
) external returns (uint amountReceived);
function exchangeWithTracking(
address from,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address destinationAddress,
address originator,
bytes32 trackingCode
) external returns (uint amountReceived);
function exchangeOnBehalfWithTracking(
address exchangeForAddress,
address from,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address originator,
bytes32 trackingCode
) external returns (uint amountReceived);
function exchangeWithVirtual(
address from,
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
address destinationAddress,
bytes32 trackingCode
) external returns (uint amountReceived, IVirtualSynth vSynth);
function settle(address from, bytes32 currencyKey)
external
returns (
uint reclaimed,
uint refunded,
uint numEntries
);
function setLastExchangeRateForSynth(bytes32 currencyKey, uint rate) external;
function suspendSynthWithInvalidRate(bytes32 currencyKey) external;
}pragma solidity >=0.4.24;
// https://docs.synthetix.io/contracts/source/interfaces/iexchangerates
interface IExchangeRates {
// Structs
struct RateAndUpdatedTime {
uint216 rate;
uint40 time;
}
struct InversePricing {
uint entryPoint;
uint upperLimit;
uint lowerLimit;
bool frozenAtUpperLimit;
bool frozenAtLowerLimit;
}
// Views
function aggregators(bytes32 currencyKey) external view returns (address);
function aggregatorWarningFlags() external view returns (address);
function anyRateIsInvalid(bytes32[] calldata currencyKeys) external view returns (bool);
function canFreezeRate(bytes32 currencyKey) external view returns (bool);
function currentRoundForRate(bytes32 currencyKey) external view returns (uint);
function currenciesUsingAggregator(address aggregator) external view returns (bytes32[] memory);
function effectiveValue(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey
) external view returns (uint value);
function effectiveValueAndRates(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey
)
external
view
returns (
uint value,
uint sourceRate,
uint destinationRate
);
function effectiveValueAtRound(
bytes32 sourceCurrencyKey,
uint sourceAmount,
bytes32 destinationCurrencyKey,
uint roundIdForSrc,
uint roundIdForDest
) external view returns (uint value);
function getCurrentRoundId(bytes32 currencyKey) external view returns (uint);
function getLastRoundIdBeforeElapsedSecs(
bytes32 currencyKey,
uint startingRoundId,
uint startingTimestamp,
uint timediff
) external view returns (uint);
function inversePricing(bytes32 currencyKey)
external
view
returns (
uint entryPoint,
uint upperLimit,
uint lowerLimit,
bool frozenAtUpperLimit,
bool frozenAtLowerLimit
);
function lastRateUpdateTimes(bytes32 currencyKey) external view returns (uint256);
function oracle() external view returns (address);
function rateAndTimestampAtRound(bytes32 currencyKey, uint roundId) external view returns (uint rate, uint time);
function rateAndUpdatedTime(bytes32 currencyKey) external view returns (uint rate, uint time);
function rateAndInvalid(bytes32 currencyKey) external view returns (uint rate, bool isInvalid);
function rateForCurrency(bytes32 currencyKey) external view returns (uint);
function rateIsFlagged(bytes32 currencyKey) external view returns (bool);
function rateIsFrozen(bytes32 currencyKey) external view returns (bool);
function rateIsInvalid(bytes32 currencyKey) external view returns (bool);
function rateIsStale(bytes32 currencyKey) external view returns (bool);
function rateStalePeriod() external view returns (uint);
function ratesAndUpdatedTimeForCurrencyLastNRounds(bytes32 currencyKey, uint numRounds)
external
view
returns (uint[] memory rates, uint[] memory times);
function ratesAndInvalidForCurrencies(bytes32[] calldata currencyKeys)
external
view
returns (uint[] memory rates, bool anyRateInvalid);
function ratesForCurrencies(bytes32[] calldata currencyKeys) external view returns (uint[] memory);
// Mutative functions
function freezeRate(bytes32 currencyKey) external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "../../introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "./IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "./IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/
function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts may inherit from this and call {_registerInterface} to declare
* their support of an interface.
*/
abstract contract ERC165 is IERC165 {
/*
* bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
*/
bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
/**
* @dev Mapping of interface ids to whether or not it's supported.
*/
mapping(bytes4 => bool) private _supportedInterfaces;
constructor () internal {
// Derived contracts need only register support for their own interfaces,
// we register support for ERC165 itself here
_registerInterface(_INTERFACE_ID_ERC165);
}
/**
* @dev See {IERC165-supportsInterface}.
*
* Time complexity O(1), guaranteed to always use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return _supportedInterfaces[interfaceId];
}
/**
* @dev Registers the contract as an implementer of the interface defined by
* `interfaceId`. Support of the actual ERC165 interface is automatic and
* registering its interface id is not required.
*
* See {IERC165-supportsInterface}.
*
* Requirements:
*
* - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
*/
function _registerInterface(bytes4 interfaceId) internal virtual {
require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
_supportedInterfaces[interfaceId] = true;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Library for managing an enumerable variant of Solidity's
* https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
* type.
*
* Maps have the following properties:
*
* - Entries are added, removed, and checked for existence in constant time
* (O(1)).
* - Entries are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableMap for EnumerableMap.UintToAddressMap;
*
* // Declare a set state variable
* EnumerableMap.UintToAddressMap private myMap;
* }
* ```
*
* As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are
* supported.
*/
library EnumerableMap {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Map type with
// bytes32 keys and values.
// The Map implementation uses private functions, and user-facing
// implementations (such as Uint256ToAddressMap) are just wrappers around
// the underlying Map.
// This means that we can only create new EnumerableMaps for types that fit
// in bytes32.
struct MapEntry {
bytes32 _key;
bytes32 _value;
}
struct Map {
// Storage of map keys and values
MapEntry[] _entries;
// Position of the entry defined by a key in the `entries` array, plus 1
// because index 0 means a key is not in the map.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) {
// We read and store the key's index to prevent multiple reads from the same storage slot
uint256 keyIndex = map._indexes[key];
if (keyIndex == 0) { // Equivalent to !contains(map, key)
map._entries.push(MapEntry({ _key: key, _value: value }));
// The entry is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
map._indexes[key] = map._entries.length;
return true;
} else {
map._entries[keyIndex - 1]._value = value;
return false;
}
}
/**
* @dev Removes a key-value pair from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function _remove(Map storage map, bytes32 key) private returns (bool) {
// We read and store the key's index to prevent multiple reads from the same storage slot
uint256 keyIndex = map._indexes[key];
if (keyIndex != 0) { // Equivalent to contains(map, key)
// To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one
// in the array, and then remove the last entry (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = keyIndex - 1;
uint256 lastIndex = map._entries.length - 1;
// When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
MapEntry storage lastEntry = map._entries[lastIndex];
// Move the last entry to the index where the entry to delete is
map._entries[toDeleteIndex] = lastEntry;
// Update the index for the moved entry
map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved entry was stored
map._entries.pop();
// Delete the index for the deleted slot
delete map._indexes[key];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function _contains(Map storage map, bytes32 key) private view returns (bool) {
return map._indexes[key] != 0;
}
/**
* @dev Returns the number of key-value pairs in the map. O(1).
*/
function _length(Map storage map) private view returns (uint256) {
return map._entries.length;
}
/**
* @dev Returns the key-value pair stored at position `index` in the map. O(1).
*
* Note that there are no guarantees on the ordering of entries inside the
* array, and it may change when more entries are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) {
require(map._entries.length > index, "EnumerableMap: index out of bounds");
MapEntry storage entry = map._entries[index];
return (entry._key, entry._value);
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) {
uint256 keyIndex = map._indexes[key];
if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key)
return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function _get(Map storage map, bytes32 key) private view returns (bytes32) {
uint256 keyIndex = map._indexes[key];
require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key)
return map._entries[keyIndex - 1]._value; // All indexes are 1-based
}
/**
* @dev Same as {_get}, with a custom error message when `key` is not in the map.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {_tryGet}.
*/
function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) {
uint256 keyIndex = map._indexes[key];
require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key)
return map._entries[keyIndex - 1]._value; // All indexes are 1-based
}
// UintToAddressMap
struct UintToAddressMap {
Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
return _remove(map._inner, bytes32(key));
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
return _contains(map._inner, bytes32(key));
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(UintToAddressMap storage map) internal view returns (uint256) {
return _length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the set. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
(bytes32 key, bytes32 value) = _at(map._inner, index);
return (uint256(key), address(uint160(uint256(value))));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*
* _Available since v3.4._
*/
function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
(bool success, bytes32 value) = _tryGet(map._inner, bytes32(key));
return (success, address(uint160(uint256(value))));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
return address(uint160(uint256(_get(map._inner, bytes32(key)))));
}
/**
* @dev Same as {get}, with a custom error message when `key` is not in the map.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryGet}.
*/
function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) {
return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage))));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev String operations.
*/
library Strings {
/**
* @dev Converts a `uint256` to its ASCII `string` representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
uint256 index = digits - 1;
temp = value;
while (temp != 0) {
buffer[index--] = bytes1(uint8(48 + temp % 10));
temp /= 10;
}
return string(buffer);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
import "./interfaces/ISwap.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
/**
* @title SwapMigrator
* @notice This contract is responsible for migrating old USD pool liquidity to the new ones.
* Users can use this contract to remove their liquidity from the old pools and add them to the new
* ones with a single transaction.
*/
contract SwapMigrator {
using SafeERC20 for IERC20;
struct MigrationData {
address oldPoolAddress;
IERC20 oldPoolLPTokenAddress;
address newPoolAddress;
IERC20 newPoolLPTokenAddress;
IERC20[] underlyingTokens;
}
MigrationData public usdPoolMigrationData;
address public owner;
uint256 private constant MAX_UINT256 = 2**256 - 1;
/**
* @notice Sets the storage variables and approves tokens to be used by the old and new swap contracts
* @param usdData_ MigrationData struct with information about old and new USD pools
* @param owner_ owner that is allowed to call the `rescue()` function
*/
constructor(MigrationData memory usdData_, address owner_) public {
// Approve old USD LP Token to be used by the old USD pool
usdData_.oldPoolLPTokenAddress.approve(
usdData_.oldPoolAddress,
MAX_UINT256
);
// Approve USD tokens to be used by the new USD pool
for (uint256 i = 0; i < usdData_.underlyingTokens.length; i++) {
usdData_.underlyingTokens[i].safeApprove(
usdData_.newPoolAddress,
MAX_UINT256
);
}
// Set storage variables
usdPoolMigrationData = usdData_;
owner = owner_;
}
/**
* @notice Migrates old USD pool's LPToken to the new pool
* @param amount Amount of old LPToken to migrate
* @param minAmount Minimum amount of new LPToken to receive
*/
function migrateUSDPool(uint256 amount, uint256 minAmount)
external
returns (uint256)
{
// Transfer old LP token from the caller
usdPoolMigrationData.oldPoolLPTokenAddress.safeTransferFrom(
msg.sender,
address(this),
amount
);
// Remove liquidity from the old pool and add them to the new pool
uint256[] memory amounts = ISwap(usdPoolMigrationData.oldPoolAddress)
.removeLiquidity(
amount,
new uint256[](usdPoolMigrationData.underlyingTokens.length),
MAX_UINT256
);
uint256 mintedAmount = ISwap(usdPoolMigrationData.newPoolAddress)
.addLiquidity(amounts, minAmount, MAX_UINT256);
// Transfer new LP Token to the caller
usdPoolMigrationData.newPoolLPTokenAddress.safeTransfer(
msg.sender,
mintedAmount
);
return mintedAmount;
}
/**
* @notice Rescues any token that may be sent to this contract accidentally.
* @param token Amount of old LPToken to migrate
* @param to Minimum amount of new LPToken to receive
*/
function rescue(IERC20 token, address to) external {
require(msg.sender == owner, "is not owner");
token.safeTransfer(to, token.balanceOf(address(this)));
}
}// SPDX-License-Identifier: MIT
// Generalized and adapted from https://github.com/k06a/Unipool 🙇
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
/**
* @title StakeableTokenWrapper
* @notice A wrapper for an ERC-20 that can be staked and withdrawn.
* @dev In this contract, staked tokens don't do anything- instead other
* contracts can inherit from this one to add functionality.
*/
contract StakeableTokenWrapper {
using SafeERC20 for IERC20;
using SafeMath for uint256;
uint256 public totalSupply;
IERC20 public stakedToken;
mapping(address => uint256) private _balances;
event Staked(address indexed user, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
/**
* @notice Creates a new StakeableTokenWrapper with given `_stakedToken` address
* @param _stakedToken address of a token that will be used to stake
*/
constructor(IERC20 _stakedToken) public {
stakedToken = _stakedToken;
}
/**
* @notice Read how much `account` has staked in this contract
* @param account address of an account
* @return amount of total staked ERC20(this.stakedToken) by `account`
*/
function balanceOf(address account) external view returns (uint256) {
return _balances[account];
}
/**
* @notice Stakes given `amount` in this contract
* @param amount amount of ERC20(this.stakedToken) to stake
*/
function stake(uint256 amount) external {
require(amount != 0, "amount == 0");
totalSupply = totalSupply.add(amount);
_balances[msg.sender] = _balances[msg.sender].add(amount);
stakedToken.safeTransferFrom(msg.sender, address(this), amount);
emit Staked(msg.sender, amount);
}
/**
* @notice Withdraws given `amount` from this contract
* @param amount amount of ERC20(this.stakedToken) to withdraw
*/
function withdraw(uint256 amount) external {
totalSupply = totalSupply.sub(amount);
_balances[msg.sender] = _balances[msg.sender].sub(amount);
stakedToken.safeTransfer(msg.sender, amount);
emit Withdrawn(msg.sender, amount);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "../interfaces/IFlashLoanReceiver.sol";
import "../interfaces/ISwapFlashLoan.sol";
import "hardhat/console.sol";
contract FlashLoanBorrowerExample is IFlashLoanReceiver {
using SafeMath for uint256;
// Typical executeOperation function should do the 3 following actions
// 1. Check if the flashLoan was successful
// 2. Do actions with the borrowed tokens
// 3. Repay the debt to the `pool`
function executeOperation(
address pool,
address token,
uint256 amount,
uint256 fee,
bytes calldata params
) external override {
// 1. Check if the flashLoan was valid
require(
IERC20(token).balanceOf(address(this)) >= amount,
"flashloan is broken?"
);
// 2. Do actions with the borrowed token
bytes32 paramsHash = keccak256(params);
if (paramsHash == keccak256(bytes("dontRepayDebt"))) {
return;
} else if (paramsHash == keccak256(bytes("reentrancy_addLiquidity"))) {
ISwapFlashLoan(pool).addLiquidity(
new uint256[](0),
0,
block.timestamp
);
} else if (paramsHash == keccak256(bytes("reentrancy_swap"))) {
ISwapFlashLoan(pool).swap(1, 0, 1e6, 0, now);
} else if (
paramsHash == keccak256(bytes("reentrancy_removeLiquidity"))
) {
ISwapFlashLoan(pool).removeLiquidity(1e18, new uint256[](0), now);
} else if (
paramsHash == keccak256(bytes("reentrancy_removeLiquidityOneToken"))
) {
ISwapFlashLoan(pool).removeLiquidityOneToken(1e18, 0, 1e18, now);
}
// 3. Payback debt
uint256 totalDebt = amount.add(fee);
IERC20(token).transfer(pool, totalDebt);
}
function flashLoan(
ISwapFlashLoan swap,
IERC20 token,
uint256 amount,
bytes memory params
) external {
swap.flashLoan(address(this), token, amount, params);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "./ISwap.sol";
interface ISwapFlashLoan is ISwap {
function flashLoan(
address receiver,
IERC20 token,
uint256 amount,
bytes memory params
) external;
}// SPDX-License-Identifier: MIT
pragma solidity >= 0.4.22 <0.9.0;
library console {
address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67);
function _sendLogPayload(bytes memory payload) private view {
uint256 payloadLength = payload.length;
address consoleAddress = CONSOLE_ADDRESS;
assembly {
let payloadStart := add(payload, 32)
let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0)
}
}
function log() internal view {
_sendLogPayload(abi.encodeWithSignature("log()"));
}
function logInt(int p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(int)", p0));
}
function logUint(uint p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
}
function logString(string memory p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
}
function logBool(bool p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
}
function logAddress(address p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
}
function logBytes(bytes memory p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
}
function logBytes1(bytes1 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
}
function logBytes2(bytes2 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
}
function logBytes3(bytes3 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
}
function logBytes4(bytes4 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
}
function logBytes5(bytes5 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
}
function logBytes6(bytes6 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
}
function logBytes7(bytes7 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
}
function logBytes8(bytes8 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
}
function logBytes9(bytes9 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
}
function logBytes10(bytes10 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
}
function logBytes11(bytes11 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
}
function logBytes12(bytes12 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
}
function logBytes13(bytes13 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
}
function logBytes14(bytes14 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
}
function logBytes15(bytes15 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
}
function logBytes16(bytes16 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
}
function logBytes17(bytes17 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
}
function logBytes18(bytes18 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
}
function logBytes19(bytes19 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
}
function logBytes20(bytes20 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
}
function logBytes21(bytes21 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
}
function logBytes22(bytes22 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
}
function logBytes23(bytes23 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
}
function logBytes24(bytes24 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
}
function logBytes25(bytes25 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
}
function logBytes26(bytes26 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
}
function logBytes27(bytes27 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
}
function logBytes28(bytes28 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
}
function logBytes29(bytes29 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
}
function logBytes30(bytes30 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
}
function logBytes31(bytes31 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
}
function logBytes32(bytes32 p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
}
function log(uint p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
}
function log(string memory p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
}
function log(bool p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
}
function log(address p0) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
}
function log(uint p0, uint p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1));
}
function log(uint p0, string memory p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1));
}
function log(uint p0, bool p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1));
}
function log(uint p0, address p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1));
}
function log(string memory p0, uint p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1));
}
function log(string memory p0, string memory p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
}
function log(string memory p0, bool p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
}
function log(string memory p0, address p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
}
function log(bool p0, uint p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1));
}
function log(bool p0, string memory p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
}
function log(bool p0, bool p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
}
function log(bool p0, address p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
}
function log(address p0, uint p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1));
}
function log(address p0, string memory p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
}
function log(address p0, bool p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
}
function log(address p0, address p1) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
}
function log(uint p0, uint p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2));
}
function log(uint p0, uint p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2));
}
function log(uint p0, uint p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2));
}
function log(uint p0, uint p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2));
}
function log(uint p0, string memory p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2));
}
function log(uint p0, string memory p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2));
}
function log(uint p0, string memory p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2));
}
function log(uint p0, string memory p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2));
}
function log(uint p0, bool p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2));
}
function log(uint p0, bool p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2));
}
function log(uint p0, bool p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2));
}
function log(uint p0, bool p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2));
}
function log(uint p0, address p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2));
}
function log(uint p0, address p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2));
}
function log(uint p0, address p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2));
}
function log(uint p0, address p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2));
}
function log(string memory p0, uint p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2));
}
function log(string memory p0, uint p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2));
}
function log(string memory p0, uint p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2));
}
function log(string memory p0, uint p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2));
}
function log(string memory p0, string memory p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2));
}
function log(string memory p0, string memory p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
}
function log(string memory p0, string memory p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
}
function log(string memory p0, string memory p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
}
function log(string memory p0, bool p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2));
}
function log(string memory p0, bool p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
}
function log(string memory p0, bool p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
}
function log(string memory p0, bool p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
}
function log(string memory p0, address p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2));
}
function log(string memory p0, address p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
}
function log(string memory p0, address p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
}
function log(string memory p0, address p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
}
function log(bool p0, uint p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2));
}
function log(bool p0, uint p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2));
}
function log(bool p0, uint p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2));
}
function log(bool p0, uint p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2));
}
function log(bool p0, string memory p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2));
}
function log(bool p0, string memory p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
}
function log(bool p0, string memory p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
}
function log(bool p0, string memory p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
}
function log(bool p0, bool p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2));
}
function log(bool p0, bool p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
}
function log(bool p0, bool p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
}
function log(bool p0, bool p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
}
function log(bool p0, address p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2));
}
function log(bool p0, address p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
}
function log(bool p0, address p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
}
function log(bool p0, address p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
}
function log(address p0, uint p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2));
}
function log(address p0, uint p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2));
}
function log(address p0, uint p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2));
}
function log(address p0, uint p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2));
}
function log(address p0, string memory p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2));
}
function log(address p0, string memory p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
}
function log(address p0, string memory p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
}
function log(address p0, string memory p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
}
function log(address p0, bool p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2));
}
function log(address p0, bool p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
}
function log(address p0, bool p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
}
function log(address p0, bool p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
}
function log(address p0, address p1, uint p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2));
}
function log(address p0, address p1, string memory p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
}
function log(address p0, address p1, bool p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
}
function log(address p0, address p1, address p2) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
}
function log(uint p0, uint p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3));
}
function log(uint p0, uint p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3));
}
function log(uint p0, string memory p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3));
}
function log(uint p0, bool p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3));
}
function log(uint p0, address p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3));
}
function log(uint p0, address p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3));
}
function log(uint p0, address p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3));
}
function log(uint p0, address p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3));
}
function log(uint p0, address p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3));
}
function log(uint p0, address p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3));
}
function log(uint p0, address p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3));
}
function log(uint p0, address p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3));
}
function log(uint p0, address p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3));
}
function log(uint p0, address p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3));
}
function log(uint p0, address p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3));
}
function log(uint p0, address p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3));
}
function log(uint p0, address p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3));
}
function log(uint p0, address p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3));
}
function log(uint p0, address p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3));
}
function log(uint p0, address p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
}
function log(address p0, uint p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3));
}
function log(address p0, uint p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3));
}
function log(address p0, uint p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3));
}
function log(address p0, uint p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3));
}
function log(address p0, uint p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3));
}
function log(address p0, uint p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3));
}
function log(address p0, uint p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3));
}
function log(address p0, uint p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3));
}
function log(address p0, uint p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3));
}
function log(address p0, uint p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3));
}
function log(address p0, uint p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, uint p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3));
}
function log(address p0, uint p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3));
}
function log(address p0, uint p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3));
}
function log(address p0, uint p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3));
}
function log(address p0, uint p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, uint p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, string memory p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, bool p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, address p3) internal view {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "../../interfaces/ISwap.sol";
import "hardhat/console.sol";
contract TestSwapReturnValues {
using SafeMath for uint256;
ISwap public swap;
IERC20 public lpToken;
uint8 public n;
uint256 public constant MAX_INT = 2**256 - 1;
constructor(
ISwap swapContract,
IERC20 lpTokenContract,
uint8 numOfTokens
) public {
swap = swapContract;
lpToken = lpTokenContract;
n = numOfTokens;
// Pre-approve tokens
for (uint8 i; i < n; i++) {
swap.getToken(i).approve(address(swap), MAX_INT);
}
lpToken.approve(address(swap), MAX_INT);
}
function test_swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) public {
uint256 balanceBefore = swap.getToken(tokenIndexTo).balanceOf(
address(this)
);
uint256 returnValue = swap.swap(
tokenIndexFrom,
tokenIndexTo,
dx,
minDy,
block.timestamp
);
uint256 balanceAfter = swap.getToken(tokenIndexTo).balanceOf(
address(this)
);
console.log(
"swap: Expected %s, got %s",
balanceAfter.sub(balanceBefore),
returnValue
);
require(
returnValue == balanceAfter.sub(balanceBefore),
"swap()'s return value does not match received amount"
);
}
function test_addLiquidity(uint256[] calldata amounts, uint256 minToMint)
public
{
uint256 balanceBefore = lpToken.balanceOf(address(this));
uint256 returnValue = swap.addLiquidity(amounts, minToMint, MAX_INT);
uint256 balanceAfter = lpToken.balanceOf(address(this));
console.log(
"addLiquidity: Expected %s, got %s",
balanceAfter.sub(balanceBefore),
returnValue
);
require(
returnValue == balanceAfter.sub(balanceBefore),
"addLiquidity()'s return value does not match minted amount"
);
}
function test_removeLiquidity(uint256 amount, uint256[] memory minAmounts)
public
{
uint256[] memory balanceBefore = new uint256[](n);
uint256[] memory balanceAfter = new uint256[](n);
for (uint8 i = 0; i < n; i++) {
balanceBefore[i] = swap.getToken(i).balanceOf(address(this));
}
uint256[] memory returnValue = swap.removeLiquidity(
amount,
minAmounts,
MAX_INT
);
for (uint8 i = 0; i < n; i++) {
balanceAfter[i] = swap.getToken(i).balanceOf(address(this));
console.log(
"removeLiquidity: Expected %s, got %s",
balanceAfter[i].sub(balanceBefore[i]),
returnValue[i]
);
require(
balanceAfter[i].sub(balanceBefore[i]) == returnValue[i],
"removeLiquidity()'s return value does not match received amounts of tokens"
);
}
}
function test_removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount
) public {
uint256 balanceBefore = lpToken.balanceOf(address(this));
uint256 returnValue = swap.removeLiquidityImbalance(
amounts,
maxBurnAmount,
MAX_INT
);
uint256 balanceAfter = lpToken.balanceOf(address(this));
console.log(
"removeLiquidityImbalance: Expected %s, got %s",
balanceBefore.sub(balanceAfter),
returnValue
);
require(
returnValue == balanceBefore.sub(balanceAfter),
"removeLiquidityImbalance()'s return value does not match burned lpToken amount"
);
}
function test_removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount
) public {
uint256 balanceBefore = swap.getToken(tokenIndex).balanceOf(
address(this)
);
uint256 returnValue = swap.removeLiquidityOneToken(
tokenAmount,
tokenIndex,
minAmount,
MAX_INT
);
uint256 balanceAfter = swap.getToken(tokenIndex).balanceOf(
address(this)
);
console.log(
"removeLiquidityOneToken: Expected %s, got %s",
balanceAfter.sub(balanceBefore),
returnValue
);
require(
returnValue == balanceAfter.sub(balanceBefore),
"removeLiquidityOneToken()'s return value does not match received token amount"
);
}
}// SPDX-License-Identifier: MIT
// https://etherscan.io/address/0x2b7a5a5923eca5c00c6572cf3e8e08384f563f93#code
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./LPTokenGuarded.sol";
import "../MathUtils.sol";
/**
* @title SwapUtils library
* @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
* @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
* for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
* Admin functions should be protected within contracts using this library.
*/
library SwapUtilsGuarded {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
/*** EVENTS ***/
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
struct Swap {
// variables around the ramp management of A,
// the amplification coefficient * n * (n - 1)
// see https://www.curve.fi/stableswap-paper.pdf for details
uint256 initialA;
uint256 futureA;
uint256 initialATime;
uint256 futureATime;
// fee calculation
uint256 swapFee;
uint256 adminFee;
uint256 defaultWithdrawFee;
LPTokenGuarded lpToken;
// contract references for all tokens being pooled
IERC20[] pooledTokens;
// multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
// for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
// has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
uint256[] tokenPrecisionMultipliers;
// the pool balance of each token, in the token's precision
// the contract's actual token balance might differ
uint256[] balances;
mapping(address => uint256) depositTimestamp;
mapping(address => uint256) withdrawFeeMultiplier;
}
// Struct storing variables used in calculations in the
// calculateWithdrawOneTokenDY function to avoid stack too deep errors
struct CalculateWithdrawOneTokenDYInfo {
uint256 d0;
uint256 d1;
uint256 newY;
uint256 feePerToken;
uint256 preciseA;
}
// Struct storing variables used in calculation in addLiquidity function
// to avoid stack too deep error
struct AddLiquidityInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
}
// Struct storing variables used in calculation in removeLiquidityImbalance function
// to avoid stack too deep error
struct RemoveLiquidityImbalanceInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
}
// the precision all pools tokens will be converted to
uint8 public constant POOL_PRECISION_DECIMALS = 18;
// the denominator used to calculate admin and LP fees. For example, an
// LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
uint256 private constant FEE_DENOMINATOR = 10**10;
// Max swap fee is 1% or 100bps of each swap
uint256 public constant MAX_SWAP_FEE = 10**8;
// Max adminFee is 100% of the swapFee
// adminFee does not add additional fee on top of swapFee
// Instead it takes a certain % of the swapFee. Therefore it has no impact on the
// users but only on the earnings of LPs
uint256 public constant MAX_ADMIN_FEE = 10**10;
// Max withdrawFee is 1% of the value withdrawn
// Fee will be redistributed to the LPs in the pool, rewarding
// long term providers.
uint256 public constant MAX_WITHDRAW_FEE = 10**8;
// Constant value used as max loop limit
uint256 private constant MAX_LOOP_LIMIT = 256;
// Constant values used in ramping A calculations
uint256 public constant A_PRECISION = 100;
uint256 public constant MAX_A = 10**6;
uint256 private constant MAX_A_CHANGE = 2;
uint256 private constant MIN_RAMP_TIME = 14 days;
/*** VIEW & PURE FUNCTIONS ***/
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function getA(Swap storage self) external view returns (uint256) {
return _getA(self);
}
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function _getA(Swap storage self) internal view returns (uint256) {
return _getAPrecise(self).div(A_PRECISION);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function getAPrecise(Swap storage self) external view returns (uint256) {
return _getAPrecise(self);
}
/**
* @notice Calculates and returns A based on the ramp settings
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function _getAPrecise(Swap storage self) internal view returns (uint256) {
uint256 t1 = self.futureATime; // time when ramp is finished
uint256 a1 = self.futureA; // final A value when ramp is finished
if (block.timestamp < t1) {
uint256 t0 = self.initialATime; // time when ramp is started
uint256 a0 = self.initialA; // initial A value when ramp is started
if (a1 > a0) {
// a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
return
a0.add(
a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
} else {
// a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
return
a0.sub(
a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
}
} else {
return a1;
}
}
/**
* @notice Retrieves the timestamp of last deposit made by the given address
* @param self Swap struct to read from
* @return timestamp of last deposit
*/
function getDepositTimestamp(Swap storage self, address user)
external
view
returns (uint256)
{
return self.depositTimestamp[user];
}
/**
* @notice Calculate the dy, the amount of selected token that user receives and
* the fee of withdrawing in one token
* @param account the address that is withdrawing
* @param tokenAmount the amount to withdraw in the pool's precision
* @param tokenIndex which token will be withdrawn
* @param self Swap struct to read from
* @return the amount of token user will receive and the associated swap fee
*/
function calculateWithdrawOneToken(
Swap storage self,
address account,
uint256 tokenAmount,
uint8 tokenIndex
) public view returns (uint256, uint256) {
uint256 dy;
uint256 newY;
(dy, newY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount);
// dy_0 (without fees)
// dy, dy_0 - dy
uint256 dySwapFee = _xp(self)[tokenIndex]
.sub(newY)
.div(self.tokenPrecisionMultipliers[tokenIndex])
.sub(dy);
dy = dy
.mul(
FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
return (dy, dySwapFee);
}
/**
* @notice Calculate the dy of withdrawing in one token
* @param self Swap struct to read from
* @param tokenIndex which token will be withdrawn
* @param tokenAmount the amount to withdraw in the pools precision
* @return the d and the new y after withdrawing one token
*/
function calculateWithdrawOneTokenDY(
Swap storage self,
uint8 tokenIndex,
uint256 tokenAmount
) internal view returns (uint256, uint256) {
require(
tokenIndex < self.pooledTokens.length,
"Token index out of range"
);
// Get the current D, then solve the stableswap invariant
// y_i for D - tokenAmount
uint256[] memory xp = _xp(self);
CalculateWithdrawOneTokenDYInfo
memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
v.preciseA = _getAPrecise(self);
v.d0 = getD(xp, v.preciseA);
v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(self.lpToken.totalSupply()));
require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");
v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);
uint256[] memory xpReduced = new uint256[](xp.length);
v.feePerToken = _feePerToken(self);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
uint256 xpi = xp[i];
// if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
// else dxExpected = xp[i] - (xp[i] * d1 / d0)
// xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
xpReduced[i] = xpi.sub(
(
(i == tokenIndex)
? xpi.mul(v.d1).div(v.d0).sub(v.newY)
: xpi.sub(xpi.mul(v.d1).div(v.d0))
).mul(v.feePerToken).div(FEE_DENOMINATOR)
);
}
uint256 dy = xpReduced[tokenIndex].sub(
getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
);
dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);
return (dy, v.newY);
}
/**
* @notice Calculate the price of a token in the pool with given
* precision-adjusted balances and a particular D.
*
* @dev This is accomplished via solving the invariant iteratively.
* See the StableSwap paper and Curve.fi implementation for further details.
*
* x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
* x_1**2 + b*x_1 = c
* x_1 = (x_1**2 + c) / (2*x_1 + b)
*
* @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
* @param tokenIndex Index of token we are calculating for.
* @param xp a precision-adjusted set of pool balances. Array should be
* the same cardinality as the pool.
* @param d the stableswap invariant
* @return the price of the token, in the same precision as in xp
*/
function getYD(
uint256 a,
uint8 tokenIndex,
uint256[] memory xp,
uint256 d
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(tokenIndex < numTokens, "Token not found");
uint256 c = d;
uint256 s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < numTokens; i++) {
if (i != tokenIndex) {
s = s.add(xp[i]);
c = c.mul(d).div(xp[i].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
}
c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
* @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
* as the pool.
* @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
* See the StableSwap paper for details
* @return the invariant, at the precision of the pool
*/
function getD(uint256[] memory xp, uint256 a)
internal
pure
returns (uint256)
{
uint256 numTokens = xp.length;
uint256 s;
for (uint256 i = 0; i < numTokens; i++) {
s = s.add(xp[i]);
}
if (s == 0) {
return 0;
}
uint256 prevD;
uint256 d = s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
uint256 dP = d;
for (uint256 j = 0; j < numTokens; j++) {
dP = dP.mul(d).div(xp[j].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// dP = dP * D * D * D * ... overflow!
}
prevD = d;
d = nA.mul(s).div(A_PRECISION).add(dP.mul(numTokens)).mul(d).div(
nA.sub(A_PRECISION).mul(d).div(A_PRECISION).add(
numTokens.add(1).mul(dP)
)
);
if (d.within1(prevD)) {
return d;
}
}
// Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
// with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
// function which does not rely on D.
revert("D does not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on self Swap struct
* @param self Swap struct to read from
* @return The invariant, at the precision of the pool
*/
function getD(Swap storage self) internal view returns (uint256) {
return getD(_xp(self), _getAPrecise(self));
}
/**
* @notice Given a set of balances and precision multipliers, return the
* precision-adjusted balances.
*
* @param balances an array of token balances, in their native precisions.
* These should generally correspond with pooled tokens.
*
* @param precisionMultipliers an array of multipliers, corresponding to
* the amounts in the balances array. When multiplied together they
* should yield amounts at the pool's precision.
*
* @return an array of amounts "scaled" to the pool's precision
*/
function _xp(
uint256[] memory balances,
uint256[] memory precisionMultipliers
) internal pure returns (uint256[] memory) {
uint256 numTokens = balances.length;
require(
numTokens == precisionMultipliers.length,
"Balances must match multipliers"
);
uint256[] memory xp = new uint256[](numTokens);
for (uint256 i = 0; i < numTokens; i++) {
xp[i] = balances[i].mul(precisionMultipliers[i]);
}
return xp;
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @param balances array of balances to scale
* @return balances array "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self, uint256[] memory balances)
internal
view
returns (uint256[] memory)
{
return _xp(balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @return the pool balances "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self) internal view returns (uint256[] memory) {
return _xp(self.balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Get the virtual price, to help calculate profit
* @param self Swap struct to read from
* @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
*/
function getVirtualPrice(Swap storage self)
external
view
returns (uint256)
{
uint256 d = getD(_xp(self), _getAPrecise(self));
uint256 supply = self.lpToken.totalSupply();
if (supply > 0) {
return
d.mul(10**uint256(ERC20(self.lpToken).decimals())).div(supply);
}
return 0;
}
/**
* @notice Calculate the new balances of the tokens given the indexes of the token
* that is swapped from (FROM) and the token that is swapped to (TO).
* This function is used as a helper function to calculate how much TO token
* the user should receive on swap.
*
* @param self Swap struct to read from
* @param tokenIndexFrom index of FROM token
* @param tokenIndexTo index of TO token
* @param x the new total amount of FROM token
* @param xp balances of the tokens in the pool
* @return the amount of TO token that should remain in the pool
*/
function getY(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 x,
uint256[] memory xp
) internal view returns (uint256) {
uint256 numTokens = self.pooledTokens.length;
require(
tokenIndexFrom != tokenIndexTo,
"Can't compare token to itself"
);
require(
tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
"Tokens must be in pool"
);
uint256 a = _getAPrecise(self);
uint256 d = getD(xp, a);
uint256 c = d;
uint256 s;
uint256 nA = numTokens.mul(a);
uint256 _x;
for (uint256 i = 0; i < numTokens; i++) {
if (i == tokenIndexFrom) {
_x = x;
} else if (i != tokenIndexTo) {
_x = xp[i];
} else {
continue;
}
s = s.add(_x);
c = c.mul(d).div(_x.mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
// iterative approximation
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Externally calculates a swap between two tokens.
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256 dy) {
(dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx);
}
/**
* @notice Internally calculates a swap between two tokens.
*
* @dev The caller is expected to transfer the actual amounts (dx and dy)
* using the token contracts.
*
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
* @return dyFee the associated fee
*/
function _calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) internal view returns (uint256 dy, uint256 dyFee) {
uint256[] memory xp = _xp(self);
require(
tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
"Token index out of range"
);
uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]).add(
xp[tokenIndexFrom]
);
uint256 y = getY(self, tokenIndexFrom, tokenIndexTo, x, xp);
dy = xp[tokenIndexTo].sub(y).sub(1);
dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
dy = dy.sub(dyFee).div(self.tokenPrecisionMultipliers[tokenIndexTo]);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of
* LP tokens
*
* @param account the address that is removing liquidity. required for withdraw fee calculation
* @param amount the amount of LP tokens that would to be burned on
* withdrawal
* @return array of amounts of tokens user will receive
*/
function calculateRemoveLiquidity(
Swap storage self,
address account,
uint256 amount
) external view returns (uint256[] memory) {
return _calculateRemoveLiquidity(self, account, amount);
}
function _calculateRemoveLiquidity(
Swap storage self,
address account,
uint256 amount
) internal view returns (uint256[] memory) {
uint256 totalSupply = self.lpToken.totalSupply();
require(amount <= totalSupply, "Cannot exceed total supply");
uint256 feeAdjustedAmount = amount
.mul(
FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
uint256[] memory amounts = new uint256[](self.pooledTokens.length);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
amounts[i] = self.balances[i].mul(feeAdjustedAmount).div(
totalSupply
);
}
return amounts;
}
/**
* @notice Calculate the fee that is applied when the given user withdraws.
* Withdraw fee decays linearly over 4 weeks.
* @param user address you want to calculate withdraw fee of
* @return current withdraw fee of the user
*/
function calculateCurrentWithdrawFee(Swap storage self, address user)
public
view
returns (uint256)
{
uint256 endTime = self.depositTimestamp[user].add(4 weeks);
if (endTime > block.timestamp) {
uint256 timeLeftover = endTime.sub(block.timestamp);
return
self
.defaultWithdrawFee
.mul(self.withdrawFeeMultiplier[user])
.mul(timeLeftover)
.div(4 weeks)
.div(FEE_DENOMINATOR);
}
return 0;
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param self Swap struct to read from
* @param account address of the account depositing or withdrawing tokens
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return if deposit was true, total amount of lp token that will be minted and if
* deposit was false, total amount of lp token that will be burned
*/
function calculateTokenAmount(
Swap storage self,
address account,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
uint256 numTokens = self.pooledTokens.length;
uint256 a = _getAPrecise(self);
uint256 d0 = getD(_xp(self, self.balances), a);
uint256[] memory balances1 = self.balances;
for (uint256 i = 0; i < numTokens; i++) {
if (deposit) {
balances1[i] = balances1[i].add(amounts[i]);
} else {
balances1[i] = balances1[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
}
uint256 d1 = getD(_xp(self, balances1), a);
uint256 totalSupply = self.lpToken.totalSupply();
if (deposit) {
return d1.sub(d0).mul(totalSupply).div(d0);
} else {
return
d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div(
FEE_DENOMINATOR.sub(
calculateCurrentWithdrawFee(self, account)
)
);
}
}
/**
* @notice return accumulated amount of admin fees of the token with given index
* @param self Swap struct to read from
* @param index Index of the pooled token
* @return admin balance in the token's precision
*/
function getAdminBalance(Swap storage self, uint256 index)
external
view
returns (uint256)
{
require(index < self.pooledTokens.length, "Token index out of range");
return
self.pooledTokens[index].balanceOf(address(this)).sub(
self.balances[index]
);
}
/**
* @notice internal helper function to calculate fee per token multiplier used in
* swap fee calculations
* @param self Swap struct to read from
*/
function _feePerToken(Swap storage self) internal view returns (uint256) {
return
self.swapFee.mul(self.pooledTokens.length).div(
self.pooledTokens.length.sub(1).mul(4)
);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice swap two tokens in the pool
* @param self Swap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
require(
dx <= self.pooledTokens[tokenIndexFrom].balanceOf(msg.sender),
"Cannot swap more than you own"
);
// Transfer tokens first to see if a fee was charged on transfer
uint256 beforeBalance = self.pooledTokens[tokenIndexFrom].balanceOf(
address(this)
);
self.pooledTokens[tokenIndexFrom].safeTransferFrom(
msg.sender,
address(this),
dx
);
// Use the actual transferred amount for AMM math
uint256 transferredDx = self
.pooledTokens[tokenIndexFrom]
.balanceOf(address(this))
.sub(beforeBalance);
(uint256 dy, uint256 dyFee) = _calculateSwap(
self,
tokenIndexFrom,
tokenIndexTo,
transferredDx
);
require(dy >= minDy, "Swap didn't result in min tokens");
uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
self.tokenPrecisionMultipliers[tokenIndexTo]
);
self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
transferredDx
);
self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
dyAdminFee
);
self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);
emit TokenSwap(
msg.sender,
transferredDx,
dy,
tokenIndexFrom,
tokenIndexTo
);
return dy;
}
/**
* @notice Add liquidity to the pool
* @param self Swap struct to read from and write to
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param merkleProof bytes32 array that will be used to prove the existence of the caller's address in the list of
* allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
* @return amount of LP token user received
*/
function addLiquidity(
Swap storage self,
uint256[] memory amounts,
uint256 minToMint,
bytes32[] calldata merkleProof
) external returns (uint256) {
require(
amounts.length == self.pooledTokens.length,
"Amounts must match pooled tokens"
);
uint256[] memory fees = new uint256[](self.pooledTokens.length);
// current state
AddLiquidityInfo memory v = AddLiquidityInfo(0, 0, 0, 0);
if (self.lpToken.totalSupply() != 0) {
v.d0 = getD(self);
}
uint256[] memory newBalances = self.balances;
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
require(
self.lpToken.totalSupply() != 0 || amounts[i] > 0,
"Must supply all tokens in pool"
);
// Transfer tokens first to see if a fee was charged on transfer
if (amounts[i] != 0) {
uint256 beforeBalance = self.pooledTokens[i].balanceOf(
address(this)
);
self.pooledTokens[i].safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
// Update the amounts[] with actual transfer amount
amounts[i] = self.pooledTokens[i].balanceOf(address(this)).sub(
beforeBalance
);
}
newBalances[i] = self.balances[i].add(amounts[i]);
}
// invariant after change
v.preciseA = _getAPrecise(self);
v.d1 = getD(_xp(self, newBalances), v.preciseA);
require(v.d1 > v.d0, "D should increase");
// updated to reflect fees and calculate the user's LP tokens
v.d2 = v.d1;
if (self.lpToken.totalSupply() != 0) {
uint256 feePerToken = _feePerToken(self);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
fees[i] = feePerToken
.mul(idealBalance.difference(newBalances[i]))
.div(FEE_DENOMINATOR);
self.balances[i] = newBalances[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
newBalances[i] = newBalances[i].sub(fees[i]);
}
v.d2 = getD(_xp(self, newBalances), v.preciseA);
} else {
// the initial depositor doesn't pay fees
self.balances = newBalances;
}
uint256 toMint;
if (self.lpToken.totalSupply() == 0) {
toMint = v.d1;
} else {
toMint = v.d2.sub(v.d0).mul(self.lpToken.totalSupply()).div(v.d0);
}
require(toMint >= minToMint, "Couldn't mint min requested");
// mint the user's LP tokens
self.lpToken.mint(msg.sender, toMint, merkleProof);
emit AddLiquidity(
msg.sender,
amounts,
fees,
v.d1,
self.lpToken.totalSupply()
);
return toMint;
}
/**
* @notice Update the withdraw fee for `user`. If the user is currently
* not providing liquidity in the pool, sets to default value. If not, recalculate
* the starting withdraw fee based on the last deposit's time & amount relative
* to the new deposit.
*
* @param self Swap struct to read from and write to
* @param user address of the user depositing tokens
* @param toMint amount of pool tokens to be minted
*/
function updateUserWithdrawFee(
Swap storage self,
address user,
uint256 toMint
) external {
_updateUserWithdrawFee(self, user, toMint);
}
function _updateUserWithdrawFee(
Swap storage self,
address user,
uint256 toMint
) internal {
// If token is transferred to address 0 (or burned), don't update the fee.
if (user == address(0)) {
return;
}
if (self.defaultWithdrawFee == 0) {
// If current fee is set to 0%, set multiplier to FEE_DENOMINATOR
self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR;
} else {
// Otherwise, calculate appropriate discount based on last deposit amount
uint256 currentFee = calculateCurrentWithdrawFee(self, user);
uint256 currentBalance = self.lpToken.balanceOf(user);
// ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR /
// ((toMint + currentBalance) * defaultWithdrawFee)
self.withdrawFeeMultiplier[user] = currentBalance
.mul(currentFee)
.add(toMint.mul(self.defaultWithdrawFee))
.mul(FEE_DENOMINATOR)
.div(toMint.add(currentBalance).mul(self.defaultWithdrawFee));
}
self.depositTimestamp[user] = block.timestamp;
}
/**
* @notice Burn LP tokens to remove liquidity from the pool.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param self Swap struct to read from and write to
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @return amounts of tokens the user received
*/
function removeLiquidity(
Swap storage self,
uint256 amount,
uint256[] calldata minAmounts
) external returns (uint256[] memory) {
require(amount <= self.lpToken.balanceOf(msg.sender), ">LP.balanceOf");
require(
minAmounts.length == self.pooledTokens.length,
"minAmounts must match poolTokens"
);
uint256[] memory amounts = _calculateRemoveLiquidity(
self,
msg.sender,
amount
);
for (uint256 i = 0; i < amounts.length; i++) {
require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
self.balances[i] = self.balances[i].sub(amounts[i]);
self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
self.lpToken.burnFrom(msg.sender, amount);
emit RemoveLiquidity(msg.sender, amounts, self.lpToken.totalSupply());
return amounts;
}
/**
* @notice Remove liquidity from the pool all in one token.
* @param self Swap struct to read from and write to
* @param tokenAmount the amount of the lp tokens to burn
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @return amount chosen token that user received
*/
function removeLiquidityOneToken(
Swap storage self,
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount
) external returns (uint256) {
uint256 totalSupply = self.lpToken.totalSupply();
uint256 numTokens = self.pooledTokens.length;
require(
tokenAmount <= self.lpToken.balanceOf(msg.sender),
">LP.balanceOf"
);
require(tokenIndex < numTokens, "Token not found");
uint256 dyFee;
uint256 dy;
(dy, dyFee) = calculateWithdrawOneToken(
self,
msg.sender,
tokenAmount,
tokenIndex
);
require(dy >= minAmount, "dy < minAmount");
self.balances[tokenIndex] = self.balances[tokenIndex].sub(
dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
);
self.lpToken.burnFrom(msg.sender, tokenAmount);
self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);
emit RemoveLiquidityOne(
msg.sender,
tokenAmount,
totalSupply,
tokenIndex,
dy
);
return dy;
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances.
*
* @param self Swap struct to read from and write to
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @return actual amount of LP tokens burned in the withdrawal
*/
function removeLiquidityImbalance(
Swap storage self,
uint256[] memory amounts,
uint256 maxBurnAmount
) public returns (uint256) {
require(
amounts.length == self.pooledTokens.length,
"Amounts should match pool tokens"
);
require(
maxBurnAmount <= self.lpToken.balanceOf(msg.sender) &&
maxBurnAmount != 0,
">LP.balanceOf"
);
RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo(
0,
0,
0,
0
);
uint256 tokenSupply = self.lpToken.totalSupply();
uint256 feePerToken = _feePerToken(self);
uint256[] memory balances1 = self.balances;
v.preciseA = _getAPrecise(self);
v.d0 = getD(_xp(self), v.preciseA);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
balances1[i] = balances1[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
v.d1 = getD(_xp(self, balances1), v.preciseA);
uint256[] memory fees = new uint256[](self.pooledTokens.length);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
uint256 difference = idealBalance.difference(balances1[i]);
fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
self.balances[i] = balances1[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
balances1[i] = balances1[i].sub(fees[i]);
}
v.d2 = getD(_xp(self, balances1), v.preciseA);
uint256 tokenAmount = v.d0.sub(v.d2).mul(tokenSupply).div(v.d0);
require(tokenAmount != 0, "Burnt amount cannot be zero");
tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div(
FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, msg.sender))
);
require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");
self.lpToken.burnFrom(msg.sender, tokenAmount);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
}
emit RemoveLiquidityImbalance(
msg.sender,
amounts,
fees,
v.d1,
tokenSupply.sub(tokenAmount)
);
return tokenAmount;
}
/**
* @notice withdraw all admin fees to a given address
* @param self Swap struct to withdraw fees from
* @param to Address to send the fees to
*/
function withdrawAdminFees(Swap storage self, address to) external {
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
IERC20 token = self.pooledTokens[i];
uint256 balance = token.balanceOf(address(this)).sub(
self.balances[i]
);
if (balance != 0) {
token.safeTransfer(to, balance);
}
}
}
/**
* @notice Sets the admin fee
* @dev adminFee cannot be higher than 100% of the swap fee
* @param self Swap struct to update
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(Swap storage self, uint256 newAdminFee) external {
require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
self.adminFee = newAdminFee;
emit NewAdminFee(newAdminFee);
}
/**
* @notice update the swap fee
* @dev fee cannot be higher than 1% of each swap
* @param self Swap struct to update
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(Swap storage self, uint256 newSwapFee) external {
require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
self.swapFee = newSwapFee;
emit NewSwapFee(newSwapFee);
}
/**
* @notice update the default withdraw fee. This also affects deposits made in the past as well.
* @param self Swap struct to update
* @param newWithdrawFee new withdraw fee to be applied
*/
function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee)
external
{
require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high");
self.defaultWithdrawFee = newWithdrawFee;
emit NewWithdrawFee(newWithdrawFee);
}
/**
* @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param self Swap struct to update
* @param futureA_ the new A to ramp towards
* @param futureTime_ timestamp when the new A should be reached
*/
function rampA(
Swap storage self,
uint256 futureA_,
uint256 futureTime_
) external {
require(
block.timestamp >= self.initialATime.add(1 days),
"Wait 1 day before starting ramp"
);
require(
futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
"Insufficient ramp time"
);
require(
futureA_ > 0 && futureA_ < MAX_A,
"futureA_ must be > 0 and < MAX_A"
);
uint256 initialAPrecise = _getAPrecise(self);
uint256 futureAPrecise = futureA_.mul(A_PRECISION);
if (futureAPrecise < initialAPrecise) {
require(
futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
"futureA_ is too small"
);
} else {
require(
futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
"futureA_ is too large"
);
}
self.initialA = initialAPrecise;
self.futureA = futureAPrecise;
self.initialATime = block.timestamp;
self.futureATime = futureTime_;
emit RampA(
initialAPrecise,
futureAPrecise,
block.timestamp,
futureTime_
);
}
/**
* @notice Stops ramping A immediately. Once this function is called, rampA()
* cannot be called for another 24 hours
* @param self Swap struct to update
*/
function stopRampA(Swap storage self) external {
require(self.futureATime > block.timestamp, "Ramp is already stopped");
uint256 currentA = _getAPrecise(self);
self.initialA = currentA;
self.futureA = currentA;
self.initialATime = block.timestamp;
self.futureATime = block.timestamp;
emit StopRampA(currentA, block.timestamp);
}
}// SPDX-License-Identifier: MIT
// https://etherscan.io/address/0xC28DF698475dEC994BE00C9C9D8658A548e6304F#code
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "../interfaces/ISwapGuarded.sol";
/**
* @title Liquidity Provider Token
* @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
* It is used to represent user's shares when providing liquidity to swap contracts.
*/
contract LPTokenGuarded is ERC20Burnable, Ownable {
using SafeMath for uint256;
// Address of the swap contract that owns this LP token. When a user adds liquidity to the swap contract,
// they receive a proportionate amount of this LPToken.
ISwapGuarded public swap;
// Maps user account to total number of LPToken minted by them. Used to limit minting during guarded release phase
mapping(address => uint256) public mintedAmounts;
/**
* @notice Deploys LPToken contract with given name, symbol, and decimals
* @dev the caller of this constructor will become the owner of this contract
* @param name_ name of this token
* @param symbol_ symbol of this token
* @param decimals_ number of decimals this token will be based on
*/
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_
) public ERC20(name_, symbol_) {
_setupDecimals(decimals_);
swap = ISwapGuarded(_msgSender());
}
/**
* @notice Mints the given amount of LPToken to the recipient. During the guarded release phase, the total supply
* and the maximum number of the tokens that a single account can mint are limited.
* @dev only owner can call this mint function
* @param recipient address of account to receive the tokens
* @param amount amount of tokens to mint
* @param merkleProof the bytes32 array data that is used to prove recipient's address exists in the merkle tree
* stored in the allowlist contract. If the pool is not guarded, this parameter is ignored.
*/
function mint(
address recipient,
uint256 amount,
bytes32[] calldata merkleProof
) external onlyOwner {
require(amount != 0, "amount == 0");
// If the pool is in the guarded launch phase, the following checks are done to restrict deposits.
// 1. Check if the given merkleProof corresponds to the recipient's address in the merkle tree stored in the
// allowlist contract. If the account has been already verified, merkleProof is ignored.
// 2. Limit the total number of this LPToken minted to recipient as defined by the allowlist contract.
// 3. Limit the total supply of this LPToken as defined by the allowlist contract.
if (swap.isGuarded()) {
IAllowlist allowlist = swap.getAllowlist();
require(
allowlist.verifyAddress(recipient, merkleProof),
"Invalid merkle proof"
);
uint256 totalMinted = mintedAmounts[recipient].add(amount);
require(
totalMinted <= allowlist.getPoolAccountLimit(address(swap)),
"account deposit limit"
);
require(
totalSupply().add(amount) <=
allowlist.getPoolCap(address(swap)),
"pool total supply limit"
);
mintedAmounts[recipient] = totalMinted;
}
_mint(recipient, amount);
}
/**
* @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
* minting and burning. This ensures that swap.updateUserWithdrawFees are called everytime.
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal override(ERC20) {
super._beforeTokenTransfer(from, to, amount);
swap.updateUserWithdrawFee(to, amount);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/Context.sol";
import "./ERC20.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
using SafeMath for uint256;
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
_approve(account, _msgSender(), decreasedAllowance);
_burn(account, amount);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";
interface ISwapGuarded {
// pool data view functions
function getA() external view returns (uint256);
function getAllowlist() external view returns (IAllowlist);
function getToken(uint8 index) external view returns (IERC20);
function getTokenIndex(address tokenAddress) external view returns (uint8);
function getTokenBalance(uint8 index) external view returns (uint256);
function getVirtualPrice() external view returns (uint256);
function isGuarded() external view returns (bool);
// min return calculation functions
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256);
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
returns (uint256);
function calculateRemoveLiquidity(uint256 amount)
external
view
returns (uint256[] memory);
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 availableTokenAmount);
// state modifying functions
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
) external returns (uint256);
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline,
bytes32[] calldata merkleProof
) external returns (uint256);
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external returns (uint256[] memory);
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
) external returns (uint256);
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
) external returns (uint256);
// withdraw fee update function
function updateUserWithdrawFee(address recipient, uint256 transferAmount)
external;
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/cryptography/MerkleProof.sol";
import "../interfaces/IAllowlist.sol";
/**
* @title Allowlist
* @notice This contract is a registry holding information about how much each swap contract should
* contain upto. Swap.sol will rely on this contract to determine whether the pool cap is reached and
* also whether a user's deposit limit is reached.
*/
contract Allowlist is Ownable, IAllowlist {
using SafeMath for uint256;
// Represents the root node of merkle tree containing a list of eligible addresses
bytes32 public merkleRoot;
// Maps pool address -> maximum total supply
mapping(address => uint256) private poolCaps;
// Maps pool address -> maximum amount of pool token mintable per account
mapping(address => uint256) private accountLimits;
// Maps account address -> boolean value indicating whether it has been checked and verified against the merkle tree
mapping(address => bool) private verified;
event PoolCap(address indexed poolAddress, uint256 poolCap);
event PoolAccountLimit(address indexed poolAddress, uint256 accountLimit);
event NewMerkleRoot(bytes32 merkleRoot);
/**
* @notice Creates this contract and sets the PoolCap of 0x0 with uint256(0x54dd1e) for
* crude checking whether an address holds this contract.
* @param merkleRoot_ bytes32 that represent a merkle root node. This is generated off chain with the list of
* qualifying addresses.
*/
constructor(bytes32 merkleRoot_) public {
merkleRoot = merkleRoot_;
// This value will be used as a way of crude checking whether an address holds this Allowlist contract
// Value 0x54dd1e has no inherent meaning other than it is arbitrary value that checks for
// user error.
poolCaps[address(0x0)] = uint256(0x54dd1e);
emit PoolCap(address(0x0), uint256(0x54dd1e));
emit NewMerkleRoot(merkleRoot_);
}
/**
* @notice Returns the max mintable amount of the lp token per account in given pool address.
* @param poolAddress address of the pool
* @return max mintable amount of the lp token per account
*/
function getPoolAccountLimit(address poolAddress)
external
view
override
returns (uint256)
{
return accountLimits[poolAddress];
}
/**
* @notice Returns the maximum total supply of the pool token for the given pool address.
* @param poolAddress address of the pool
*/
function getPoolCap(address poolAddress)
external
view
override
returns (uint256)
{
return poolCaps[poolAddress];
}
/**
* @notice Returns true if the given account's existence has been verified against any of the past or
* the present merkle tree. Note that if it has been verified in the past, this function will return true
* even if the current merkle tree does not contain the account.
* @param account the address to check if it has been verified
* @return a boolean value representing whether the account has been verified in the past or the present merkle tree
*/
function isAccountVerified(address account) external view returns (bool) {
return verified[account];
}
/**
* @notice Checks the existence of keccak256(account) as a node in the merkle tree inferred by the merkle root node
* stored in this contract. Pools should use this function to check if the given address qualifies for depositing.
* If the given account has already been verified with the correct merkleProof, this function will return true when
* merkleProof is empty. The verified status will be overwritten if the previously verified user calls this function
* with an incorrect merkleProof.
* @param account address to confirm its existence in the merkle tree
* @param merkleProof data that is used to prove the existence of given parameters. This is generated
* during the creation of the merkle tree. Users should retrieve this data off-chain.
* @return a boolean value that corresponds to whether the address with the proof has been verified in the past
* or if they exist in the current merkle tree.
*/
function verifyAddress(address account, bytes32[] calldata merkleProof)
external
override
returns (bool)
{
if (merkleProof.length != 0) {
// Verify the account exists in the merkle tree via the MerkleProof library
bytes32 node = keccak256(abi.encodePacked(account));
if (MerkleProof.verify(merkleProof, merkleRoot, node)) {
verified[account] = true;
return true;
}
}
return verified[account];
}
// ADMIN FUNCTIONS
/**
* @notice Sets the account limit of allowed deposit amounts for the given pool
* @param poolAddress address of the pool
* @param accountLimit the max number of the pool token a single user can mint
*/
function setPoolAccountLimit(address poolAddress, uint256 accountLimit)
external
onlyOwner
{
require(poolAddress != address(0x0), "0x0 is not a pool address");
accountLimits[poolAddress] = accountLimit;
emit PoolAccountLimit(poolAddress, accountLimit);
}
/**
* @notice Sets the max total supply of LPToken for the given pool address
* @param poolAddress address of the pool
* @param poolCap the max total supply of the pool token
*/
function setPoolCap(address poolAddress, uint256 poolCap)
external
onlyOwner
{
require(poolAddress != address(0x0), "0x0 is not a pool address");
poolCaps[poolAddress] = poolCap;
emit PoolCap(poolAddress, poolCap);
}
/**
* @notice Updates the merkle root that is stored in this contract. This can only be called by
* the owner. If more addresses are added to the list, a new merkle tree and a merkle root node should be generated,
* and merkleRoot should be updated accordingly.
* @param merkleRoot_ a new merkle root node that contains a list of deposit allowed addresses
*/
function updateMerkleRoot(bytes32 merkleRoot_) external onlyOwner {
merkleRoot = merkleRoot_;
emit NewMerkleRoot(merkleRoot_);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev These functions deal with verification of Merkle trees (hash trees),
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
bytes32 proofElement = proof[i];
if (computedHash <= proofElement) {
// Hash(current computed hash + current element of the proof)
computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
} else {
// Hash(current element of the proof + current computed hash)
computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
}
}
// Check if the computed hash (root) is equal to the provided root
return computedHash == root;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./OwnerPausable.sol";
import "./SwapUtilsGuarded.sol";
import "../MathUtils.sol";
import "./Allowlist.sol";
/**
* @title Swap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract SwapGuarded is OwnerPausable, ReentrancyGuard {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
using SwapUtilsGuarded for SwapUtilsGuarded.Swap;
// Struct storing data responsible for automatic market maker functionalities. In order to
// access this data, this contract uses SwapUtils library. For more details, see SwapUtilsGuarded.sol
SwapUtilsGuarded.Swap public swapStorage;
// Address to allowlist contract that holds information about maximum totaly supply of lp tokens
// and maximum mintable amount per user address. As this is immutable, this will become a constant
// after initialization.
IAllowlist private immutable allowlist;
// Boolean value that notates whether this pool is guarded or not. When isGuarded is true,
// addLiquidity function will be restricted by limits defined in allowlist contract.
bool private guarded = true;
// Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
// getTokenIndex function also relies on this mapping to retrieve token index.
mapping(address => uint8) private tokenIndexes;
/*** EVENTS ***/
// events replicated from SwapUtils to make the ABI easier for dumb
// clients
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
/**
* @notice Deploys this Swap contract with given parameters as default
* values. This will also deploy a LPToken that represents users
* LP position. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint new tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
* @param _withdrawFee default withdrawFee to be initialized with
* @param _allowlist address of allowlist contract for guarded launch
*/
constructor(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
uint256 _withdrawFee,
IAllowlist _allowlist
) public OwnerPausable() ReentrancyGuard() {
// Check _pooledTokens and precisions parameter
require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
require(
_pooledTokens.length == decimals.length,
"_pooledTokens decimals mismatch"
);
uint256[] memory precisionMultipliers = new uint256[](decimals.length);
for (uint8 i = 0; i < _pooledTokens.length; i++) {
if (i > 0) {
// Check if index is already used. Check if 0th element is a duplicate.
require(
tokenIndexes[address(_pooledTokens[i])] == 0 &&
_pooledTokens[0] != _pooledTokens[i],
"Duplicate tokens"
);
}
require(
address(_pooledTokens[i]) != address(0),
"The 0 address isn't an ERC-20"
);
require(
decimals[i] <= SwapUtilsGuarded.POOL_PRECISION_DECIMALS,
"Token decimals exceeds max"
);
precisionMultipliers[i] =
10 **
uint256(SwapUtilsGuarded.POOL_PRECISION_DECIMALS).sub(
uint256(decimals[i])
);
tokenIndexes[address(_pooledTokens[i])] = i;
}
// Check _a, _fee, _adminFee, _withdrawFee, _allowlist parameters
require(_a < SwapUtilsGuarded.MAX_A, "_a exceeds maximum");
require(_fee < SwapUtilsGuarded.MAX_SWAP_FEE, "_fee exceeds maximum");
require(
_adminFee < SwapUtilsGuarded.MAX_ADMIN_FEE,
"_adminFee exceeds maximum"
);
require(
_withdrawFee < SwapUtilsGuarded.MAX_WITHDRAW_FEE,
"_withdrawFee exceeds maximum"
);
require(
_allowlist.getPoolCap(address(0x0)) == uint256(0x54dd1e),
"Allowlist check failed"
);
// Initialize swapStorage struct
swapStorage.lpToken = new LPTokenGuarded(
lpTokenName,
lpTokenSymbol,
SwapUtilsGuarded.POOL_PRECISION_DECIMALS
);
swapStorage.pooledTokens = _pooledTokens;
swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
swapStorage.balances = new uint256[](_pooledTokens.length);
swapStorage.initialA = _a.mul(SwapUtilsGuarded.A_PRECISION);
swapStorage.futureA = _a.mul(SwapUtilsGuarded.A_PRECISION);
swapStorage.initialATime = 0;
swapStorage.futureATime = 0;
swapStorage.swapFee = _fee;
swapStorage.adminFee = _adminFee;
swapStorage.defaultWithdrawFee = _withdrawFee;
// Initialize variables related to guarding the initial deposits
allowlist = _allowlist;
guarded = true;
}
/*** MODIFIERS ***/
/**
* @notice Modifier to check deadline against current timestamp
* @param deadline latest timestamp to accept this transaction
*/
modifier deadlineCheck(uint256 deadline) {
require(block.timestamp <= deadline, "Deadline not met");
_;
}
/*** VIEW FUNCTIONS ***/
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @return A parameter
*/
function getA() external view returns (uint256) {
return swapStorage.getA();
}
/**
* @notice Return A in its raw precision form
* @dev See the StableSwap paper for details
* @return A parameter in its raw precision form
*/
function getAPrecise() external view returns (uint256) {
return swapStorage.getAPrecise();
}
/**
* @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
* @param index the index of the token
* @return address of the token at given index
*/
function getToken(uint8 index) public view returns (IERC20) {
require(index < swapStorage.pooledTokens.length, "Out of range");
return swapStorage.pooledTokens[index];
}
/**
* @notice Return the index of the given token address. Reverts if no matching
* token is found.
* @param tokenAddress address of the token
* @return the index of the given token address
*/
function getTokenIndex(address tokenAddress) external view returns (uint8) {
uint8 index = tokenIndexes[tokenAddress];
require(
address(getToken(index)) == tokenAddress,
"Token does not exist"
);
return index;
}
/**
* @notice Reads and returns the address of the allowlist that is set during deployment of this contract
* @return the address of the allowlist contract casted to the IAllowlist interface
*/
function getAllowlist() external view returns (IAllowlist) {
return allowlist;
}
/**
* @notice Return timestamp of last deposit of given address
* @return timestamp of the last deposit made by the given address
*/
function getDepositTimestamp(address user) external view returns (uint256) {
return swapStorage.getDepositTimestamp(user);
}
/**
* @notice Return current balance of the pooled token at given index
* @param index the index of the token
* @return current balance of the pooled token at given index with token's native precision
*/
function getTokenBalance(uint8 index) external view returns (uint256) {
require(index < swapStorage.pooledTokens.length, "Index out of range");
return swapStorage.balances[index];
}
/**
* @notice Get the virtual price, to help calculate profit
* @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
*/
function getVirtualPrice() external view returns (uint256) {
return swapStorage.getVirtualPrice();
}
/**
* @notice Calculate amount of tokens you receive on swap
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256) {
return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param account address that is depositing or withdrawing tokens
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return token amount the user will receive
*/
function calculateTokenAmount(
address account,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
return swapStorage.calculateTokenAmount(account, amounts, deposit);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of LP tokens
* @param account the address that is withdrawing tokens
* @param amount the amount of LP tokens that would be burned on withdrawal
* @return array of token balances that the user will receive
*/
function calculateRemoveLiquidity(address account, uint256 amount)
external
view
returns (uint256[] memory)
{
return swapStorage.calculateRemoveLiquidity(account, amount);
}
/**
* @notice Calculate the amount of underlying token available to withdraw
* when withdrawing via only single token
* @param account the address that is withdrawing tokens
* @param tokenAmount the amount of LP token to burn
* @param tokenIndex index of which token will be withdrawn
* @return availableTokenAmount calculated amount of underlying token
* available to withdraw
*/
function calculateRemoveLiquidityOneToken(
address account,
uint256 tokenAmount,
uint8 tokenIndex
) external view returns (uint256 availableTokenAmount) {
(availableTokenAmount, ) = swapStorage.calculateWithdrawOneToken(
account,
tokenAmount,
tokenIndex
);
}
/**
* @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee
* decays linearly over period of 4 weeks. For example, depositing and withdrawing right away
* will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you
* no additional fees.
* @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals
* @param user address you want to calculate withdraw fee of
* @return current withdraw fee of the user
*/
function calculateCurrentWithdrawFee(address user)
external
view
returns (uint256)
{
return swapStorage.calculateCurrentWithdrawFee(user);
}
/**
* @notice This function reads the accumulated amount of admin fees of the token with given index
* @param index Index of the pooled token
* @return admin's token balance in the token's precision
*/
function getAdminBalance(uint256 index) external view returns (uint256) {
return swapStorage.getAdminBalance(index);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice Swap two tokens using this pool
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
)
external
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
}
/**
* @notice Add liquidity to the pool with given amounts during guarded launch phase. Only users
* with valid address and proof can successfully call this function. When this function is called
* after the guarded release phase is over, the merkleProof is ignored.
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @param merkleProof data generated when constructing the allowlist merkle tree. Users can
* get this data off chain. Even if the address is in the allowlist, users must include
* a valid proof for this call to succeed. If the pool is no longer in the guarded release phase,
* this parameter is ignored.
* @return amount of LP token user minted and received
*/
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline,
bytes32[] calldata merkleProof
)
external
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.addLiquidity(amounts, minToMint, merkleProof);
}
/**
* @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @dev Liquidity can always be removed, even when the pool is paused.
* @param amount the amount of LP tokens to burn
* @param minAmounts the minimum amounts of each token in the pool
* acceptable for this burn. Useful as a front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amounts of tokens user received
*/
function removeLiquidity(
uint256 amount,
uint256[] calldata minAmounts,
uint256 deadline
) external nonReentrant deadlineCheck(deadline) returns (uint256[] memory) {
return swapStorage.removeLiquidity(amount, minAmounts);
}
/**
* @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param tokenAmount the amount of the token you want to receive
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @param deadline latest timestamp to accept this transaction
* @return amount of chosen token user received
*/
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
)
external
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
swapStorage.removeLiquidityOneToken(
tokenAmount,
tokenIndex,
minAmount
);
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @param deadline latest timestamp to accept this transaction
* @return amount of LP tokens burned
*/
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
)
external
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
}
/*** ADMIN FUNCTIONS ***/
/**
* @notice Updates the user withdraw fee. This function can only be called by
* the pool token. Should be used to update the withdraw fee on transfer of pool tokens.
* Transferring your pool token will reset the 4 weeks period. If the recipient is already
* holding some pool tokens, the withdraw fee will be discounted in respective amounts.
* @param recipient address of the recipient of pool token
* @param transferAmount amount of pool token to transfer
*/
function updateUserWithdrawFee(address recipient, uint256 transferAmount)
external
{
require(
msg.sender == address(swapStorage.lpToken),
"Only callable by pool token"
);
swapStorage.updateUserWithdrawFee(recipient, transferAmount);
}
/**
* @notice Withdraw all admin fees to the contract owner
*/
function withdrawAdminFees() external onlyOwner {
swapStorage.withdrawAdminFees(owner());
}
/**
* @notice Update the admin fee. Admin fee takes portion of the swap fee.
* @param newAdminFee new admin fee to be applied on future transactions
*/
function setAdminFee(uint256 newAdminFee) external onlyOwner {
swapStorage.setAdminFee(newAdminFee);
}
/**
* @notice Update the swap fee to be applied on swaps
* @param newSwapFee new swap fee to be applied on future transactions
*/
function setSwapFee(uint256 newSwapFee) external onlyOwner {
swapStorage.setSwapFee(newSwapFee);
}
/**
* @notice Update the withdraw fee. This fee decays linearly over 4 weeks since
* user's last deposit.
* @param newWithdrawFee new withdraw fee to be applied on future deposits
*/
function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner {
swapStorage.setDefaultWithdrawFee(newWithdrawFee);
}
/**
* @notice Start ramping up or down A parameter towards given futureA and futureTime
* Checks if the change is too rapid, and commits the new A value only when it falls under
* the limit range.
* @param futureA the new A to ramp towards
* @param futureTime timestamp when the new A should be reached
*/
function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
swapStorage.rampA(futureA, futureTime);
}
/**
* @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
*/
function stopRampA() external onlyOwner {
swapStorage.stopRampA();
}
/**
* @notice Disables the guarded launch phase, removing any limits on deposit amounts and addresses
*/
function disableGuard() external onlyOwner {
guarded = false;
}
/**
* @notice Reads and returns current guarded status of the pool
* @return guarded_ boolean value indicating whether the deposits should be guarded
*/
function isGuarded() external view returns (bool) {
return guarded;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
/**
* @title OwnerPausable
* @notice An ownable contract allows the owner to pause and unpause the
* contract without a delay.
* @dev Only methods using the provided modifiers will be paused.
*/
contract OwnerPausable is Ownable, Pausable {
/**
* @notice Pause the contract. Revert if already paused.
*/
function pause() external onlyOwner {
Pausable._pause();
}
/**
* @notice Unpause the contract. Revert if already unpaused.
*/
function unpause() external onlyOwner {
Pausable._unpause();
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
/**
* @title Generic ERC20 token
* @notice This contract simulates a generic ERC20 token that is mintable and burnable.
*/
contract GenericERC20 is ERC20, Ownable {
/**
* @notice Deploy this contract with given name, symbol, and decimals
* @dev the caller of this constructor will become the owner of this contract
* @param name_ name of this token
* @param symbol_ symbol of this token
* @param decimals_ number of decimals this token will be based on
*/
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_
) public ERC20(name_, symbol_) {
_setupDecimals(decimals_);
}
/**
* @notice Mints given amount of tokens to recipient
* @dev only owner can call this mint function
* @param recipient address of account to receive the tokens
* @param amount amount of tokens to mint
*/
function mint(address recipient, uint256 amount) external onlyOwner {
require(amount != 0, "amount == 0");
_mint(recipient, amount);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "../Swap.sol";
import "./MetaSwapUtils.sol";
/**
* @title MetaSwap - A StableSwap implementation in solidity.
* @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
* and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
* in desired ratios for an exchange of the pool token that represents their share of the pool.
* Users can burn pool tokens and withdraw their share of token(s).
*
* Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
* distributed to the LPs.
*
* In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
* stops the ratio of the tokens in the pool from changing.
* Users can always withdraw their tokens via multi-asset withdraws.
*
* MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens.
* As an example, if there is a Swap pool consisting of [DAI, USDC, USDT], then a MetaSwap pool can be created
* with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD.
* Note that when interacting with MetaSwap, users cannot deposit or withdraw via underlying tokens. In that case,
* `MetaSwapDeposit.sol` can be additionally deployed to allow interacting with unwrapped representations of the tokens.
*
* @dev Most of the logic is stored as a library `MetaSwapUtils` for the sake of reducing contract's
* deployment size.
*/
contract MetaSwap is Swap {
using MetaSwapUtils for SwapUtils.Swap;
MetaSwapUtils.MetaSwap public metaSwapStorage;
uint256 constant MAX_UINT256 = 2**256 - 1;
/*** EVENTS ***/
// events replicated from SwapUtils to make the ABI easier for dumb
// clients
event TokenSwapUnderlying(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
/**
* @notice Get the virtual price, to help calculate profit
* @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
*/
function getVirtualPrice()
external
view
virtual
override
returns (uint256)
{
return MetaSwapUtils.getVirtualPrice(swapStorage, metaSwapStorage);
}
/**
* @notice Calculate amount of tokens you receive on swap
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view virtual override returns (uint256) {
return
MetaSwapUtils.calculateSwap(
swapStorage,
metaSwapStorage,
tokenIndexFrom,
tokenIndexTo,
dx
);
}
/**
* @notice Calculate amount of tokens you receive on swap. For this function,
* the token indices are flattened out so that underlying tokens are represented.
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell. If the token charges
* a fee on transfers, use the amount that gets transferred after the fee.
* @return amount of tokens the user will receive
*/
function calculateSwapUnderlying(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view virtual returns (uint256) {
return
MetaSwapUtils.calculateSwapUnderlying(
swapStorage,
metaSwapStorage,
tokenIndexFrom,
tokenIndexTo,
dx
);
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return token amount the user will receive
*/
function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
external
view
virtual
override
returns (uint256)
{
return
MetaSwapUtils.calculateTokenAmount(
swapStorage,
metaSwapStorage,
amounts,
deposit
);
}
/**
* @notice Calculate the amount of underlying token available to withdraw
* when withdrawing via only single token
* @param tokenAmount the amount of LP token to burn
* @param tokenIndex index of which token will be withdrawn
* @return availableTokenAmount calculated amount of underlying token
* available to withdraw
*/
function calculateRemoveLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex
) external view virtual override returns (uint256) {
return
MetaSwapUtils.calculateWithdrawOneToken(
swapStorage,
metaSwapStorage,
tokenAmount,
tokenIndex
);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice This overrides Swap's initialize function to prevent initializing
* without the address of the base Swap contract.
*
* @param _pooledTokens an array of ERC20s this pool will accept
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
*/
function initialize(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress
) public virtual override initializer {
revert("use initializeMetaSwap() instead");
}
/**
* @notice Initializes this MetaSwap contract with the given parameters.
* MetaSwap uses an existing Swap pool to expand the available liquidity.
* _pooledTokens array should contain the base Swap pool's LP token as
* the last element. For example, if there is a Swap pool consisting of
* [DAI, USDC, USDT]. Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken]
* as _pooledTokens.
*
* This will also deploy the LPToken that represents users'
* LP position. The owner of LPToken will be this contract - which means
* only this contract is allowed to mint new tokens.
*
* @param _pooledTokens an array of ERC20s this pool will accept. The last
* element must be an existing Swap pool's LP token's address.
* @param decimals the decimals to use for each pooled token,
* eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
* @param lpTokenName the long-form name of the token to be deployed
* @param lpTokenSymbol the short symbol for the token to be deployed
* @param _a the amplification coefficient * n * (n - 1). See the
* StableSwap paper for details
* @param _fee default swap fee to be initialized with
* @param _adminFee default adminFee to be initialized with
*/
function initializeMetaSwap(
IERC20[] memory _pooledTokens,
uint8[] memory decimals,
string memory lpTokenName,
string memory lpTokenSymbol,
uint256 _a,
uint256 _fee,
uint256 _adminFee,
address lpTokenTargetAddress,
ISwap baseSwap
) external virtual initializer {
Swap.initialize(
_pooledTokens,
decimals,
lpTokenName,
lpTokenSymbol,
_a,
_fee,
_adminFee,
lpTokenTargetAddress
);
// MetaSwap initializer
metaSwapStorage.baseSwap = baseSwap;
metaSwapStorage.baseVirtualPrice = baseSwap.getVirtualPrice();
metaSwapStorage.baseCacheLastUpdated = block.timestamp;
// Read all tokens that belong to baseSwap
{
uint8 i;
for (; i < 32; i++) {
try baseSwap.getToken(i) returns (IERC20 token) {
metaSwapStorage.baseTokens.push(token);
token.safeApprove(address(baseSwap), MAX_UINT256);
} catch {
break;
}
}
require(i > 1, "baseSwap must pool at least 2 tokens");
}
// Check the last element of _pooledTokens is owned by baseSwap
IERC20 baseLPToken = _pooledTokens[_pooledTokens.length - 1];
require(
LPToken(address(baseLPToken)).owner() == address(baseSwap),
"baseLPToken is not owned by baseSwap"
);
// Pre-approve the baseLPToken to be used by baseSwap
baseLPToken.safeApprove(address(baseSwap), MAX_UINT256);
}
/**
* @notice Swap two tokens using this pool
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swap(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
)
external
virtual
override
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
MetaSwapUtils.swap(
swapStorage,
metaSwapStorage,
tokenIndexFrom,
tokenIndexTo,
dx,
minDy
);
}
/**
* @notice Swap two tokens using this pool and the base pool.
* @param tokenIndexFrom the token the user wants to swap from
* @param tokenIndexTo the token the user wants to swap to
* @param dx the amount of tokens the user wants to swap from
* @param minDy the min amount the user would like to receive, or revert.
* @param deadline latest timestamp to accept this transaction
*/
function swapUnderlying(
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy,
uint256 deadline
)
external
virtual
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
MetaSwapUtils.swapUnderlying(
swapStorage,
metaSwapStorage,
tokenIndexFrom,
tokenIndexTo,
dx,
minDy
);
}
/**
* @notice Add liquidity to the pool with the given amounts of tokens
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @param deadline latest timestamp to accept this transaction
* @return amount of LP token user minted and received
*/
function addLiquidity(
uint256[] calldata amounts,
uint256 minToMint,
uint256 deadline
)
external
virtual
override
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
MetaSwapUtils.addLiquidity(
swapStorage,
metaSwapStorage,
amounts,
minToMint
);
}
/**
* @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param tokenAmount the amount of the token you want to receive
* @param tokenIndex the index of the token you want to receive
* @param minAmount the minimum amount to withdraw, otherwise revert
* @param deadline latest timestamp to accept this transaction
* @return amount of chosen token user received
*/
function removeLiquidityOneToken(
uint256 tokenAmount,
uint8 tokenIndex,
uint256 minAmount,
uint256 deadline
)
external
virtual
override
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
MetaSwapUtils.removeLiquidityOneToken(
swapStorage,
metaSwapStorage,
tokenAmount,
tokenIndex,
minAmount
);
}
/**
* @notice Remove liquidity from the pool, weighted differently than the
* pool's current balances. Withdraw fee that decays linearly
* over period of 4 weeks since last deposit will apply.
* @param amounts how much of each token to withdraw
* @param maxBurnAmount the max LP token provider is willing to pay to
* remove liquidity. Useful as a front-running mitigation.
* @param deadline latest timestamp to accept this transaction
* @return amount of LP tokens burned
*/
function removeLiquidityImbalance(
uint256[] calldata amounts,
uint256 maxBurnAmount,
uint256 deadline
)
external
virtual
override
nonReentrant
whenNotPaused
deadlineCheck(deadline)
returns (uint256)
{
return
MetaSwapUtils.removeLiquidityImbalance(
swapStorage,
metaSwapStorage,
amounts,
maxBurnAmount
);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "../../MathUtils.sol";
contract TestMathUtils {
using MathUtils for uint256;
function difference(uint256 a, uint256 b) public pure returns (uint256) {
return a.difference(b);
}
function within1(uint256 a, uint256 b) public pure returns (bool) {
return a.within1(b);
}
}{
"optimizer": {
"enabled": true,
"runs": 10000
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"abi"
]
}
},
"metadata": {
"useLiteralContent": true
}
}Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"}],"name":"initialize","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Net Worth in USD
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.