Contract Overview
Balance:
0 ETH
ETH Value:
$0.00
My Name Tag:
Not Available
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
OptionRegistry
Compiler Version
v0.8.9+commit.e5eed63a
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.8.9; import { LiquidityPool } from "./LiquidityPool.sol"; import "./tokens/ERC20.sol"; import "./libraries/AccessControl.sol"; import { Types } from "./libraries/Types.sol"; import { CustomErrors } from "./libraries/CustomErrors.sol"; import { OptionsCompute } from "./libraries/OptionsCompute.sol"; import { SafeTransferLib } from "./libraries/SafeTransferLib.sol"; import { OpynInteractions } from "./libraries/OpynInteractions.sol"; import "./interfaces/IOracle.sol"; import "./interfaces/IMarginCalculator.sol"; import "./interfaces/AddressBookInterface.sol"; import { IController, GammaTypes } from "./interfaces/GammaInterface.sol"; /** * @title Contract used for conducting options issuance and settlement as well as collateral management * @dev Interacts with the opyn-rysk gamma protocol via OpynInteractions for options activity. Interacts with * the liquidity pool for collateral and instructions. */ contract OptionRegistry is AccessControl { /////////////////////////// /// immutable variables /// /////////////////////////// // address of the opyn oTokenFactory for oToken minting address internal immutable oTokenFactory; // address of the gammaController for oToken operations address public immutable gammaController; // address of the collateralAsset address public immutable collateralAsset; // address of the opyn addressBook for accessing important opyn modules AddressBookInterface public immutable addressBook; // address of the marginPool, contract for storing options collateral address internal immutable marginPool; ///////////////////////// /// dynamic variables /// ///////////////////////// // information of a series mapping(address => Types.OptionSeries) public seriesInfo; // vaultId that is responsible for a specific series address mapping(address => uint256) public vaultIds; // issuance hash mapped against the series address mapping(bytes32 => address) seriesAddress; // vault counter uint64 public vaultCount; ///////////////////////////////////// /// governance settable variables /// ///////////////////////////////////// // address of the rysk liquidity pools address public liquidityPool; // max health threshold for calls uint64 public callUpperHealthFactor = 13_000; // min health threshold for calls uint64 public callLowerHealthFactor = 11_000; // max health threshold for puts uint64 public putUpperHealthFactor = 12_000; // min health threshold for puts uint64 public putLowerHealthFactor = 11_000; // keeper addresses for this contract mapping(address => bool) public keeper; ////////////////////////// /// constant variables /// ////////////////////////// // BIPS uint256 private constant MAX_BPS = 10_000; // used to convert e18 to e8 uint256 private constant SCALE_FROM = 10**10; // oToken decimals uint8 private constant OPYN_DECIMALS = 8; ///////////////////////////////////// /// events && errors && modifiers /// ///////////////////////////////////// event OptionTokenCreated(address token); event SeriesRedeemed(address series, uint256 underlyingAmount, uint256 strikeAmount); event OptionsContractOpened(address indexed series, uint256 vaultId, uint256 optionsAmount); event OptionsContractClosed(address indexed series, uint256 vaultId, uint256 closedAmount); event OptionsContractSettled( address indexed series, uint256 collateralReturned, uint256 collateralLost, uint256 amountLost ); event VaultLiquidationRegistered( address indexed series, uint256 vaultId, uint256 amountLiquidated, uint256 collateralLiquidated ); error NoVault(); error NotKeeper(); error NotExpired(); error HealthyVault(); error AlreadyExpired(); error NotLiquidityPool(); error NonExistentSeries(); error InvalidCollateral(); error VaultNotLiquidated(); error InsufficientBalance(); constructor( address _collateralAsset, address _oTokenFactory, address _gammaController, address _marginPool, address _liquidityPool, address _addressBook, address _authority ) AccessControl(IAuthority(_authority)) { collateralAsset = _collateralAsset; if (ERC20(_collateralAsset).decimals() > 18) { revert CustomErrors.InvalidDecimals(); } oTokenFactory = _oTokenFactory; gammaController = _gammaController; marginPool = _marginPool; liquidityPool = _liquidityPool; addressBook = AddressBookInterface(_addressBook); } /////////////// /// setters /// /////////////// /** * @notice Set the liquidity pool address * @param _newLiquidityPool set the liquidityPool address */ function setLiquidityPool(address _newLiquidityPool) external { _onlyGovernor(); liquidityPool = _newLiquidityPool; } /** * @notice Set or revoke a keeper * @param _target address to become a keeper * @param _auth accept or revoke */ function setKeeper(address _target, bool _auth) external { _onlyGovernor(); keeper[_target] = _auth; } /** * @notice Set the health thresholds of the pool * @param _putLower the lower health threshold for puts * @param _putUpper the upper health threshold for puts * @param _callLower the lower health threshold for calls * @param _callUpper the upper health threshold for calls */ function setHealthThresholds( uint64 _putLower, uint64 _putUpper, uint64 _callLower, uint64 _callUpper ) external { _onlyGovernor(); putLowerHealthFactor = _putLower; putUpperHealthFactor = _putUpper; callLowerHealthFactor = _callLower; callUpperHealthFactor = _callUpper; } ////////////////////////////////////////////////////// /// access-controlled state changing functionality /// ////////////////////////////////////////////////////// /** * @notice Either retrieves the option token if it already exists, or deploy it * @param optionSeries the series used for the mint - strike passed in as e18 * @return the address of the option */ function issue(Types.OptionSeries memory optionSeries) external returns (address) { _isLiquidityPool(); // deploy an oToken contract address if (optionSeries.expiration <= block.timestamp) { revert AlreadyExpired(); } // assumes strike is passed in e18, converts to e8 uint128 formattedStrike = uint128( formatStrikePrice(optionSeries.strike, optionSeries.collateral) ); // create option storage hash bytes32 issuanceHash = getIssuanceHash( optionSeries.underlying, optionSeries.strikeAsset, optionSeries.collateral, optionSeries.expiration, optionSeries.isPut, formattedStrike ); // check for an opyn oToken if it doesn't exist deploy it address series = OpynInteractions.getOrDeployOtoken( oTokenFactory, optionSeries.collateral, optionSeries.underlying, optionSeries.strikeAsset, formattedStrike, optionSeries.expiration, optionSeries.isPut ); // store the option data as a hash seriesInfo[series] = Types.OptionSeries( optionSeries.expiration, formattedStrike, optionSeries.isPut, optionSeries.underlying, optionSeries.strikeAsset, optionSeries.collateral ); seriesAddress[issuanceHash] = series; emit OptionTokenCreated(series); return series; } /** * @notice Open an options contract using collateral from the liquidity pool * @param _series the address of the option token to be created * @param amount the amount of options to deploy - assume in e18 * @param collateralAmount the collateral required for the option - assumes in collateral decimals * @dev only callable by the liquidityPool * @return if the transaction succeeded * @return the amount of collateral taken from the liquidityPool */ function open( address _series, uint256 amount, uint256 collateralAmount ) external returns (bool, uint256) { _isLiquidityPool(); // make sure the options are ok to open Types.OptionSeries memory series = seriesInfo[_series]; // assumes strike in e8 if (series.expiration <= block.timestamp) { revert AlreadyExpired(); } // transfer collateral to this contract, collateral will depend on the option type SafeTransferLib.safeTransferFrom(series.collateral, msg.sender, address(this), collateralAmount); // mint the option token following the opyn interface IController controller = IController(gammaController); // check if a vault for this option already exists uint256 vaultId_ = vaultIds[_series]; if (vaultId_ == 0) { vaultId_ = (controller.getAccountVaultCounter(address(this))) + 1; vaultCount++; } uint256 mintAmount = OpynInteractions.createShort( gammaController, marginPool, _series, collateralAmount, vaultId_, amount, 1 ); emit OptionsContractOpened(_series, vaultId_, mintAmount); // transfer the option to the liquidity pool SafeTransferLib.safeTransfer(ERC20(_series), msg.sender, mintAmount); vaultIds[_series] = vaultId_; // returns in collateral decimals return (true, collateralAmount); } /** * @notice Close an options contract (oToken) before it has expired * @param _series the address of the option token to be burnt * @param amount the amount of options to burn - assumes in e18 * @dev only callable by the liquidityPool * @return if the transaction succeeded */ function close(address _series, uint256 amount) external returns (bool, uint256) { _isLiquidityPool(); // withdraw and burn Types.OptionSeries memory series = seriesInfo[_series]; // assumes strike in e8 // make sure the option hasnt expired yet if (series.expiration == 0) { revert NonExistentSeries(); } if (series.expiration <= block.timestamp) { revert AlreadyExpired(); } // get the vault id uint256 vaultId = vaultIds[_series]; if (vaultId == 0) { revert NoVault(); } uint256 convertedAmount = OptionsCompute.convertToDecimals(amount, ERC20(_series).decimals()); // transfer the oToken back to this account SafeTransferLib.safeTransferFrom(_series, msg.sender, address(this), convertedAmount); // burn the oToken tracking the amount of collateral returned uint256 collatReturned = OpynInteractions.burnShort( gammaController, _series, convertedAmount, vaultId ); SafeTransferLib.safeTransfer(ERC20(series.collateral), msg.sender, collatReturned); emit OptionsContractClosed(_series, vaultId, convertedAmount); // returns in collateral decimals return (true, collatReturned); } /** * @notice Settle an options vault * @param _series the address of the option token to be burnt * @return if the transaction succeeded * @return the amount of collateral returned from the vault * @return the amount of collateral used to pay ITM options on vault settle * @return number of oTokens that the vault was short * @dev callable by the liquidityPool so that local variables can also be updated */ function settle(address _series) external returns ( bool, uint256, uint256, uint256 ) { _isLiquidityPool(); Types.OptionSeries memory series = seriesInfo[_series]; // strike will be in e8 if (series.expiration == 0) { revert NonExistentSeries(); } // check that the option has expired if (series.expiration >= block.timestamp) { revert NotExpired(); } // get the vault uint256 vaultId = vaultIds[_series]; // settle the vault (uint256 collatReturned, uint256 collatLost, uint256 amountShort) = OpynInteractions.settle( gammaController, vaultId ); // transfer the collateral back to the liquidity pool SafeTransferLib.safeTransfer(ERC20(series.collateral), liquidityPool, collatReturned); emit OptionsContractSettled(_series, collatReturned, collatLost, amountShort); // assumes in collateral decimals, collateral decimals, e8 return (true, collatReturned, collatLost, amountShort); } /** * @notice adjust the collateral held in a specific vault because of health * @param vaultId the id of the vault to check */ function adjustCollateral(uint256 vaultId) external { _isKeeper(); ( bool isBelowMin, bool isAboveMax, , , uint256 collateralAmount, address _collateralAsset ) = checkVaultHealth(vaultId); if (collateralAsset != _collateralAsset) { revert InvalidCollateral(); } if (!isBelowMin && !isAboveMax) { revert HealthyVault(); } if (isBelowMin) { LiquidityPool(liquidityPool).adjustCollateral(collateralAmount, false); if (LiquidityPool(liquidityPool).getBalance(collateralAsset) < collateralAmount) { revert CustomErrors.WithdrawExceedsLiquidity(); } // transfer the needed collateral to this contract from the liquidityPool SafeTransferLib.safeTransferFrom( _collateralAsset, liquidityPool, address(this), collateralAmount ); // increase the collateral in the vault (make sure balance change is recorded in the LiquidityPool) OpynInteractions.depositCollat( gammaController, marginPool, _collateralAsset, collateralAmount, vaultId ); } else if (isAboveMax) { LiquidityPool(liquidityPool).adjustCollateral(collateralAmount, true); // decrease the collateral in the vault (make sure balance change is recorded in the LiquidityPool) OpynInteractions.withdrawCollat(gammaController, _collateralAsset, collateralAmount, vaultId); // transfer the excess collateral to the liquidityPool from this address SafeTransferLib.safeTransfer(ERC20(_collateralAsset), liquidityPool, collateralAmount); } } /** * @notice adjust the collateral held in a specific vault because of health, using collateral from the caller. Only takes * from msg.sender, doesnt give them if vault is above the max. * @param vaultId the id of the vault to check * @dev this is a safety function, if worst comes to worse any caller can collateralise a vault to save it. */ function adjustCollateralCaller(uint256 vaultId) external { _onlyGuardian(); (bool isBelowMin, , , , uint256 collateralAmount, address _collateralAsset) = checkVaultHealth( vaultId ); if (collateralAsset != _collateralAsset) { revert InvalidCollateral(); } if (!isBelowMin) { revert HealthyVault(); } // transfer the needed collateral to this contract from the msg.sender SafeTransferLib.safeTransferFrom(_collateralAsset, msg.sender, address(this), collateralAmount); // increase the collateral in the vault OpynInteractions.depositCollat( gammaController, marginPool, _collateralAsset, collateralAmount, vaultId ); } /** * @notice withdraw collateral from a fully liquidated vault * @param vaultId the id of the vault to check * @dev this is a safety function, if a vault is liquidated. */ function wCollatLiquidatedVault(uint256 vaultId) external { _isKeeper(); // get the vault details from the vaultId GammaTypes.Vault memory vault = IController(gammaController).getVault(address(this), vaultId); require(vault.shortAmounts[0] == 0, "Vault has short positions [amount]"); require(vault.shortOtokens[0] == address(0), "Vault has short positions [token]"); require(vault.collateralAmounts[0] > 0, "Vault has no collateral"); // decrease the collateral in the vault (make sure balance change is recorded in the LiquidityPool) OpynInteractions.withdrawCollat( gammaController, vault.collateralAssets[0], vault.collateralAmounts[0], vaultId ); // adjust the collateral in the liquidityPool LiquidityPool(liquidityPool).adjustCollateral(vault.collateralAmounts[0], true); // transfer the excess collateral to the liquidityPool from this address SafeTransferLib.safeTransfer( ERC20(vault.collateralAssets[0]), liquidityPool, vault.collateralAmounts[0] ); } /** * @notice register a liquidated vault so the collateral allocated is managed * @param vaultId the id of the vault to register liquidation for * @dev this is a safety function, if a vault is liquidated to update the collateral assets in the pool */ function registerLiquidatedVault(uint256 vaultId) external { _isKeeper(); // get the vault liquidation details from the vaultId (address series, uint256 amount, uint256 collateralLiquidated) = IController(gammaController) .getVaultLiquidationDetails(address(this), vaultId); if (series == address(0)) { revert VaultNotLiquidated(); } emit VaultLiquidationRegistered(series, vaultId, amount, collateralLiquidated); // adjust the collateral in the liquidity pool to reflect the loss LiquidityPool(liquidityPool).adjustCollateral(collateralLiquidated, true); // clear the liquidation record from gamma controller so as not to double count the liquidation IController(gammaController).clearVaultLiquidationDetails(vaultId); } ///////////////////////////////////////////// /// external state changing functionality /// ///////////////////////////////////////////// /** * @notice Redeem oTokens for the locked collateral * @param _series the address of the option token to be burnt and redeemed * @return amount returned */ function redeem(address _series) external returns (uint256) { Types.OptionSeries memory series = seriesInfo[_series]; // strike will be in e8 if (series.expiration == 0) { revert NonExistentSeries(); } // check that the option has expired if (series.expiration >= block.timestamp) { revert NotExpired(); } uint256 seriesBalance = ERC20(_series).balanceOf(msg.sender); if (seriesBalance == 0) { revert InsufficientBalance(); } // transfer the oToken back to this account SafeTransferLib.safeTransferFrom(_series, msg.sender, address(this), seriesBalance); // redeem uint256 collatReturned = OpynInteractions.redeem( gammaController, marginPool, _series, seriesBalance ); // assumes in collateral decimals return collatReturned; } /////////////////////// /// complex getters /// /////////////////////// /** * @notice Send collateral funds for an option to be minted * @dev series.strike should be scaled by 1e8. * @param series details of the option series * @param amount amount of options to mint always in e18 * @return amount transferred */ function getCollateral(Types.OptionSeries memory series, uint256 amount) external view returns (uint256) { IMarginCalculator marginCalc = IMarginCalculator(addressBook.getMarginCalculator()); uint256 collateralAmount = marginCalc.getNakedMarginRequired( series.underlying, series.strikeAsset, series.collateral, amount / SCALE_FROM, // assumes that amount is always in e18 series.strike, // assumes in e8 IOracle(addressBook.getOracle()).getPrice(series.underlying), series.expiration, ERC20(series.collateral).decimals(), series.isPut ); // based on this collateral requirement and the health factor get the amount to deposit uint256 upperHealthFactor = series.isPut ? putUpperHealthFactor : callUpperHealthFactor; collateralAmount = ((collateralAmount * upperHealthFactor) / MAX_BPS); // assumes in collateral decimals return collateralAmount; } /** * @notice Retrieves the option token if it exists * @param underlying is the address of the underlying asset of the option * @param strikeAsset is the address of the collateral asset of the option * @param expiration is the expiry timestamp of the option * @param isPut the type of option * @param strike is the strike price of the option - 1e18 format * @param collateral is the address of the asset to collateralize the option with * @return the address of the option */ function getOtoken( address underlying, address strikeAsset, uint256 expiration, bool isPut, uint256 strike, address collateral ) external view returns (address) { // check for an opyn oToken address series = OpynInteractions.getOtoken( oTokenFactory, collateral, underlying, strikeAsset, formatStrikePrice(strike, collateral), expiration, isPut ); return series; } /** * @notice check the health of a specific vault to see if it requires collateral * @param vaultId the id of the vault to check * @return isBelowMin bool to determine whether the vault needs topping up * @return isAboveMax bool to determine whether the vault is too overcollateralised * @return healthFactor the health factor of the vault in MAX_BPS format * @return upperHealthFactor the upper bound of the acceptable health facor range in MAX_BPS format * @return collatRequired the amount of collateral required to return the vault back to normal * @return collatAsset the address of the collateral asset */ function checkVaultHealth(uint256 vaultId) public view returns ( bool isBelowMin, bool isAboveMax, uint256 healthFactor, uint256 upperHealthFactor, uint256 collatRequired, address collatAsset ) { // run checks on the vault health // get the vault details from the vaultId GammaTypes.Vault memory vault = IController(gammaController).getVault(address(this), vaultId); // get the series Types.OptionSeries memory series = seriesInfo[vault.shortOtokens[0]]; if (series.expiration < block.timestamp) { revert CustomErrors.VaultExpired(); } // get the MarginRequired IMarginCalculator marginCalc = IMarginCalculator(addressBook.getMarginCalculator()); uint256 marginReq = marginCalc.getNakedMarginRequired( series.underlying, series.strikeAsset, series.collateral, vault.shortAmounts[0], // assumes in e8 series.strike, // assumes in e8 IOracle(addressBook.getOracle()).getPrice(series.underlying), series.expiration, ERC20(series.collateral).decimals(), series.isPut ); // get the amount held in the vault uint256 collatAmount = vault.collateralAmounts[0]; // divide the amount held in the vault by the margin requirements to get the health factor healthFactor = (collatAmount * MAX_BPS) / marginReq; // set the upper and lower health factor depending on if the series is a put or a call upperHealthFactor = series.isPut ? putUpperHealthFactor : callUpperHealthFactor; uint256 lowerHealthFactor = series.isPut ? putLowerHealthFactor : callLowerHealthFactor; // if the vault health is above a certain threshold then the vault is above safe margins and collateral can be withdrawn if (healthFactor > upperHealthFactor) { isAboveMax = true; // calculate the margin to remove from the vault collatRequired = collatAmount - ((marginReq * upperHealthFactor) / MAX_BPS); } else if (healthFactor < lowerHealthFactor) { isBelowMin = true; // calculate the margin to add to the vault collatRequired = ((marginReq * upperHealthFactor) / MAX_BPS) - collatAmount; } collatAsset = series.collateral; } /////////////////////////// /// non-complex getters /// /////////////////////////// function getSeriesAddress(bytes32 issuanceHash) external view returns (address) { return seriesAddress[issuanceHash]; } function getSeries(Types.OptionSeries memory _series) external view returns (address) { return seriesAddress[ getIssuanceHash( _series.underlying, _series.strikeAsset, _series.collateral, _series.expiration, _series.isPut, _series.strike ) ]; } function getSeriesInfo(address series) external view returns (Types.OptionSeries memory) { return seriesInfo[series]; } function getIssuanceHash(Types.OptionSeries memory _series) public pure returns (bytes32) { return getIssuanceHash( _series.underlying, _series.strikeAsset, _series.collateral, _series.expiration, _series.isPut, _series.strike ); } /** * Helper function for computing the hash of a given issuance. */ function getIssuanceHash( address underlying, address strikeAsset, address collateral, uint256 expiration, bool isPut, uint256 strike ) internal pure returns (bytes32) { return keccak256(abi.encodePacked(underlying, strikeAsset, collateral, expiration, isPut, strike)); } ////////////////////////// /// internal utilities /// ////////////////////////// /** * @notice Converts strike price to 1e8 format and floors least significant digits if needed * @param strikePrice strikePrice in 1e18 format * @param collateral address of collateral asset * @return if the transaction succeeded */ function formatStrikePrice(uint256 strikePrice, address collateral) public view returns (uint256) { // convert strike to 1e8 format uint256 price = strikePrice / (10**10); uint256 collateralDecimals = ERC20(collateral).decimals(); if (collateralDecimals >= OPYN_DECIMALS) return price; uint256 difference = OPYN_DECIMALS - collateralDecimals; // round floor strike to prevent errors in Gamma protocol return (price / (10**difference)) * (10**difference); } function _isLiquidityPool() internal view { if (msg.sender != liquidityPool) { revert NotLiquidityPool(); } } /// @dev keepers, managers or governors can access function _isKeeper() internal view { if ( !keeper[msg.sender] && msg.sender != authority.governor() && msg.sender != authority.manager() ) { revert NotKeeper(); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./Protocol.sol"; import "./PriceFeed.sol"; import "./VolatilityFeed.sol"; import "./tokens/ERC20.sol"; import "./utils/ReentrancyGuard.sol"; import "./libraries/BlackScholes.sol"; import "./libraries/CustomErrors.sol"; import "./libraries/AccessControl.sol"; import "./libraries/OptionsCompute.sol"; import "./libraries/SafeTransferLib.sol"; import "./interfaces/IAccounting.sol"; import "./interfaces/IOptionRegistry.sol"; import "./interfaces/IHedgingReactor.sol"; import "./interfaces/IPortfolioValuesFeed.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; /** * @title Contract used as the Dynamic Hedging Vault for storing funds, issuing shares and processing options transactions * @dev Interacts with the OptionRegistry for options behaviour, Interacts with hedging reactors for alternative derivatives * Interacts with Handlers for periphary user options interactions. Interacts with Chainlink price feeds throughout. * Interacts with Volatility Feed via getImpliedVolatility(), interacts with a chainlink PortfolioValues external adaptor * oracle via PortfolioValuesFeed. */ contract LiquidityPool is ERC20, AccessControl, ReentrancyGuard, Pausable { using PRBMathSD59x18 for int256; using PRBMathUD60x18 for uint256; /////////////////////////// /// immutable variables /// /////////////////////////// // Protocol management contract Protocol public immutable protocol; // asset that denominates the strike price address public immutable strikeAsset; // asset that is used as the reference asset address public immutable underlyingAsset; // asset that is used for collateral asset address public immutable collateralAsset; ///////////////////////// /// dynamic variables /// ///////////////////////// // amount of collateralAsset allocated as collateral uint256 public collateralAllocated; // ephemeral liabilities of the pool int256 public ephemeralLiabilities; // ephemeral delta of the pool int256 public ephemeralDelta; // epoch of the price per share round for deposits uint256 public depositEpoch; // epoch of the price per share round for withdrawals uint256 public withdrawalEpoch; // epoch PPS for deposits mapping(uint256 => uint256) public depositEpochPricePerShare; // epoch PPS for withdrawals mapping(uint256 => uint256) public withdrawalEpochPricePerShare; // deposit receipts for users mapping(address => IAccounting.DepositReceipt) public depositReceipts; // withdrawal receipts for users mapping(address => IAccounting.WithdrawalReceipt) public withdrawalReceipts; // pending deposits for a round - collateral denominated (collateral decimals) uint256 public pendingDeposits; // pending withdrawals for a round - DHV token e18 denominated uint256 public pendingWithdrawals; // withdrawal amount that has been executed and is pending completion. These funds are to be excluded from all book balances. uint256 public partitionedFunds; ///////////////////////////////////// /// governance settable variables /// ///////////////////////////////////// // buffer of funds to not be used to write new options in case of margin requirements (as percentage - for 20% enter 2000) uint256 public bufferPercentage = 5000; // list of addresses for hedging reactors address[] public hedgingReactors; // max total supply of collateral, denominated in e18 uint256 public collateralCap = type(uint256).max; // Maximum discount that an option tilting factor can discount an option price uint256 public maxDiscount = (PRBMathUD60x18.SCALE * 10) / 100; // As a percentage. Init at 10% // The spread between the bid and ask on the IV skew; // Consider making this it's own volatility skew if more flexibility is needed uint256 public bidAskIVSpread; // option issuance parameters Types.OptionParams public optionParams; // riskFreeRate as a percentage PRBMath Float. IE: 3% -> 0.03 * 10**18 uint256 public riskFreeRate; // handlers who are approved to interact with options functionality mapping(address => bool) public handler; // is the purchase and sale of options paused bool public isTradingPaused; // max time to allow between oracle updates for an underlying and strike uint256 public maxTimeDeviationThreshold = 600; // max price difference to allow between oracle updates for an underlying and strike uint256 public maxPriceDeviationThreshold = 1e18; // variables relating to the utilization skew function: // the gradient of the function where utiization is below function threshold. e18 uint256 public belowThresholdGradient = 0; // 0 // the gradient of the line above the utilization threshold. e18 uint256 public aboveThresholdGradient = 1e18; // 1 // the y-intercept of the line above the threshold. Needed to make the two lines meet at the threshold. Will always be negative but enter the absolute value uint256 public aboveThresholdYIntercept = 6e17; //-0.6 // the percentage utilization above which the function moves from its shallow line to its steep line. e18 uint256 public utilizationFunctionThreshold = 6e17; // 60% // keeper mapping mapping(address => bool) public keeper; ////////////////////////// /// constant variables /// ////////////////////////// // BIPS uint256 private constant MAX_BPS = 10_000; ///////////////////////// /// structs && events /// ///////////////////////// event DepositEpochExecuted(uint256 epoch); event WithdrawalEpochExecuted(uint256 epoch); event Withdraw(address recipient, uint256 amount, uint256 shares); event Deposit(address recipient, uint256 amount, uint256 epoch); event Redeem(address recipient, uint256 amount, uint256 epoch); event InitiateWithdraw(address recipient, uint256 amount, uint256 epoch); event WriteOption(address series, uint256 amount, uint256 premium, uint256 escrow, address buyer); event RebalancePortfolioDelta(int256 deltaChange); event TradingPaused(); event TradingUnpaused(); event SettleVault( address series, uint256 collateralReturned, uint256 collateralLost, address closer ); event BuybackOption( address series, uint256 amount, uint256 premium, uint256 escrowReturned, address seller ); constructor( address _protocol, address _strikeAsset, address _underlyingAsset, address _collateralAsset, uint256 rfr, string memory name, string memory symbol, Types.OptionParams memory _optionParams, address _authority ) ERC20(name, symbol, 18) AccessControl(IAuthority(_authority)) { if (ERC20(_collateralAsset).decimals() > 18) { revert CustomErrors.InvalidDecimals(); } strikeAsset = _strikeAsset; riskFreeRate = rfr; underlyingAsset = _underlyingAsset; collateralAsset = _collateralAsset; protocol = Protocol(_protocol); optionParams = _optionParams; depositEpochPricePerShare[0] = 1e18; withdrawalEpochPricePerShare[0] = 1e18; depositEpoch++; withdrawalEpoch++; } /////////////// /// setters /// /////////////// function pause() external { _onlyGuardian(); _pause(); } function pauseUnpauseTrading(bool _pause) external { _onlyGuardian(); isTradingPaused = _pause; if (_pause) { emit TradingPaused(); } else { emit TradingUnpaused(); } } function unpause() external { _onlyGuardian(); _unpause(); } /** * @notice set a new hedging reactor * @param _reactorAddress append a new hedging reactor * @dev only governance can call this function */ function setHedgingReactorAddress(address _reactorAddress) external { _onlyGovernor(); if (_reactorAddress == address(0)) { revert CustomErrors.InvalidAddress(); } uint256 arrayLength = hedgingReactors.length; for (uint256 i = 0; i < arrayLength; i++) { if (hedgingReactors[i] == _reactorAddress) { revert CustomErrors.ReactorAlreadyExists(); } } hedgingReactors.push(_reactorAddress); SafeTransferLib.safeApprove(ERC20(collateralAsset), _reactorAddress, type(uint256).max); } /** * @notice remove a new hedging reactor by index * @param _index remove a hedging reactor * @param _override whether to override whether the reactor is wound down (THE REACTOR SHOULD BE WOUND DOWN SEPERATELY) * @dev only governance can call this function */ function removeHedgingReactorAddress(uint256 _index, bool _override) external { _onlyGovernor(); address[] memory hedgingReactors_ = hedgingReactors; address reactorAddress = hedgingReactors_[_index]; if (!_override) { IHedgingReactor reactor = IHedgingReactor(reactorAddress); int256 delta = reactor.getDelta(); if (delta != 0) { reactor.hedgeDelta(delta); } reactor.withdraw(type(uint256).max); } SafeTransferLib.safeApprove(ERC20(collateralAsset), reactorAddress, 0); uint256 maxIndex = hedgingReactors_.length - 1; for (uint256 i = _index; i < maxIndex; i++) { hedgingReactors[i] = hedgingReactors_[i + 1]; } hedgingReactors.pop(); } function getHedgingReactors() external view returns (address[] memory) { return hedgingReactors; } /** * @notice update all optionParam variables for max and min strikes and max and * min expiries for options that the DHV can issue * @dev only management or above can call this function */ function setNewOptionParams( uint128 _newMinCallStrike, uint128 _newMaxCallStrike, uint128 _newMinPutStrike, uint128 _newMaxPutStrike, uint128 _newMinExpiry, uint128 _newMaxExpiry ) external { _onlyManager(); optionParams.minCallStrikePrice = _newMinCallStrike; optionParams.maxCallStrikePrice = _newMaxCallStrike; optionParams.minPutStrikePrice = _newMinPutStrike; optionParams.maxPutStrikePrice = _newMaxPutStrike; optionParams.minExpiry = _newMinExpiry; optionParams.maxExpiry = _newMaxExpiry; } /** * @notice set the bid ask spread used to price option buying * @param _bidAskSpread the bid ask spread to update to * @dev only management or above can call this function */ function setBidAskSpread(uint256 _bidAskSpread) external { _onlyManager(); bidAskIVSpread = _bidAskSpread; } /** * @notice set the maximum percentage discount for an option * @param _maxDiscount of the option as a percentage in 1e18 format. ie: 1*e18 == 1% * @dev only management or above can call this function */ function setMaxDiscount(uint256 _maxDiscount) external { _onlyManager(); maxDiscount = _maxDiscount; } /** * @notice set the maximum collateral amount allowed in the pool * @param _collateralCap of the collateral held * @dev only governance can call this function */ function setCollateralCap(uint256 _collateralCap) external { _onlyGovernor(); collateralCap = _collateralCap; } /** * @notice update the liquidity pool buffer limit * @param _bufferPercentage the minimum balance the liquidity pool must have as a percentage of collateral allocated to options. (for 20% enter 2000) * @dev only governance can call this function */ function setBufferPercentage(uint256 _bufferPercentage) external { _onlyGovernor(); bufferPercentage = _bufferPercentage; } /** * @notice update the liquidity pool risk free rate * @param _riskFreeRate the risk free rate of the market */ function setRiskFreeRate(uint256 _riskFreeRate) external { _onlyGovernor(); riskFreeRate = _riskFreeRate; } /** * @notice update the max oracle time deviation threshold */ function setMaxTimeDeviationThreshold(uint256 _maxTimeDeviationThreshold) external { _onlyGovernor(); maxTimeDeviationThreshold = _maxTimeDeviationThreshold; } /** * @notice update the max oracle price deviation threshold */ function setMaxPriceDeviationThreshold(uint256 _maxPriceDeviationThreshold) external { _onlyGovernor(); maxPriceDeviationThreshold = _maxPriceDeviationThreshold; } /** * @notice change the status of a handler */ function changeHandler(address _handler, bool auth) external { _onlyGovernor(); if (_handler == address(0)) { revert CustomErrors.InvalidAddress(); } handler[_handler] = auth; } /** * @notice change the status of a keeper */ function setKeeper(address _keeper, bool _auth) external { _onlyGovernor(); if (_keeper == address(0)) { revert CustomErrors.InvalidAddress(); } keeper[_keeper] = _auth; } /** * @notice sets the parameters for the function that determines the utilization price factor * The function is made up of two parts, both linear. The line to the left of the utilisation threshold has a low gradient * while the gradient to the right of the threshold is much steeper. The aim of this function is to make options much more * expensive near full utilization while not having much effect at low utilizations. * @param _belowThresholdGradient the gradient of the function where utiization is below function threshold. e18 * @param _aboveThresholdGradient the gradient of the line above the utilization threshold. e18 * @param _utilizationFunctionThreshold the percentage utilization above which the function moves from its shallow line to its steep line */ function setUtilizationSkewParams( uint256 _belowThresholdGradient, uint256 _aboveThresholdGradient, uint256 _utilizationFunctionThreshold ) external { _onlyManager(); belowThresholdGradient = _belowThresholdGradient; aboveThresholdGradient = _aboveThresholdGradient; aboveThresholdYIntercept = _utilizationFunctionThreshold.mul( _aboveThresholdGradient - _belowThresholdGradient // inverted the order of the subtraction to result in a positive uint ); utilizationFunctionThreshold = _utilizationFunctionThreshold; } ////////////////////////////////////////////////////// /// access-controlled state changing functionality /// ////////////////////////////////////////////////////// /** * @notice function for hedging portfolio delta through external means * @param delta the current portfolio delta * @param reactorIndex the index of the reactor in the hedgingReactors array to use */ function rebalancePortfolioDelta(int256 delta, uint256 reactorIndex) external { _onlyManager(); IHedgingReactor(hedgingReactors[reactorIndex]).hedgeDelta(delta); emit RebalancePortfolioDelta(delta); } /** * @notice adjust the collateral held in a specific vault because of health * @param lpCollateralDifference amount of collateral taken from or given to the liquidity pool in collateral decimals * @param addToLpBalance true if collateral is returned to liquidity pool, false if collateral is withdrawn from liquidity pool * @dev called by the option registry only */ function adjustCollateral(uint256 lpCollateralDifference, bool addToLpBalance) external { IOptionRegistry optionRegistry = _getOptionRegistry(); require(msg.sender == address(optionRegistry)); // assumes in collateral decimals if (addToLpBalance) { collateralAllocated -= lpCollateralDifference; } else { SafeTransferLib.safeApprove( ERC20(collateralAsset), address(optionRegistry), lpCollateralDifference ); collateralAllocated += lpCollateralDifference; } } /** * @notice closes an oToken vault, returning collateral (minus ITM option expiry value) back to the pool * @param seriesAddress the address of the oToken vault to close * @return collatReturned the amount of collateral returned to the liquidity pool, assumes in collateral decimals */ function settleVault(address seriesAddress) external returns (uint256) { _isKeeper(); // get number of options in vault and collateral returned to recalculate our position without these options // returns in collat decimals, collat decimals and e8 (, uint256 collatReturned, uint256 collatLost, ) = _getOptionRegistry().settle(seriesAddress); emit SettleVault(seriesAddress, collatReturned, collatLost, msg.sender); // if the vault expired ITM then when settled the oracle will still have accounted for it as a liability. When // the settle happens the liability is wiped off as it is now accounted for in collateralAllocated but because the // oracle doesn't know this yet we need to temporarily reduce the liability value. _adjustVariables(collatReturned, collatLost, 0, false); collateralAllocated -= collatLost; return collatReturned; } /** * @notice issue an option * @param optionSeries the series detail of the option - strike decimals in e18 * @dev only callable by a handler contract */ function handlerIssue(Types.OptionSeries memory optionSeries) external returns (address) { _isHandler(); // series strike in e18 return _issue(optionSeries, _getOptionRegistry()); } /** * @notice write an option that already exists * @param optionSeries the series detail of the option - strike decimals in e8 * @param seriesAddress the series address of the oToken * @param amount the number of options to write - in e18 * @param optionRegistry the registry used for options writing * @param premium the premium of the option - in collateral decimals * @param delta the delta of the option - in e18 * @param recipient the receiver of the option * @dev only callable by a handler contract */ function handlerWriteOption( Types.OptionSeries memory optionSeries, address seriesAddress, uint256 amount, IOptionRegistry optionRegistry, uint256 premium, int256 delta, address recipient ) external returns (uint256) { _isTradingNotPaused(); _isHandler(); return _writeOption( optionSeries, // series strike in e8 seriesAddress, amount, // in e18 optionRegistry, premium, // in collat decimals delta, checkBuffer(), // in e6 recipient ); } /** * @notice write an option that doesnt exist * @param optionSeries the series detail of the option - strike decimals in e18 * @param amount the number of options to write - in e18 * @param premium the premium of the option - in collateral decimals * @param delta the delta of the option - in e18 * @param recipient the receiver of the option * @dev only callable by a handler contract */ function handlerIssueAndWriteOption( Types.OptionSeries memory optionSeries, uint256 amount, uint256 premium, int256 delta, address recipient ) external returns (uint256, address) { _isTradingNotPaused(); _isHandler(); IOptionRegistry optionRegistry = _getOptionRegistry(); // series strike passed in as e18 address seriesAddress = _issue(optionSeries, optionRegistry); // series strike received in e8, retrieved from the option registry instead of // using one in memory because formatStrikePrice might have slightly changed the // strike optionSeries = optionRegistry.getSeriesInfo(seriesAddress); return ( _writeOption( optionSeries, // strike in e8 seriesAddress, amount, // in e18 optionRegistry, premium, // in collat decimals delta, checkBuffer(), // in e6 recipient ), seriesAddress ); } /** * @notice buy back an option that already exists * @param optionSeries the series detail of the option - strike decimals in e8 * @param amount the number of options to buyback - in e18 * @param optionRegistry the registry used for options writing * @param seriesAddress the series address of the oToken * @param premium the premium of the option - in collateral decimals * @param delta the delta of the option - in e18 * @param seller the receiver of the option * @dev only callable by a handler contract */ function handlerBuybackOption( Types.OptionSeries memory optionSeries, uint256 amount, IOptionRegistry optionRegistry, address seriesAddress, uint256 premium, int256 delta, address seller ) external returns (uint256) { _isTradingNotPaused(); _isHandler(); // strike passed in as e8 return _buybackOption(optionSeries, amount, optionRegistry, seriesAddress, premium, delta, seller); } /** * @notice reset the temporary portfolio and delta values that have been changed since the last oracle update * @dev only callable by the portfolio values feed oracle contract */ function resetEphemeralValues() external { require(msg.sender == address(_getPortfolioValuesFeed())); delete ephemeralLiabilities; delete ephemeralDelta; } /** * @notice reset the temporary portfolio and delta values that have been changed since the last oracle update * @dev this function must be called in order to execute an epoch calculation */ function pauseTradingAndRequest() external returns (bytes32) { _isKeeper(); // pause trading isTradingPaused = true; emit TradingPaused(); // make an oracle request return _getPortfolioValuesFeed().requestPortfolioData(underlyingAsset, strikeAsset); } /** * @notice execute the epoch and set all the price per shares * @dev this function must be called in order to execute an epoch calculation and batch a mutual fund epoch */ function executeEpochCalculation() external whenNotPaused { _isKeeper(); if (!isTradingPaused) { revert CustomErrors.TradingNotPaused(); } ( uint256 newPricePerShareDeposit, uint256 newPricePerShareWithdrawal, uint256 sharesToMint, uint256 totalWithdrawAmount, uint256 amountNeeded ) = _getAccounting().executeEpochCalculation(totalSupply, _getAssets(), _getLiabilities()); // deposits always get executed depositEpochPricePerShare[depositEpoch] = newPricePerShareDeposit; delete pendingDeposits; emit DepositEpochExecuted(depositEpoch); depositEpoch++; isTradingPaused = false; emit TradingUnpaused(); _mint(address(this), sharesToMint); // loop through the reactors and move funds if found if (amountNeeded > 0) { address[] memory hedgingReactors_ = hedgingReactors; for (uint8 i = 0; i < hedgingReactors_.length; i++) { amountNeeded -= IHedgingReactor(hedgingReactors_[i]).withdraw(amountNeeded); if (amountNeeded <= 0) { break; } } // if not enough funds in liquidity pool and reactors, dont process withdrawals this epoch if (amountNeeded > 0) { return; } } withdrawalEpochPricePerShare[withdrawalEpoch] = newPricePerShareWithdrawal; partitionedFunds += totalWithdrawAmount; emit WithdrawalEpochExecuted(withdrawalEpoch); _burn(address(this), pendingWithdrawals); delete pendingWithdrawals; withdrawalEpoch++; } ///////////////////////////////////////////// /// external state changing functionality /// ///////////////////////////////////////////// /** * @notice function for adding liquidity to the options liquidity pool * @param _amount amount of the strike asset to deposit * @return success * @dev entry point to provide liquidity to dynamic hedging vault */ function deposit(uint256 _amount) external whenNotPaused nonReentrant returns (bool) { if (_amount == 0) { revert CustomErrors.InvalidAmount(); } (uint256 depositAmount, uint256 unredeemedShares) = _getAccounting().deposit(msg.sender, _amount); emit Deposit(msg.sender, _amount, depositEpoch); // create the deposit receipt depositReceipts[msg.sender] = IAccounting.DepositReceipt({ epoch: uint128(depositEpoch), amount: uint128(depositAmount), unredeemedShares: unredeemedShares }); pendingDeposits += _amount; // Pull in tokens from sender SafeTransferLib.safeTransferFrom(collateralAsset, msg.sender, address(this), _amount); return true; } /** * @notice function for allowing a user to redeem their shares from a previous epoch * @param _shares the number of shares to redeem * @return the number of shares actually returned */ function redeem(uint256 _shares) external nonReentrant returns (uint256) { if (_shares == 0) { revert CustomErrors.InvalidShareAmount(); } return _redeem(_shares); } /** * @notice function for initiating a withdraw request from the pool * @param _shares amount of shares to return * @dev entry point to remove liquidity to dynamic hedging vault */ function initiateWithdraw(uint256 _shares) external whenNotPaused nonReentrant { if (_shares == 0) { revert CustomErrors.InvalidShareAmount(); } IAccounting.DepositReceipt memory depositReceipt = depositReceipts[msg.sender]; if (depositReceipt.amount > 0 || depositReceipt.unredeemedShares > 0) { // redeem so a user can use a completed deposit as shares for an initiation _redeem(type(uint256).max); } IAccounting.WithdrawalReceipt memory withdrawalReceipt = _getAccounting().initiateWithdraw( msg.sender, _shares ); withdrawalReceipts[msg.sender] = withdrawalReceipt; pendingWithdrawals += _shares; emit InitiateWithdraw(msg.sender, _shares, withdrawalEpoch); transfer(address(this), _shares); } /** * @notice function for completing the withdraw from a pool * @dev entry point to remove liquidity to dynamic hedging vault */ function completeWithdraw() external whenNotPaused nonReentrant returns (uint256) { ( uint256 withdrawalAmount, uint256 withdrawalShares, IAccounting.WithdrawalReceipt memory withdrawalReceipt ) = _getAccounting().completeWithdraw(msg.sender); withdrawalReceipts[msg.sender] = withdrawalReceipt; emit Withdraw(msg.sender, withdrawalAmount, withdrawalShares); // these funds are taken from the partitioned funds partitionedFunds -= withdrawalAmount; SafeTransferLib.safeTransfer(ERC20(collateralAsset), msg.sender, withdrawalAmount); return withdrawalAmount; } /////////////////////// /// complex getters /// /////////////////////// /** * @notice Returning balance in 1e18 format * @param asset address of the asset to get balance and normalize * @return normalizedBalance balance in 1e18 format */ function _getNormalizedBalance(address asset) internal view returns (uint256 normalizedBalance) { normalizedBalance = OptionsCompute.convertFromDecimals( ERC20(asset).balanceOf(address(this)) - partitionedFunds, ERC20(asset).decimals() ); } /** * @notice Returning balance in 1e6 format * @param asset address of the asset to get balance * @return balance of the address accounting for partitionedFunds */ function getBalance(address asset) public view returns (uint256) { return ERC20(asset).balanceOf(address(this)) - partitionedFunds; } /** * @notice get the delta of the hedging reactors * @return externalDelta hedging reactor delta in e18 format */ function getExternalDelta() public view returns (int256 externalDelta) { address[] memory hedgingReactors_ = hedgingReactors; for (uint8 i = 0; i < hedgingReactors_.length; i++) { externalDelta += IHedgingReactor(hedgingReactors_[i]).getDelta(); } } /** * @notice get the delta of the portfolio * @return portfolio delta */ function getPortfolioDelta() public view returns (int256) { // assumes in e18 Types.PortfolioValues memory portfolioValues = _getPortfolioValuesFeed().getPortfolioValues( underlyingAsset, strikeAsset ); // check that the portfolio values are acceptable OptionsCompute.validatePortfolioValues( _getUnderlyingPrice(underlyingAsset, strikeAsset), portfolioValues, maxTimeDeviationThreshold, maxPriceDeviationThreshold ); return portfolioValues.delta + getExternalDelta() + ephemeralDelta; } /** * @notice get the quote price and delta for a given option * @param optionSeries option type to quote - strike assumed in e18 * @param amount the number of options to mint - assumed in e18 * @param toBuy whether the protocol is buying the option * @return quote the price of the options - returns in e18 * @return delta the delta of the options - returns in e18 */ function quotePriceWithUtilizationGreeks( Types.OptionSeries memory optionSeries, uint256 amount, bool toBuy ) external view returns (uint256 quote, int256 delta) { // using a struct to get around stack too deep issues Types.UtilizationState memory quoteState; quoteState.underlyingPrice = _getUnderlyingPrice( optionSeries.underlying, optionSeries.strikeAsset ); quoteState.iv = getImpliedVolatility( optionSeries.isPut, quoteState.underlyingPrice, optionSeries.strike, optionSeries.expiration ); (uint256 optionQuote, int256 deltaQuote) = OptionsCompute.quotePriceGreeks( optionSeries, toBuy, bidAskIVSpread, riskFreeRate, quoteState.iv, quoteState.underlyingPrice ); // price of acquiring total amount of options (remains e18 due to PRBMath) quoteState.totalOptionPrice = optionQuote.mul(amount); quoteState.totalDelta = deltaQuote.mul(int256(amount)); // will update quoteState.utilizationPrice addUtilizationPremium(quoteState, optionSeries, amount, toBuy); quote = applyDeltaPremium(quoteState, toBuy); quote = OptionsCompute.convertToCollateralDenominated( quote, quoteState.underlyingPrice, optionSeries ); delta = quoteState.totalDelta; if (quote == 0 || delta == int256(0)) { revert CustomErrors.DeltaQuoteError(quote, delta); } } /** * @notice applies a utilization premium when the protocol is selling options. * Stores the utilization price in quoteState.utilizationPrice for use in quotePriceWithUtilizationGreeks * @param quoteState the struct created in quoteStateWithUtilizationGreeks to store memory variables * @param optionSeries the option type for which we are quoting a price * @param amount the amount of options. e18 * @param toBuy whether we are buying an option. False if selling */ function addUtilizationPremium( Types.UtilizationState memory quoteState, Types.OptionSeries memory optionSeries, uint256 amount, bool toBuy ) internal view { if (!toBuy) { uint256 collateralAllocated_ = collateralAllocated; // if selling options, we want to add the utilization premium // Work out the utilization of the pool as a percentage quoteState.utilizationBefore = collateralAllocated_.div( collateralAllocated_ + getBalance(collateralAsset) ); // assumes strike is e18 // strike is not being used again so we dont care if format changes optionSeries.strike = optionSeries.strike / 1e10; // returns collateral decimals quoteState.collateralToAllocate = _getOptionRegistry().getCollateral(optionSeries, amount); quoteState.utilizationAfter = (quoteState.collateralToAllocate + collateralAllocated_).div( collateralAllocated_ + getBalance(collateralAsset) ); // get the price of the option with the utilization premium added quoteState.utilizationPrice = OptionsCompute.getUtilizationPrice( quoteState.utilizationBefore, quoteState.utilizationAfter, quoteState.totalOptionPrice, utilizationFunctionThreshold, belowThresholdGradient, aboveThresholdGradient, aboveThresholdYIntercept ); } else { // do not use utlilization premium for buybacks quoteState.utilizationPrice = quoteState.totalOptionPrice; } } /** * @notice Applies a discount or premium based on the liquidity pool's delta exposure * Gives discount if the transaction results in a lower delta exposure for the liquidity pool. * Prices option more richly if the transaction results in higher delta exposure for liquidity pool. * @param quoteState the struct created in quoteStateWithUtilizationGreeks to store memory variables * @param toBuy whether we are buying an option. False if selling * @return quote the quote for the option with the delta skew applied */ function applyDeltaPremium(Types.UtilizationState memory quoteState, bool toBuy) internal view returns (uint256 quote) { // portfolio delta before writing option int256 portfolioDelta = getPortfolioDelta(); // subtract totalDelta if buying as pool is taking on the negative of the option's delta int256 newDelta = toBuy ? portfolioDelta + quoteState.totalDelta : portfolioDelta - quoteState.totalDelta; // Is delta moved closer to zero? quoteState.isDecreased = (PRBMathSD59x18.abs(newDelta) - PRBMathSD59x18.abs(portfolioDelta)) < 0; // delta exposure of the portolio per ETH equivalent value the portfolio holds. // This value is only used for tilting so we are only interested in its distance from 0 (its magnitude) uint256 normalizedDelta = uint256(PRBMathSD59x18.abs((portfolioDelta + newDelta).div(2e18))).div( _getNAV().div(quoteState.underlyingPrice) ); // this is the percentage of the option price which is added to or subtracted from option price // according to whether portfolio delta is increased or decreased respectively quoteState.deltaTiltAmount = normalizedDelta > maxDiscount ? maxDiscount : normalizedDelta; if (quoteState.isDecreased) { quote = toBuy ? quoteState.deltaTiltAmount.mul(quoteState.utilizationPrice) + quoteState.utilizationPrice : quoteState.utilizationPrice - quoteState.deltaTiltAmount.mul(quoteState.utilizationPrice); } else { // increase utilization by delta tilt factor for moving delta away from zero quote = toBuy ? quoteState.utilizationPrice - quoteState.deltaTiltAmount.mul(quoteState.utilizationPrice) : quoteState.deltaTiltAmount.mul(quoteState.utilizationPrice) + quoteState.utilizationPrice; } } /////////////////////////// /// non-complex getters /// /////////////////////////// /** * @notice get the current implied volatility from the feed * @param isPut Is the option a call or put? * @param underlyingPrice The underlying price - assumed in e18 * @param strikePrice The strike price of the option - assumed in e18 * @param expiration expiration timestamp of option as a PRBMath Float * @return Implied volatility adjusted for volatility surface - assumed in e18 */ function getImpliedVolatility( bool isPut, uint256 underlyingPrice, uint256 strikePrice, uint256 expiration ) public view returns (uint256) { return _getVolatilityFeed().getImpliedVolatility(isPut, underlyingPrice, strikePrice, expiration); } function getAssets() external view returns (uint256) { return _getAssets(); } function getNAV() external view returns (uint256) { return _getNAV(); } ////////////////////////// /// internal utilities /// ////////////////////////// /** * @notice functionality for allowing a user to redeem their shares from a previous epoch * @param _shares the number of shares to redeem * @return toRedeem the number of shares actually returned */ function _redeem(uint256 _shares) internal returns (uint256) { (uint256 toRedeem, IAccounting.DepositReceipt memory depositReceipt) = _getAccounting().redeem( msg.sender, _shares ); if (toRedeem == 0) { return 0; } depositReceipts[msg.sender] = depositReceipt; allowance[address(this)][msg.sender] = toRedeem; emit Redeem(msg.sender, toRedeem, depositReceipt.epoch); // transfer as the shares will have been minted in the epoch execution transferFrom(address(this), msg.sender, toRedeem); return toRedeem; } /** * @notice get the Net Asset Value * @return Net Asset Value in e18 decimal format */ function _getNAV() internal view returns (uint256) { // equities = assets - liabilities // assets: Any token such as eth usd, collateral sent to OptionRegistry, hedging reactor stuff in e18 // liabilities: Options that we wrote in e18 uint256 assets = _getAssets(); int256 liabilities = _getLiabilities(); // if this ever happens then something has gone very wrong so throw here if (int256(assets) < liabilities) { revert CustomErrors.LiabilitiesGreaterThanAssets(); } return uint256(int256(assets) - liabilities); } /** * @notice get the Asset Value * @return assets Asset Value in e18 decimal format */ function _getAssets() internal view returns (uint256 assets) { // assets: Any token such as eth usd, collateral sent to OptionRegistry, hedging reactor stuff in e18 // liabilities: Options that we wrote in e18 assets = _getNormalizedBalance(collateralAsset) + OptionsCompute.convertFromDecimals(collateralAllocated, ERC20(collateralAsset).decimals()); address[] memory hedgingReactors_ = hedgingReactors; for (uint8 i = 0; i < hedgingReactors_.length; i++) { // should always return value in e18 decimals assets += IHedgingReactor(hedgingReactors_[i]).getPoolDenominatedValue(); } } function _getLiabilities() internal view returns (int256 liabilities) { Types.PortfolioValues memory portfolioValues = _getPortfolioValuesFeed().getPortfolioValues( underlyingAsset, strikeAsset ); // check that the portfolio values are acceptable OptionsCompute.validatePortfolioValues( _getUnderlyingPrice(underlyingAsset, strikeAsset), portfolioValues, maxTimeDeviationThreshold, maxPriceDeviationThreshold ); // ephemeralLiabilities can be +/-, portfolioValues.callPutsValue could be +/- liabilities = portfolioValues.callPutsValue + ephemeralLiabilities; } /** * @notice calculates amount of liquidity that can be used before hitting buffer * @return bufferRemaining the amount of liquidity available before reaching buffer in e6 */ function checkBuffer() public view returns (int256 bufferRemaining) { // calculate max amount of liquidity pool funds that can be used before reaching max buffer allowance uint256 collateralBalance = getBalance(collateralAsset); uint256 collateralBuffer = (collateralAllocated * bufferPercentage) / MAX_BPS; bufferRemaining = int256(collateralBalance) - int256(collateralBuffer); } /** * @notice create the option contract in the options registry * @param optionSeries option type to mint - option series strike in e18 * @param optionRegistry interface for the options issuer * @return series the address of the option series minted */ function _issue(Types.OptionSeries memory optionSeries, IOptionRegistry optionRegistry) internal returns (address series) { // make sure option is being issued with correct assets if (optionSeries.collateral != collateralAsset) { revert CustomErrors.CollateralAssetInvalid(); } if (optionSeries.underlying != underlyingAsset) { revert CustomErrors.UnderlyingAssetInvalid(); } if (optionSeries.strikeAsset != strikeAsset) { revert CustomErrors.StrikeAssetInvalid(); } // cache Types.OptionParams memory optionParams_ = optionParams; // check the expiry is within the allowed bounds if ( block.timestamp + optionParams_.minExpiry > optionSeries.expiration || optionSeries.expiration > block.timestamp + optionParams_.maxExpiry ) { revert CustomErrors.OptionExpiryInvalid(); } // check that the option strike is within the range of the min and max acceptable strikes of calls and puts if (optionSeries.isPut) { if ( optionParams_.minPutStrikePrice > optionSeries.strike || optionSeries.strike > optionParams_.maxPutStrikePrice ) { revert CustomErrors.OptionStrikeInvalid(); } } else { if ( optionParams_.minCallStrikePrice > optionSeries.strike || optionSeries.strike > optionParams_.maxCallStrikePrice ) { revert CustomErrors.OptionStrikeInvalid(); } } // issue the option from the option registry (its characteristics will be stored in the optionsRegistry) series = optionRegistry.issue(optionSeries); if (series == address(0)) { revert CustomErrors.IssuanceFailed(); } } /** * @notice write a number of options for a given OptionSeries * @param optionSeries option type to mint - strike in e8 * @param seriesAddress the address of the options series * @param amount the amount to be written - in e18 * @param optionRegistry the option registry of the pool * @param premium the premium to charge the user - in collateral decimals * @param delta the delta of the option position - in e18 * @param bufferRemaining the amount of buffer that can be used - in e6 * @return the amount that was written */ function _writeOption( Types.OptionSeries memory optionSeries, address seriesAddress, uint256 amount, IOptionRegistry optionRegistry, uint256 premium, int256 delta, int256 bufferRemaining, address recipient ) internal returns (uint256) { // strike decimals come into this function as e8 uint256 collateralAmount = optionRegistry.getCollateral(optionSeries, amount); if (bufferRemaining < int256(collateralAmount)) { revert CustomErrors.MaxLiquidityBufferReached(); } ERC20(collateralAsset).approve(address(optionRegistry), collateralAmount); (, collateralAmount) = optionRegistry.open(seriesAddress, amount, collateralAmount); emit WriteOption(seriesAddress, amount, premium, collateralAmount, recipient); // convert e8 strike to e18 strike optionSeries.strike = uint128( OptionsCompute.convertFromDecimals(optionSeries.strike, ERC20(seriesAddress).decimals()) ); _adjustVariables(collateralAmount, premium, delta, true); SafeTransferLib.safeTransfer( ERC20(seriesAddress), recipient, OptionsCompute.convertToDecimals(amount, ERC20(seriesAddress).decimals()) ); // returns in e18 return amount; } /** * @notice buys a number of options back and burns the tokens * @param optionSeries the option token series to buyback - strike passed in as e8 * @param amount the number of options to buyback expressed in 1e18 * @param optionRegistry the registry * @param seriesAddress the series being sold * @param premium the premium to be sent back to the owner (in collat decimals) * @param delta the delta of the option * @param seller the address * @return the number of options burned in e18 */ function _buybackOption( Types.OptionSeries memory optionSeries, uint256 amount, IOptionRegistry optionRegistry, address seriesAddress, uint256 premium, int256 delta, address seller ) internal returns (uint256) { SafeTransferLib.safeApprove( ERC20(seriesAddress), address(optionRegistry), OptionsCompute.convertToDecimals(amount, ERC20(seriesAddress).decimals()) ); (, uint256 collateralReturned) = optionRegistry.close(seriesAddress, amount); emit BuybackOption(seriesAddress, amount, premium, collateralReturned, seller); // convert e8 strike to e18 strike optionSeries.strike = uint128( OptionsCompute.convertFromDecimals(optionSeries.strike, ERC20(seriesAddress).decimals()) ); _adjustVariables(collateralReturned, premium, delta, false); if (getBalance(collateralAsset) < premium) { revert CustomErrors.WithdrawExceedsLiquidity(); } SafeTransferLib.safeTransfer(ERC20(collateralAsset), seller, premium); return amount; } /** * @notice adjust the variables of the pool * @param collateralAmount the amount of collateral transferred to change on collateral allocated in collateral decimals * @param optionsValue the value of the options in e18 decimals * @param delta the delta of the options in e18 decimals * @param isSale whether the action was an option sale or not */ function _adjustVariables( uint256 collateralAmount, uint256 optionsValue, int256 delta, bool isSale ) internal { if (isSale) { collateralAllocated += collateralAmount; ephemeralLiabilities += int256( OptionsCompute.convertFromDecimals(optionsValue, ERC20(collateralAsset).decimals()) ); ephemeralDelta -= delta; } else { collateralAllocated -= collateralAmount; ephemeralLiabilities -= int256( OptionsCompute.convertFromDecimals(optionsValue, ERC20(collateralAsset).decimals()) ); ephemeralDelta += delta; } } /** * @notice get the volatility feed used by the liquidity pool * @return the volatility feed contract interface */ function _getVolatilityFeed() internal view returns (VolatilityFeed) { return VolatilityFeed(protocol.volatilityFeed()); } /** * @notice get the portfolio values feed used by the liquidity pool * @return the portfolio values feed contract */ function _getPortfolioValuesFeed() internal view returns (IPortfolioValuesFeed) { return IPortfolioValuesFeed(protocol.portfolioValuesFeed()); } /** * @notice get the DHV accounting calculations contract used by the liquidity pool * @return the Accounting contract */ function _getAccounting() internal view returns (IAccounting) { return IAccounting(protocol.accounting()); } /** * @notice get the option registry used for storing and managing the options * @return the option registry contract */ function _getOptionRegistry() internal view returns (IOptionRegistry) { return IOptionRegistry(protocol.optionRegistry()); } /** * @notice get the underlying price with just the underlying asset and strike asset * @param underlying the asset that is used as the reference asset * @param _strikeAsset the asset that the underlying value is denominated in * @return the underlying price */ function _getUnderlyingPrice(address underlying, address _strikeAsset) internal view returns (uint256) { return PriceFeed(protocol.priceFeed()).getNormalizedRate(underlying, _strikeAsset); } function _isTradingNotPaused() internal view { if (isTradingPaused) { revert CustomErrors.TradingPaused(); } } function _isHandler() internal view { if (!handler[msg.sender]) { revert CustomErrors.NotHandler(); } } /// @dev keepers, managers or governors can access function _isKeeper() internal view { if ( !keeper[msg.sender] && msg.sender != authority.governor() && msg.sender != authority.manager() ) { revert CustomErrors.NotKeeper(); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface CustomErrors { error NotKeeper(); error IVNotFound(); error NotHandler(); error VaultExpired(); error InvalidInput(); error InvalidPrice(); error InvalidBuyer(); error InvalidOrder(); error OrderExpired(); error InvalidAmount(); error TradingPaused(); error InvalidAddress(); error IssuanceFailed(); error EpochNotClosed(); error InvalidDecimals(); error TradingNotPaused(); error NotLiquidityPool(); error DeltaNotDecreased(); error NonExistentOtoken(); error OrderExpiryTooLong(); error InvalidShareAmount(); error ExistingWithdrawal(); error TotalSupplyReached(); error StrikeAssetInvalid(); error OptionStrikeInvalid(); error OptionExpiryInvalid(); error NoExistingWithdrawal(); error SpotMovedBeyondRange(); error ReactorAlreadyExists(); error CollateralAssetInvalid(); error UnderlyingAssetInvalid(); error CollateralAmountInvalid(); error WithdrawExceedsLiquidity(); error InsufficientShareBalance(); error MaxLiquidityBufferReached(); error LiabilitiesGreaterThanAssets(); error CustomOrderInsufficientPrice(); error CustomOrderInvalidDeltaValue(); error DeltaQuoteError(uint256 quote, int256 delta); error TimeDeltaExceedsThreshold(uint256 timeDelta); error PriceDeltaExceedsThreshold(uint256 priceDelta); error StrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeLiquidity); error MinStrikeAmountExceedsLiquidity(uint256 strikeAmount, uint256 strikeAmountMin); error UnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingLiquidity); error MinUnderlyingAmountExceedsLiquidity(uint256 underlyingAmount, uint256 underlyingAmountMin); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IAuthority.sol"; error UNAUTHORIZED(); /** * @title Contract used for access control functionality, based off of OlympusDao Access Control */ abstract contract AccessControl { /* ========== EVENTS ========== */ event AuthorityUpdated(IAuthority authority); /* ========== STATE VARIABLES ========== */ IAuthority public authority; /* ========== Constructor ========== */ constructor(IAuthority _authority) { authority = _authority; emit AuthorityUpdated(_authority); } /* ========== GOV ONLY ========== */ function setAuthority(IAuthority _newAuthority) external { _onlyGovernor(); authority = _newAuthority; emit AuthorityUpdated(_newAuthority); } /* ========== INTERNAL CHECKS ========== */ function _onlyGovernor() internal view { if (msg.sender != authority.governor()) revert UNAUTHORIZED(); } function _onlyGuardian() internal view { if (!authority.guardian(msg.sender) && msg.sender != authority.governor()) revert UNAUTHORIZED(); } function _onlyManager() internal view { if (msg.sender != authority.manager() && msg.sender != authority.governor()) revert UNAUTHORIZED(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./Types.sol"; import "./CustomErrors.sol"; import "./BlackScholes.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; /** * @title Library used for various helper functionality for the Liquidity Pool */ library OptionsCompute { using PRBMathUD60x18 for uint256; using PRBMathSD59x18 for int256; uint8 private constant SCALE_DECIMALS = 18; /// @dev assumes decimals are coming in as e18 function convertToDecimals(uint256 value, uint256 decimals) internal pure returns (uint256) { if (decimals > SCALE_DECIMALS) { revert(); } uint256 difference = SCALE_DECIMALS - decimals; return value / (10**difference); } /// @dev converts from specified decimals to e18 function convertFromDecimals(uint256 value, uint256 decimals) internal pure returns (uint256) { if (decimals > SCALE_DECIMALS) { revert(); } uint256 difference = SCALE_DECIMALS - decimals; return value * (10**difference); } // doesnt allow for interest bearing collateral function convertToCollateralDenominated( uint256 quote, uint256 underlyingPrice, Types.OptionSeries memory optionSeries ) internal pure returns (uint256 convertedQuote) { if (optionSeries.strikeAsset != optionSeries.collateral) { // convert value from strike asset to collateral asset return (quote * 1e18) / underlyingPrice; } else { return quote; } } /** * @dev computes the percentage change between two integers * @param n new value in e18 * @param o old value in e18 * @return pC uint256 the percentage change in e18 */ function calculatePercentageChange(uint256 n, uint256 o) internal pure returns (uint256 pC) { // if new > old then its a percentage increase so do: // ((new - old) * 1e18) / old // if new < old then its a percentage decrease so do: // ((old - new) * 1e18) / old if (n > o) { pC = (n - o).div(o); } else { pC = (o - n).div(o); } } /** * @notice get the latest oracle fed portfolio values and check when they were last updated and make sure this is within a reasonable window in * terms of price and time */ function validatePortfolioValues( uint256 spotPrice, Types.PortfolioValues memory portfolioValues, uint256 maxTimeDeviationThreshold, uint256 maxPriceDeviationThreshold ) public view { uint256 timeDelta = block.timestamp - portfolioValues.timestamp; // If too much time has passed we want to prevent a possible oracle attack if (timeDelta > maxTimeDeviationThreshold) { revert CustomErrors.TimeDeltaExceedsThreshold(timeDelta); } uint256 priceDelta = calculatePercentageChange(spotPrice, portfolioValues.spotPrice); // If price has deviated too much we want to prevent a possible oracle attack if (priceDelta > maxPriceDeviationThreshold) { revert CustomErrors.PriceDeltaExceedsThreshold(priceDelta); } } /** * @notice calculates the utilization price of an option using the liquidity pool's utilisation skew algorithm */ function getUtilizationPrice( uint256 _utilizationBefore, uint256 _utilizationAfter, uint256 _totalOptionPrice, uint256 _utilizationFunctionThreshold, uint256 _belowThresholdGradient, uint256 _aboveThresholdGradient, uint256 _aboveThresholdYIntercept ) internal pure returns (uint256 utilizationPrice) { if ( _utilizationBefore <= _utilizationFunctionThreshold && _utilizationAfter <= _utilizationFunctionThreshold ) { // linear function up to threshold utilization // take average of before and after utilization and multiply the average by belowThresholdGradient uint256 multiplicationFactor = (_utilizationBefore + _utilizationAfter) .mul(_belowThresholdGradient) .div(2e18); return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } else if ( _utilizationBefore >= _utilizationFunctionThreshold && _utilizationAfter >= _utilizationFunctionThreshold ) { // over threshold utilization the skew factor will follow a steeper line uint256 multiplicationFactor = _aboveThresholdGradient .mul(_utilizationBefore + _utilizationAfter) .div(2e18) - _aboveThresholdYIntercept; return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } else { // in this case the utilization after is above the threshold and // utilization before is below it. // _utilizationAfter will always be greater than _utilizationBefore // finds the ratio of the distance below the threshold to the distance above the threshold uint256 weightingRatio = (_utilizationFunctionThreshold - _utilizationBefore).div( _utilizationAfter - _utilizationFunctionThreshold ); // finds the average y value on the part of the function below threshold uint256 averageFactorBelow = (_utilizationFunctionThreshold + _utilizationBefore).div(2e18).mul( _belowThresholdGradient ); // finds average y value on part of the function above threshold uint256 averageFactorAbove = (_utilizationAfter + _utilizationFunctionThreshold).div(2e18).mul( _aboveThresholdGradient ) - _aboveThresholdYIntercept; // finds the weighted average of the two above averaged to find the average utilization skew over the range of utilization uint256 multiplicationFactor = (weightingRatio.mul(averageFactorBelow) + averageFactorAbove).div( 1e18 + weightingRatio ); return _totalOptionPrice + _totalOptionPrice.mul(multiplicationFactor); } } /** * @notice get the greeks of a quotePrice for a given optionSeries * @param optionSeries Types.OptionSeries struct for describing the option to price greeks - strike in e18 * @return quote Quote price of the option - in e18 * @return delta delta of the option being priced - in e18 */ function quotePriceGreeks( Types.OptionSeries memory optionSeries, bool isBuying, uint256 bidAskIVSpread, uint256 riskFreeRate, uint256 iv, uint256 underlyingPrice ) internal view returns (uint256 quote, int256 delta) { if (iv == 0) { revert CustomErrors.IVNotFound(); } // reduce IV by a factor of bidAskIVSpread if we are buying the options if (isBuying) { iv = (iv * (1e18 - (bidAskIVSpread))) / 1e18; } // revert CustomErrors.if the expiry is in the past if (optionSeries.expiration <= block.timestamp) { revert CustomErrors.OptionExpiryInvalid(); } (quote, delta) = BlackScholes.blackScholesCalcGreeks( underlyingPrice, optionSeries.strike, optionSeries.expiration, iv, riskFreeRate, optionSeries.isPut ); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.9; interface AddressBookInterface { /* Getters */ function getOtokenImpl() external view returns (address); function getOtokenFactory() external view returns (address); function getWhitelist() external view returns (address); function getController() external view returns (address); function getOracle() external view returns (address); function getMarginPool() external view returns (address); function getMarginCalculator() external view returns (address); function getLiquidationManager() external view returns (address); function getAddress(bytes32 _id) external view returns (address); /* Setters */ function setOtokenImpl(address _otokenImpl) external; function setOtokenFactory(address _factory) external; function setOracleImpl(address _otokenImpl) external; function setWhitelist(address _whitelist) external; function setController(address _controller) external; function setMarginPool(address _marginPool) external; function setMarginCalculator(address _calculator) external; function setLiquidationManager(address _liquidationManager) external; function setAddress(bytes32 _id, address _newImpl) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; library Types { struct OptionSeries { uint64 expiration; uint128 strike; bool isPut; address underlying; address strikeAsset; address collateral; } struct PortfolioValues { int256 delta; int256 gamma; int256 vega; int256 theta; int256 callPutsValue; uint256 timestamp; uint256 spotPrice; } struct Order { OptionSeries optionSeries; uint256 amount; uint256 price; uint256 orderExpiry; address buyer; address seriesAddress; uint128 lowerSpotMovementRange; uint128 upperSpotMovementRange; bool isBuyBack; } // strike and expiry date range for options struct OptionParams { uint128 minCallStrikePrice; uint128 maxCallStrikePrice; uint128 minPutStrikePrice; uint128 maxPutStrikePrice; uint128 minExpiry; uint128 maxExpiry; } struct UtilizationState { uint256 totalOptionPrice; //e18 int256 totalDelta; // e18 uint256 collateralToAllocate; //collateral decimals uint256 utilizationBefore; // e18 uint256 utilizationAfter; //e18 uint256 utilizationPrice; //e18 bool isDecreased; uint256 deltaTiltAmount; //e18 uint256 underlyingPrice; // strike asset decimals uint256 iv; // e18 } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Gnosis (https://github.com/gnosis/gp-v2-contracts/blob/main/src/contracts/libraries/GPv2SafeERC20.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. library SafeTransferLib { /*/////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool callStatus; assembly { // Transfer the ETH and store if it succeeded or not. callStatus := call(gas(), to, amount, 0, 0, 0, 0) } require(callStatus, "ETH_TRANSFER_FAILED"); } /*/////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( address tokenAddress, address from, address to, uint256 amount ) internal { ERC20 token = ERC20(tokenAddress); bool callStatus; assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata to memory piece by piece: mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) // Begin with the function selector. mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value. // Call the token and store if it succeeded or not. // We use 100 because the calldata length is 4 + 32 * 3. callStatus := call(gas(), token, 0, freeMemoryPointer, 100, 0, 0) } require(didLastOptionalReturnCallSucceed(callStatus), "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool callStatus; assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata to memory piece by piece: mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // Begin with the function selector. mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value. // Call the token and store if it succeeded or not. // We use 68 because the calldata length is 4 + 32 * 2. callStatus := call(gas(), token, 0, freeMemoryPointer, 68, 0, 0) } require(didLastOptionalReturnCallSucceed(callStatus), "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool callStatus; assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata to memory piece by piece: mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) // Begin with the function selector. mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value. // Call the token and store if it succeeded or not. // We use 68 because the calldata length is 4 + 32 * 2. callStatus := call(gas(), token, 0, freeMemoryPointer, 68, 0, 0) } require(didLastOptionalReturnCallSucceed(callStatus), "APPROVE_FAILED"); } /*/////////////////////////////////////////////////////////////// INTERNAL HELPER LOGIC //////////////////////////////////////////////////////////////*/ function didLastOptionalReturnCallSucceed(bool callStatus) private pure returns (bool success) { assembly { // Get how many bytes the call returned. let returnDataSize := returndatasize() // If the call reverted: if iszero(callStatus) { // Copy the revert message into memory. returndatacopy(0, 0, returnDataSize) // Revert with the same message. revert(0, returnDataSize) } switch returnDataSize case 32 { // Copy the return data into memory. returndatacopy(0, 0, returnDataSize) // Set success to whether it returned true. success := iszero(iszero(mload(0))) } case 0 { // There was no return data. success := 1 } default { // It returned some malformed input. success := 0 } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.4; import "./SafeTransferLib.sol"; import { Types } from "./Types.sol"; import { IOtokenFactory, IOtoken, IController, GammaTypes } from "../interfaces/GammaInterface.sol"; /** * @title Library used for standard interactions with the opyn-rysk gamma protocol * @dev inherited by the options registry to complete base opyn-rysk gamma protocol interactions * Interacts with the opyn-rysk gamma protocol in all functions */ library OpynInteractions { uint256 private constant SCALE_FROM = 10**10; error NoShort(); /** * @notice Either retrieves the option token if it already exists, or deploy it * @param oTokenFactory is the address of the opyn oTokenFactory * @param collateral asset that is held as collateral against short/written options * @param underlying is the address of the underlying asset of the option * @param strikeAsset is the address of the collateral asset of the option * @param strike is the strike price of the option in 1e8 format * @param expiration is the expiry timestamp of the option * @param isPut the type of option * @return the address of the option */ function getOrDeployOtoken( address oTokenFactory, address collateral, address underlying, address strikeAsset, uint256 strike, uint256 expiration, bool isPut ) external returns (address) { IOtokenFactory factory = IOtokenFactory(oTokenFactory); address otokenFromFactory = factory.getOtoken( underlying, strikeAsset, collateral, strike, expiration, isPut ); if (otokenFromFactory != address(0)) { return otokenFromFactory; } address otoken = factory.createOtoken( underlying, strikeAsset, collateral, strike, expiration, isPut ); return otoken; } /** * @notice Retrieves the option token if it already exists * @param oTokenFactory is the address of the opyn oTokenFactory * @param collateral asset that is held as collateral against short/written options * @param underlying is the address of the underlying asset of the option * @param strikeAsset is the address of the collateral asset of the option * @param strike is the strike price of the option in 1e8 format * @param expiration is the expiry timestamp of the option * @param isPut the type of option * @return otokenFromFactory the address of the option */ function getOtoken( address oTokenFactory, address collateral, address underlying, address strikeAsset, uint256 strike, uint256 expiration, bool isPut ) external view returns (address otokenFromFactory) { IOtokenFactory factory = IOtokenFactory(oTokenFactory); otokenFromFactory = factory.getOtoken( underlying, strikeAsset, collateral, strike, expiration, isPut ); } /** * @notice Creates the actual Opyn short position by depositing collateral and minting otokens * @param gammaController is the address of the opyn controller contract * @param marginPool is the address of the opyn margin contract which holds the collateral * @param oTokenAddress is the address of the otoken to mint * @param depositAmount is the amount of collateral to deposit * @param vaultId is the vault id to use for creating this short * @param amount is the mint amount in 1e18 format * @param vaultType is the type of vault to be created * @return the otoken mint amount */ function createShort( address gammaController, address marginPool, address oTokenAddress, uint256 depositAmount, uint256 vaultId, uint256 amount, uint256 vaultType ) external returns (uint256) { IController controller = IController(gammaController); amount = amount / SCALE_FROM; // An otoken's collateralAsset is the vault's `asset` // So in the context of performing Opyn short operations we call them collateralAsset IOtoken oToken = IOtoken(oTokenAddress); address collateralAsset = oToken.collateralAsset(); // double approve to fix non-compliant ERC20s ERC20 collateralToken = ERC20(collateralAsset); SafeTransferLib.safeApprove(collateralToken, marginPool, depositAmount); // initialise the controller args with 2 incase the vault already exists IController.ActionArgs[] memory actions = new IController.ActionArgs[](2); // check if a new vault needs to be created uint256 newVaultID = (controller.getAccountVaultCounter(address(this))) + 1; if (newVaultID == vaultId) { actions = new IController.ActionArgs[](3); actions[0] = IController.ActionArgs( IController.ActionType.OpenVault, address(this), // owner address(this), // receiver address(0), // asset, otoken vaultId, // vaultId 0, // amount 0, //index abi.encode(vaultType) //data ); actions[1] = IController.ActionArgs( IController.ActionType.DepositCollateral, address(this), // owner address(this), // address to transfer from collateralAsset, // deposited asset vaultId, // vaultId depositAmount, // amount 0, //index "" //data ); actions[2] = IController.ActionArgs( IController.ActionType.MintShortOption, address(this), // owner address(this), // address to transfer to oTokenAddress, // option address vaultId, // vaultId amount, // amount 0, //index "" //data ); } else { actions[0] = IController.ActionArgs( IController.ActionType.DepositCollateral, address(this), // owner address(this), // address to transfer from collateralAsset, // deposited asset vaultId, // vaultId depositAmount, // amount 0, //index "" //data ); actions[1] = IController.ActionArgs( IController.ActionType.MintShortOption, address(this), // owner address(this), // address to transfer to oTokenAddress, // option address vaultId, // vaultId amount, // amount 0, //index "" //data ); } controller.operate(actions); // returns in e8 return amount; } /** * @notice Deposits Collateral to a specific vault * @param gammaController is the address of the opyn controller contract * @param marginPool is the address of the opyn margin contract which holds the collateral * @param collateralAsset is the address of the collateral asset to deposit * @param depositAmount is the amount of collateral to deposit * @param vaultId is the vault id to access */ function depositCollat( address gammaController, address marginPool, address collateralAsset, uint256 depositAmount, uint256 vaultId ) external { IController controller = IController(gammaController); // double approve to fix non-compliant ERC20s ERC20 collateralToken = ERC20(collateralAsset); SafeTransferLib.safeApprove(collateralToken, marginPool, depositAmount); IController.ActionArgs[] memory actions = new IController.ActionArgs[](1); actions[0] = IController.ActionArgs( IController.ActionType.DepositCollateral, address(this), // owner address(this), // address to transfer from collateralAsset, // deposited asset vaultId, // vaultId depositAmount, // amount 0, //index "" //data ); controller.operate(actions); } /** * @notice Withdraws Collateral from a specific vault * @param gammaController is the address of the opyn controller contract * @param collateralAsset is the address of the collateral asset to withdraw * @param withdrawAmount is the amount of collateral to withdraw * @param vaultId is the vault id to access */ function withdrawCollat( address gammaController, address collateralAsset, uint256 withdrawAmount, uint256 vaultId ) external { IController controller = IController(gammaController); IController.ActionArgs[] memory actions = new IController.ActionArgs[](1); actions[0] = IController.ActionArgs( IController.ActionType.WithdrawCollateral, address(this), // owner address(this), // address to transfer to collateralAsset, // withdrawn asset vaultId, // vaultId withdrawAmount, // amount 0, //index "" //data ); controller.operate(actions); } /** * @notice Burns an opyn short position and returns collateral back to OptionRegistry * @param gammaController is the address of the opyn controller contract * @param oTokenAddress is the address of the otoken to burn * @param burnAmount is the amount of options to burn * @param vaultId is the vault id used that holds the short * @return the collateral returned amount */ function burnShort( address gammaController, address oTokenAddress, uint256 burnAmount, uint256 vaultId ) external returns (uint256) { IController controller = IController(gammaController); // An otoken's collateralAsset is the vault's `asset` // So in the context of performing Opyn short operations we call them collateralAsset IOtoken oToken = IOtoken(oTokenAddress); ERC20 collateralAsset = ERC20(oToken.collateralAsset()); uint256 startCollatBalance = collateralAsset.balanceOf(address(this)); GammaTypes.Vault memory vault = controller.getVault(address(this), vaultId); // initialise the controller args with 2 incase the vault already exists IController.ActionArgs[] memory actions = new IController.ActionArgs[](2); actions[0] = IController.ActionArgs( IController.ActionType.BurnShortOption, address(this), // owner address(this), // address to transfer from oTokenAddress, // oToken address vaultId, // vaultId burnAmount, // amount to burn 0, //index "" //data ); actions[1] = IController.ActionArgs( IController.ActionType.WithdrawCollateral, address(this), // owner address(this), // address to transfer to address(collateralAsset), // withdrawn asset vaultId, // vaultId (vault.collateralAmounts[0] * burnAmount) / vault.shortAmounts[0], // amount 0, //index "" //data ); controller.operate(actions); // returns in collateral decimals return collateralAsset.balanceOf(address(this)) - startCollatBalance; } /** * @notice Close the existing short otoken position. * @param gammaController is the address of the opyn controller contract * @param vaultId is the id of the vault to be settled * @return collateralRedeemed collateral redeemed from the vault * @return collateralLost collateral left behind in vault used to pay ITM expired options * @return shortAmount number of options that were written */ function settle(address gammaController, uint256 vaultId) external returns ( uint256 collateralRedeemed, uint256 collateralLost, uint256 shortAmount ) { IController controller = IController(gammaController); GammaTypes.Vault memory vault = controller.getVault(address(this), vaultId); if (vault.shortOtokens.length == 0) { revert NoShort(); } // An otoken's collateralAsset is the vault's `asset` // So in the context of performing Opyn short operations we call them collateralAsset ERC20 collateralToken = ERC20(vault.collateralAssets[0]); // This is equivalent to doing ERC20(vault.asset).balanceOf(address(this)) uint256 startCollateralBalance = collateralToken.balanceOf(address(this)); // If it is after expiry, we need to settle the short position using the normal way // Delete the vault and withdraw all remaining collateral from the vault IController.ActionArgs[] memory actions = new IController.ActionArgs[](1); actions[0] = IController.ActionArgs( IController.ActionType.SettleVault, address(this), // owner address(this), // address to transfer to address(0), // not used vaultId, // vaultId 0, // not used 0, // not used "" // not used ); controller.operate(actions); uint256 endCollateralBalance = collateralToken.balanceOf(address(this)); // calulate collateral redeemed and lost for collateral management in liquidity pool collateralRedeemed = endCollateralBalance - startCollateralBalance; // returns in collateral decimals, collateralDecimals, e8 return ( collateralRedeemed, vault.collateralAmounts[0] - collateralRedeemed, vault.shortAmounts[0] ); } /** * @notice Exercises an ITM option * @param gammaController is the address of the opyn controller contract * @param marginPool is the address of the opyn margin pool * @param series is the address of the option to redeem * @param amount is the number of oTokens to redeem - passed in as e8 * @return amount of asset received by exercising the option */ function redeem( address gammaController, address marginPool, address series, uint256 amount ) external returns (uint256) { IController controller = IController(gammaController); address collateralAsset = IOtoken(series).collateralAsset(); uint256 startAssetBalance = ERC20(collateralAsset).balanceOf(msg.sender); // If it is after expiry, we need to redeem the profits IController.ActionArgs[] memory actions = new IController.ActionArgs[](1); actions[0] = IController.ActionArgs( IController.ActionType.Redeem, address(0), // not used msg.sender, // address to send profits to series, // address of otoken 0, // not used amount, // otoken balance 0, // not used "" // not used ); SafeTransferLib.safeApprove(ERC20(series), marginPool, amount); controller.operate(actions); uint256 endAssetBalance = ERC20(collateralAsset).balanceOf(msg.sender); // returns in collateral decimals return endAssetBalance - startAssetBalance; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.9; interface IOracle { function getPrice(address _asset) external view returns (uint256); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.9; interface IMarginCalculator { function getNakedMarginRequired( address _underlying, address _strike, address _collateral, uint256 _shortAmount, uint256 _strikePrice, uint256 _underlyingPrice, uint256 _shortExpiryTimestamp, uint256 _collateralDecimals, bool _isPut ) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.4; library GammaTypes { // vault is a struct of 6 arrays that describe a position a user has, a user can have multiple vaults. struct Vault { // addresses of oTokens a user has shorted (i.e. written) against this vault address[] shortOtokens; // addresses of oTokens a user has bought and deposited in this vault // user can be long oTokens without opening a vault (e.g. by buying on a DEX) // generally, long oTokens will be 'deposited' in vaults to act as collateral // in order to write oTokens against (i.e. in spreads) address[] longOtokens; // addresses of other ERC-20s a user has deposited as collateral in this vault address[] collateralAssets; // quantity of oTokens minted/written for each oToken address in shortOtokens uint256[] shortAmounts; // quantity of oTokens owned and held in the vault for each oToken address in longOtokens uint256[] longAmounts; // quantity of ERC-20 deposited as collateral in the vault for each ERC-20 address in collateralAssets uint256[] collateralAmounts; } // vaultLiquidationDetails is a struct of 3 variables that store the series address, short amount liquidated and collateral transferred for // a given liquidation struct VaultLiquidationDetails { address series; uint128 shortAmount; uint128 collateralAmount; } } interface IOtoken { function underlyingAsset() external view returns (address); function strikeAsset() external view returns (address); function collateralAsset() external view returns (address); function strikePrice() external view returns (uint256); function expiryTimestamp() external view returns (uint256); function isPut() external view returns (bool); } interface IOtokenFactory { function getOtoken( address _underlyingAsset, address _strikeAsset, address _collateralAsset, uint256 _strikePrice, uint256 _expiry, bool _isPut ) external view returns (address); function createOtoken( address _underlyingAsset, address _strikeAsset, address _collateralAsset, uint256 _strikePrice, uint256 _expiry, bool _isPut ) external returns (address); function getTargetOtokenAddress( address _underlyingAsset, address _strikeAsset, address _collateralAsset, uint256 _strikePrice, uint256 _expiry, bool _isPut ) external view returns (address); event OtokenCreated( address tokenAddress, address creator, address indexed underlying, address indexed strike, address indexed collateral, uint256 strikePrice, uint256 expiry, bool isPut ); } interface IController { // possible actions that can be performed enum ActionType { OpenVault, MintShortOption, BurnShortOption, DepositLongOption, WithdrawLongOption, DepositCollateral, WithdrawCollateral, SettleVault, Redeem, Call, Liquidate } struct ActionArgs { // type of action that is being performed on the system ActionType actionType; // address of the account owner address owner; // address which we move assets from or to (depending on the action type) address secondAddress; // asset that is to be transfered address asset; // index of the vault that is to be modified (if any) uint256 vaultId; // amount of asset that is to be transfered uint256 amount; // each vault can hold multiple short / long / collateral assets // but we are restricting the scope to only 1 of each in this version // in future versions this would be the index of the short / long / collateral asset that needs to be modified uint256 index; // any other data that needs to be passed in for arbitrary function calls bytes data; } struct RedeemArgs { // address to which we pay out the oToken proceeds address receiver; // oToken that is to be redeemed address otoken; // amount of oTokens that is to be redeemed uint256 amount; } function getPayout(address _otoken, uint256 _amount) external view returns (uint256); function operate(ActionArgs[] calldata _actions) external; function getAccountVaultCounter(address owner) external view returns (uint256); function oracle() external view returns (address); function getVault(address _owner, uint256 _vaultId) external view returns (GammaTypes.Vault memory); function getProceed(address _owner, uint256 _vaultId) external view returns (uint256); function isSettlementAllowed( address _underlying, address _strike, address _collateral, uint256 _expiry ) external view returns (bool); function clearVaultLiquidationDetails(uint256 _vaultId) external; function getVaultLiquidationDetails(address _owner, uint256 _vaultId) external view returns ( address, uint256, uint256 ); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*/////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*/////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*/////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*/////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*/////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*/////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*/////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*/////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.9; import "./interfaces/AggregatorV3Interface.sol"; import "./libraries/AccessControl.sol"; /** * @title Contract used for accessing exchange rates using chainlink price feeds * @dev Interacts with chainlink price feeds and services all contracts in the system for price data. */ contract PriceFeed is AccessControl { ///////////////////////////////////// /// governance settable variables /// ///////////////////////////////////// mapping(address => mapping(address => address)) public priceFeeds; ////////////////////////// /// constant variables /// ////////////////////////// uint8 private constant SCALE_DECIMALS = 18; // seconds since the last price feed update until we deem the data to be stale uint32 private constant STALE_PRICE_DELAY = 3600; constructor(address _authority) AccessControl(IAuthority(_authority)) {} /////////////// /// setters /// /////////////// function addPriceFeed( address underlying, address strike, address feed ) public { _onlyGovernor(); priceFeeds[underlying][strike] = feed; } /////////////////////// /// complex getters /// /////////////////////// function getRate(address underlying, address strike) external view returns (uint256) { address feedAddress = priceFeeds[underlying][strike]; require(feedAddress != address(0), "Price feed does not exist"); AggregatorV3Interface feed = AggregatorV3Interface(feedAddress); (uint80 roundId, int256 rate, , uint256 timestamp, uint80 answeredInRound) = feed .latestRoundData(); require(rate > 0, "ChainLinkPricer: price is lower than 0"); require(timestamp != 0, "ROUND_NOT_COMPLETE"); require(block.timestamp <= timestamp + STALE_PRICE_DELAY, "STALE_PRICE"); require(answeredInRound >= roundId, "STALE_PRICE"); return uint256(rate); } /// @dev get the rate from chainlink and convert it to e18 decimals function getNormalizedRate(address underlying, address strike) external view returns (uint256) { address feedAddress = priceFeeds[underlying][strike]; require(feedAddress != address(0), "Price feed does not exist"); AggregatorV3Interface feed = AggregatorV3Interface(feedAddress); uint8 feedDecimals = feed.decimals(); (uint80 roundId, int256 rate, , uint256 timestamp, uint80 answeredInRound) = feed .latestRoundData(); require(rate > 0, "ChainLinkPricer: price is lower than 0"); require(timestamp != 0, "ROUND_NOT_COMPLETE"); require(block.timestamp <= timestamp + STALE_PRICE_DELAY, "STALE_PRICE"); require(answeredInRound >= roundId, "STALE_PRICE_ROUND"); uint8 difference; if (SCALE_DECIMALS > feedDecimals) { difference = SCALE_DECIMALS - feedDecimals; return uint256(rate) * (10**difference); } difference = feedDecimals - SCALE_DECIMALS; return uint256(rate) / (10**difference); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./libraries/AccessControl.sol"; /** * @title Contract used for storage of important contracts for the liquidity pool */ contract Protocol is AccessControl { //////////////////////// /// static variables /// //////////////////////// address public immutable optionRegistry; ///////////////////////////////////// /// governance settable variables /// ///////////////////////////////////// address public volatilityFeed; address public portfolioValuesFeed; address public accounting; address public priceFeed; constructor( address _optionRegistry, address _priceFeed, address _volatilityFeed, address _portfolioValuesFeed, address _authority ) AccessControl(IAuthority(_authority)) { optionRegistry = _optionRegistry; priceFeed = _priceFeed; volatilityFeed = _volatilityFeed; portfolioValuesFeed = _portfolioValuesFeed; } /////////////// /// setters /// /////////////// function changeVolatilityFeed(address _volFeed) external { _onlyGovernor(); volatilityFeed = _volFeed; } function changePortfolioValuesFeed(address _portfolioValuesFeed) external { _onlyGovernor(); portfolioValuesFeed = _portfolioValuesFeed; } function changeAccounting(address _accounting) external { _onlyGovernor(); accounting= _accounting; } function changePriceFeed(address _priceFeed) external { _onlyGovernor(); priceFeed = _priceFeed; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMathSD59x18.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; import { NormalDist } from "./NormalDist.sol"; /** * @title Library used to calculate an option price using Black Scholes */ library BlackScholes { using PRBMathSD59x18 for int256; using PRBMathSD59x18 for int8; using PRBMathUD60x18 for uint256; uint256 private constant ONE_YEAR_SECONDS = 31557600; uint256 private constant ONE = 1000000000000000000; uint256 private constant TWO = 2000000000000000000; struct Intermediates { uint256 d1Denominator; int256 d1; int256 eToNegRT; } function callOptionPrice( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256) { int256 d2 = d1 - d1Denominator; int256 cdfD1 = NormalDist.cdf(d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(priceCdf >= strikeBy); return uint256(priceCdf - strikeBy); } function callOptionPriceGreeks( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256 quote, int256 delta) { int256 d2 = d1 - d1Denominator; int256 cdfD1 = NormalDist.cdf(d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(priceCdf >= strikeBy); quote = uint256(priceCdf - strikeBy); delta = cdfD1; } function putOptionPriceGreeks( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256 quote, int256 delta) { int256 d2 = d1Denominator - d1; int256 cdfD1 = NormalDist.cdf(-d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(strikeBy >= priceCdf); quote = uint256(strikeBy - priceCdf); delta = -cdfD1; } function putOptionPrice( int256 d1, int256 d1Denominator, int256 price, int256 strike, int256 eToNegRT ) public pure returns (uint256) { int256 d2 = d1Denominator - d1; int256 cdfD1 = NormalDist.cdf(-d1); int256 cdfD2 = NormalDist.cdf(d2); int256 priceCdf = price.mul(cdfD1); int256 strikeBy = strike.mul(eToNegRT).mul(cdfD2); assert(strikeBy >= priceCdf); return uint256(strikeBy - priceCdf); } function getTimeStamp() private view returns (uint256) { return block.timestamp; } function getD1( uint256 price, uint256 strike, uint256 time, uint256 vol, uint256 rfr ) private pure returns (int256 d1, uint256 d1Denominator) { uint256 d1Right = (vol.mul(vol).div(TWO) + rfr).mul(time); int256 d1Left = int256(price.div(strike)).ln(); int256 d1Numerator = d1Left + int256(d1Right); d1Denominator = vol.mul(time.sqrt()); d1 = d1Numerator.div(int256(d1Denominator)); } function getIntermediates( uint256 price, uint256 strike, uint256 time, uint256 vol, uint256 rfr ) private pure returns (Intermediates memory) { (int256 d1, uint256 d1Denominator) = getD1(price, strike, time, vol, rfr); return Intermediates({ d1Denominator: d1Denominator, d1: d1, eToNegRT: (int256(rfr).mul(int256(time)).mul(-int256(ONE))).exp() }); } function blackScholesCalc( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (uint256) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); Intermediates memory i = getIntermediates(price, strike, time, vol, rfr); if (!isPut) { return callOptionPrice( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } else { return putOptionPrice( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } } function blackScholesCalcGreeks( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (uint256 quote, int256 delta) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); Intermediates memory i = getIntermediates(price, strike, time, vol, rfr); if (!isPut) { return callOptionPriceGreeks( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } else { return putOptionPriceGreeks( int256(i.d1), int256(i.d1Denominator), int256(price), int256(strike), i.eToNegRT ); } } function getDelta( uint256 price, uint256 strike, uint256 expiration, uint256 vol, uint256 rfr, bool isPut ) public view returns (int256) { uint256 time = (expiration - getTimeStamp()).div(ONE_YEAR_SECONDS); (int256 d1, ) = getD1(price, strike, time, vol, rfr); if (!isPut) { return NormalDist.cdf(d1); } else { return -NormalDist.cdf(-d1); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.9; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; /// @title Accounting contract to calculate the dhv token value and handle deposit/withdraw mechanics interface IAccounting { struct DepositReceipt { uint128 epoch; uint128 amount; // collateral decimals uint256 unredeemedShares; // e18 } struct WithdrawalReceipt { uint128 epoch; uint128 shares; // e18 } /** * @notice logic for adding liquidity to the options liquidity pool * @param depositor the address making the deposit * @param _amount amount of the collateral asset to deposit * @return depositAmount the amount to deposit from the round * @return unredeemedShares number of shares held in the deposit receipt that havent been redeemed */ function deposit(address depositor, uint256 _amount) external returns (uint256 depositAmount, uint256 unredeemedShares); /** * @notice logic for allowing a user to redeem their shares from a previous epoch * @param redeemer the address making the deposit * @param shares amount of the collateral asset to deposit * @return toRedeem the amount to actually redeem * @return depositReceipt the updated deposit receipt after the redeem has completed */ function redeem(address redeemer, uint256 shares) external returns (uint256 toRedeem, DepositReceipt memory depositReceipt); /** * @notice logic for accounting a user to initiate a withdraw request from the pool * @param withdrawer the address carrying out the withdrawal * @param shares the amount of shares to withdraw for * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function initiateWithdraw(address withdrawer, uint256 shares) external returns (WithdrawalReceipt memory withdrawalReceipt); /** * @notice logic for accounting a user to complete a withdrawal * @param withdrawer the address carrying out the withdrawal * @return withdrawalAmount the amount of collateral to withdraw * @return withdrawalShares the number of shares to withdraw * @return withdrawalReceipt the new withdrawal receipt to pass to the liquidityPool */ function completeWithdraw(address withdrawer) external returns ( uint256 withdrawalAmount, uint256 withdrawalShares, WithdrawalReceipt memory withdrawalReceipt ); /** * @notice execute the next epoch * @param totalSupply the total number of share tokens * @param assets the amount of collateral assets * @param liabilities the amount of liabilities of the pool * @return newPricePerShareDeposit the price per share for deposits * @return newPricePerShareWithdrawal the price per share for withdrawals * @return sharesToMint the number of shares to mint this epoch * @return totalWithdrawAmount the amount of collateral to set aside for partitioning * @return amountNeeded the amount needed to reach the total withdraw amount if collateral balance of lp is insufficient */ function executeEpochCalculation( uint256 totalSupply, uint256 assets, int256 liabilities ) external view returns ( uint256 newPricePerShareDeposit, uint256 newPricePerShareWithdrawal, uint256 sharesToMint, uint256 totalWithdrawAmount, uint256 amountNeeded ); /** * @notice get the number of shares for a given amount * @param _amount the amount to convert to shares - assumed in collateral decimals * @param assetPerShare the amount of assets received per share * @return shares the number of shares based on the amount - assumed in e18 */ function sharesForAmount(uint256 _amount, uint256 assetPerShare) external view returns (uint256 shares); }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; /// @title Reactors to hedge delta using means outside of the option pricing skew. interface IHedgingReactor { /// @notice Execute a strategy to hedge delta exposure /// @param delta The exposure of the liquidity pool that the reactor needs to hedge against /// @return deltaChange The difference in delta exposure as a result of strategy execution function hedgeDelta(int256 delta) external returns (int256); /// @notice Returns the delta exposure of the reactor function getDelta() external view returns (int256 delta); /// @notice Returns the value of the reactor denominated in the liquidity pool asset /// @return value the value of the reactor in the liquidity pool asset function getPoolDenominatedValue() external view returns (uint256 value); /// @notice Withdraw a given asset from the hedging reactor to the calling liquidity pool. /// @param amount The amount to withdraw /// @return the amount actually withdrawn from the reactor denominated in the liquidity pool asset function withdraw(uint256 amount) external returns (uint256); /// @notice Handle events such as collateralisation rebalancing function update() external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.9; import "./libraries/AccessControl.sol"; import "./libraries/CustomErrors.sol"; import "./libraries/SABR.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; /** * @title Contract used as the Dynamic Hedging Vault for storing funds, issuing shares and processing options transactions * @dev Interacts with liquidity pool to feed in volatility data. */ contract VolatilityFeed is AccessControl { using PRBMathSD59x18 for int256; using PRBMathUD60x18 for uint256; ////////////////////////// /// settable variables /// ////////////////////////// // Parameters for the sabr volatility model mapping(uint256 => SABRParams) public sabrParams; // keeper mapping mapping(address => bool) public keeper; // expiry array uint256[] public expiries; ////////////////////////// /// constant variables /// ////////////////////////// // number of seconds in a year used for calculations int256 private constant ONE_YEAR_SECONDS = 31557600; int256 private constant BIPS_SCALE = 1e12; int256 private constant BIPS = 1e6; struct SABRParams { int32 callAlpha; // not bigger or less than an int32 and above 0 int32 callBeta; // greater than 0 and less than or equal to 1 int32 callRho; // between 1 and -1 int32 callVolvol; // not bigger or less than an int32 and above 0 int32 putAlpha; int32 putBeta; int32 putRho; int32 putVolvol; } constructor(address _authority) AccessControl(IAuthority(_authority)) {} /////////////// /// setters /// /////////////// error AlphaError(); error BetaError(); error RhoError(); error VolvolError(); event SabrParamsSet( uint256 indexed _expiry, int32 callAlpha, int32 callBeta, int32 callRho, int32 callVolvol, int32 putAlpha, int32 putBeta, int32 putRho, int32 putVolvol ); /** * @notice set the sabr volatility params * @param _sabrParams set the SABR parameters * @param _expiry the expiry that the SABR parameters represent * @dev only keepers can call this function */ function setSabrParameters(SABRParams memory _sabrParams, uint256 _expiry) external { _isKeeper(); if (_sabrParams.callAlpha <= 0 || _sabrParams.putAlpha <= 0) { revert AlphaError(); } if (_sabrParams.callVolvol <= 0 || _sabrParams.putVolvol <= 0) { revert VolvolError(); } if ( _sabrParams.callBeta <= 0 || _sabrParams.callBeta > BIPS || _sabrParams.putBeta <= 0 || _sabrParams.putBeta > BIPS ) { revert BetaError(); } if ( _sabrParams.callRho <= -BIPS || _sabrParams.callRho >= BIPS || _sabrParams.putRho <= -BIPS || _sabrParams.putRho >= BIPS ) { revert RhoError(); } // if the expiry is not already a registered expiry then add it to the expiry list if(sabrParams[_expiry].callAlpha == 0) { expiries.push(_expiry); } sabrParams[_expiry] = _sabrParams; emit SabrParamsSet( _expiry, _sabrParams.callAlpha, _sabrParams.callBeta, _sabrParams.callRho, _sabrParams.callVolvol, _sabrParams.putAlpha, _sabrParams.putBeta, _sabrParams.putRho, _sabrParams.putVolvol ); } /// @notice update the keepers function setKeeper(address _keeper, bool _auth) external { _onlyGovernor(); keeper[_keeper] = _auth; } /////////////////////// /// complex getters /// /////////////////////// /** * @notice get the current implied volatility from the feed * @param isPut Is the option a call or put? * @param underlyingPrice The underlying price * @param strikePrice The strike price of the option * @param expiration expiration timestamp of option as a PRBMath Float * @return Implied volatility adjusted for volatility surface */ function getImpliedVolatility( bool isPut, uint256 underlyingPrice, uint256 strikePrice, uint256 expiration ) external view returns (uint256) { int256 time = (int256(expiration) - int256(block.timestamp)).div(ONE_YEAR_SECONDS); int256 vol; SABRParams memory sabrParams_ = sabrParams[expiration]; if (sabrParams_.callAlpha == 0) { revert CustomErrors.IVNotFound(); } if (!isPut) { vol = SABR.lognormalVol( int256(strikePrice), int256(underlyingPrice), time, sabrParams_.callAlpha * BIPS_SCALE, sabrParams_.callBeta * BIPS_SCALE, sabrParams_.callRho * BIPS_SCALE, sabrParams_.callVolvol * BIPS_SCALE ); } else { vol = SABR.lognormalVol( int256(strikePrice), int256(underlyingPrice), time, sabrParams_.putAlpha * BIPS_SCALE, sabrParams_.putBeta * BIPS_SCALE, sabrParams_.putRho * BIPS_SCALE, sabrParams_.putVolvol * BIPS_SCALE ); } if (vol <= 0) { revert CustomErrors.IVNotFound(); } return uint256(vol); } /** @notice get the expiry array @return the expiry array */ function getExpiries() external view returns (uint256[] memory) { return expiries; } /// @dev keepers, managers or governors can access function _isKeeper() internal view { if ( !keeper[msg.sender] && msg.sender != authority.governor() && msg.sender != authority.manager() ) { revert CustomErrors.NotKeeper(); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.9; import { Types } from "../libraries/Types.sol"; interface IOptionRegistry { ////////////////////////////////////////////////////// /// access-controlled state changing functionality /// ////////////////////////////////////////////////////// /** * @notice Either retrieves the option token if it already exists, or deploy it * @param optionSeries option series to issue * @return the address of the option */ function issue(Types.OptionSeries memory optionSeries) external returns (address); /** * @notice Open an options contract using collateral from the liquidity pool * @param _series the address of the option token to be created * @param amount the amount of options to deploy * @param collateralAmount the collateral required for the option * @dev only callable by the liquidityPool * @return if the transaction succeeded * @return the amount of collateral taken from the liquidityPool */ function open( address _series, uint256 amount, uint256 collateralAmount ) external returns (bool, uint256); /** * @notice Close an options contract (oToken) before it has expired * @param _series the address of the option token to be burnt * @param amount the amount of options to burn * @dev only callable by the liquidityPool * @return if the transaction succeeded */ function close(address _series, uint256 amount) external returns (bool, uint256); ///////////////////////////////////////////// /// external state changing functionality /// ///////////////////////////////////////////// /** * @notice Settle an options vault * @param _series the address of the option token to be burnt * @return success if the transaction succeeded * @return collatReturned the amount of collateral returned from the vault * @return collatLost the amount of collateral used to pay ITM options on vault settle * @return amountShort number of oTokens that the vault was short * @dev callable by anyone but returns funds to the liquidityPool */ function settle(address _series) external returns ( bool success, uint256 collatReturned, uint256 collatLost, uint256 amountShort ); /////////////////////// /// complex getters /// /////////////////////// /** * @notice Send collateral funds for an option to be minted * @dev series.strike should be scaled by 1e8. * @param series details of the option series * @param amount amount of options to mint * @return amount transferred */ function getCollateral(Types.OptionSeries memory series, uint256 amount) external view returns (uint256); /** * @notice Retrieves the option token if it exists * @param underlying is the address of the underlying asset of the option * @param strikeAsset is the address of the collateral asset of the option * @param expiration is the expiry timestamp of the option * @param isPut the type of option * @param strike is the strike price of the option - 1e18 format * @param collateral is the address of the asset to collateralize the option with * @return the address of the option */ function getOtoken( address underlying, address strikeAsset, uint256 expiration, bool isPut, uint256 strike, address collateral ) external view returns (address); /////////////////////////// /// non-complex getters /// /////////////////////////// function getSeriesInfo(address series) external view returns (Types.OptionSeries memory); function vaultIds(address series) external view returns (uint256); function gammaController() external view returns (address); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.9; import "../libraries/Types.sol"; interface IPortfolioValuesFeed { ///////////////////////////////////////////// /// external state changing functionality /// ///////////////////////////////////////////// /** * @notice Creates a Chainlink request to update portfolio values * data, then multiply by 1000000000000000000 (to remove decimal places from data). * * @return requestId - id of the request */ function requestPortfolioData(address _underlying, address _strike) external returns (bytes32 requestId); function updateStores(Types.OptionSeries memory _optionSeries, int256 _shortExposure, int256 _longExposure, address _seriesAddress) external; /////////////////////////// /// non-complex getters /// /////////////////////////// function getPortfolioValues(address underlying, address strike) external view returns (Types.PortfolioValues memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); // getRoundData and latestRoundData should both raise "No data present" // if they do not have data to report, instead of returning unset values // which could be misinterpreted as actual reported values. function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
// SPDX-License-Identifier: AGPL-3.0 pragma solidity >=0.8.0; interface IAuthority { /* ========== EVENTS ========== */ event GovernorPushed(address indexed from, address indexed to); event GuardianPushed(address indexed to); event ManagerPushed(address indexed from, address indexed to); event GovernorPulled(address indexed from, address indexed to); event GuardianRevoked(address indexed to); event ManagerPulled(address indexed from, address indexed to); /* ========== VIEW ========== */ function governor() external view returns (address); function guardian(address _target) external view returns (bool); function manager() external view returns (address); }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant LOG2_E = 1_442695040888963407; /// @dev Half the SCALE number. int256 internal constant HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev The minimum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev How many trailing decimals can be represented. int256 internal constant SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than MIN_SD59x18. /// /// @param x The number to calculate the absolute value for. /// @param result The absolute value of x. function abs(int256 x) internal pure returns (int256 result) { unchecked { if (x == MIN_SD59x18) { revert PRBMathSD59x18__AbsInputTooSmall(); } result = x < 0 ? -x : x; } } /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number. function avg(int256 x, int256 y) internal pure returns (int256 result) { // The operations can never overflow. unchecked { int256 sum = (x >> 1) + (y >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the // right rounds down to infinity. assembly { result := add(sum, and(or(x, y), 1)) } } else { // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5 // remainder gets truncated twice. result = sum + (x & y & 1); } } } /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number. function ceil(int256 x) internal pure returns (int256 result) { if (x > MAX_WHOLE_SD59x18) { revert PRBMathSD59x18__CeilOverflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x > 0) { result += SCALE; } } } } /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - All from "PRBMath.mulDiv". /// - None of the inputs can be MIN_SD59x18. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from "PRBMath.mulDiv". /// /// @param x The numerator as a signed 59.18-decimal fixed-point number. /// @param y The denominator as a signed 59.18-decimal fixed-point number. /// @param result The quotient as a signed 59.18-decimal fixed-point number. function div(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__DivInputTooSmall(); } // Get hold of the absolute values of x and y. uint256 ax; uint256 ay; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); } // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256. uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__DivOverflow(rAbs); } // Get the signs of x and y. uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result // should be positive. Otherwise, it should be negative. result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (int256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from "exp2". /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59.794705707972522261. if (x < -41_446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathSD59x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^(-x) = 1/2^x. if (x < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (x < -59_794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathSD59x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 192. result = int256(PRBMath.exp2(x192x64)); } } } /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to MIN_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number. function floor(int256 x) internal pure returns (int256 result) { if (x < MIN_WHOLE_SD59x18) { revert PRBMathSD59x18__FloorUnderflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x < 0) { result -= SCALE; } } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number. function frac(int256 x) internal pure returns (int256 result) { unchecked { result = x % SCALE; } } /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE. /// - x must be less than or equal to MAX_SD59x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in signed 59.18-decimal fixed-point representation. function fromInt(int256 x) internal pure returns (int256 result) { unchecked { if (x < MIN_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntUnderflow(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_SD59x18, lest it overflows. /// - x * y cannot be negative. /// /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function gm(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. int256 xy = x * y; if (xy / x != y) { revert PRBMathSD59x18__GmOverflow(x, y); } // The product cannot be negative. if (xy < 0) { revert PRBMathSD59x18__GmNegativeProduct(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = int256(PRBMath.sqrt(uint256(xy))); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as a signed 59.18-decimal fixed-point number. function inv(int256 x) internal pure returns (int256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number. function ln(int256 x) internal pure returns (int256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as a signed 59.18-decimal fixed-point number. function log10(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } default { result := MAX_SD59x18 } } if (result == MAX_SD59x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number. function log2(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } unchecked { // This works because log2(x) = -log2(1/x). int256 sign; if (x >= SCALE) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. assembly { x := div(1000000000000000000000000000000000000, x) } } // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE)); // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1. result = int256(n) * SCALE; // This is y = x * 2^(-n). int256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result * sign; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result *= sign; } } /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal /// fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is /// always 1e18. /// /// Requirements: /// - All from "PRBMath.mulDivFixedPoint". /// - None of the inputs can be MIN_SD59x18 /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// /// @param x The multiplicand as a signed 59.18-decimal fixed-point number. /// @param y The multiplier as a signed 59.18-decimal fixed-point number. /// @return result The product as a signed 59.18-decimal fixed-point number. function mul(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__MulInputTooSmall(); } unchecked { uint256 ax; uint256 ay; ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__MulOverflow(rAbs); } uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } } /// @notice Returns PI as a signed 59.18-decimal fixed-point number. function pi() internal pure returns (int256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// - z cannot be zero. /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number. /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number. /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number. function pow(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { result = y == 0 ? SCALE : int256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from "abs" and "PRBMath.mulDivFixedPoint". /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - All from "PRBMath.mulDivFixedPoint". /// - Assumes 0^0 is 1. /// /// @param x The base as a signed 59.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as a signed 59.18-decimal fixed-point number. function powu(int256 x, uint256 y) internal pure returns (int256 result) { uint256 xAbs = uint256(abs(x)); // Calculate the first iteration of the loop in advance. uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs); } } // The result must fit within the 59.18-decimal fixed-point representation. if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__PowuOverflow(rAbs); } // Is the base negative and the exponent an odd number? bool isNegative = x < 0 && y & 1 == 1; result = isNegative ? -int256(rAbs) : int256(rAbs); } /// @notice Returns 1 as a signed 59.18-decimal fixed-point number. function scale() internal pure returns (int256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative. /// - x must be less than MAX_SD59x18 / SCALE. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as a signed 59.18-decimal fixed-point . function sqrt(int256 x) internal pure returns (int256 result) { unchecked { if (x < 0) { revert PRBMathSD59x18__SqrtNegativeInput(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = int256(PRBMath.sqrt(uint256(x * SCALE))); } } /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The signed 59.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toInt(int256 x) internal pure returns (int256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMathSD59x18.sol"; /** * @title Library used for approximating a normal distribution */ library NormalDist { using PRBMathSD59x18 for int256; int256 private constant ONE = 1000000000000000000; int256 private constant ONE_HALF = 500000000000000000; int256 private constant SQRT_TWO = 1414213562373095048; // z-scores // A1 0.254829592 int256 private constant A1 = 254829592000000000; // A2 -0.284496736 int256 private constant A2 = -284496736000000000; // A3 1.421413741 int256 private constant A3 = 1421413741000000000; // A4 -1.453152027 int256 private constant A4 = -1453152027000000000; // A5 1.061405429 int256 private constant A5 = 1061405429000000000; // P 0.3275911 int256 private constant P = 327591100000000000; function cdf(int256 x) public pure returns (int256) { int256 phiParam = x.div(SQRT_TWO); int256 onePlusPhi = ONE + (phi(phiParam)); return ONE_HALF.mul(onePlusPhi); } function phi(int256 x) public pure returns (int256) { int256 sign = x >= 0 ? ONE : -ONE; int256 abs = x.abs(); // A&S formula 7.1.26 int256 t = ONE.div(ONE + (P.mul(abs))); int256 scoresByT = getScoresFromT(t); int256 eToXs = abs.mul(-ONE).mul(abs).exp(); int256 y = ONE - (scoresByT.mul(eToXs)); return sign.mul(y); } function getScoresFromT(int256 t) public pure returns (int256) { int256 byA5T = A5.mul(t); int256 byA4T = (byA5T + A4).mul(t); int256 byA3T = (byA4T + A3).mul(t); int256 byA2T = (byA3T + A2).mul(t); int256 byA1T = (byA2T + A1).mul(t); return byA1T; } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "prb-math/contracts/PRBMath.sol"; import "prb-math/contracts/PRBMathSD59x18.sol"; library SABR { using PRBMathSD59x18 for int256; int256 private constant eps = 1e11; struct IntermediateVariables { int256 a; int256 b; int256 c; int256 d; int256 v; int256 w; int256 z; int256 k; int256 f; int256 t; } function lognormalVol( int256 k, int256 f, int256 t, int256 alpha, int256 beta, int256 rho, int256 volvol ) internal pure returns (int256 iv) { // Hagan's 2002 SABR lognormal vol expansion. // negative strikes or forwards if (k <= 0 || f <= 0) { return 0; } IntermediateVariables memory vars; vars.k = k; vars.f = f; vars.t = t; if (beta == 1e18) { vars.a = 0; vars.v = 0; vars.w = 0; } else { vars.a = ((1e18 - beta).pow(2e18)).mul(alpha.pow(2e18)).div( int256(24e18).mul(_fkbeta(vars.f, vars.k, beta)) ); vars.v = ((1e18 - beta).pow(2e18)).mul(_logfk(vars.f, vars.k).powu(2)).div(24e18); vars.w = ((1e18 - beta).pow(4e18)).mul(_logfk(vars.f, vars.k).powu(4)).div(1920e18); } vars.b = int256(25e16).mul(rho).mul(beta).mul(volvol).mul(alpha).div( _fkbeta(vars.f, vars.k, beta).sqrt() ); vars.c = (2e18 - int256(3e18).mul(rho.powu(2))).mul(volvol.pow(2e18)).div(24e18); vars.d = _fkbeta(vars.f, vars.k, beta).sqrt(); vars.z = volvol.mul(_fkbeta(vars.f, vars.k, beta).sqrt()).mul(_logfk(vars.f, vars.k)).div(alpha); // if |z| > eps if (vars.z.abs() > eps) { int256 vz = alpha.mul(vars.z).mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div( vars.d.mul(1e18 + vars.v + vars.w).mul(_x(rho, vars.z)) ); return vz; // if |z| <= eps } else { int256 v0 = alpha.mul(1e18 + (vars.a + vars.b + vars.c).mul(vars.t)).div( vars.d.mul(1e18 + vars.v + vars.w) ); return v0; } } function _logfk(int256 f, int256 k) internal pure returns (int256) { return (f.div(k)).ln(); } function _fkbeta( int256 f, int256 k, int256 beta ) internal pure returns (int256) { return (f.mul(k)).pow(1e18 - beta); } function _x(int256 rho, int256 z) internal pure returns (int256) { int256 a = (1e18 - 2 * rho.mul(z) + z.powu(2)).sqrt() + z - rho; int256 b = 1e18 - rho; return (a.div(b)).ln(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": { "contracts/libraries/OpynInteractions.sol": { "OpynInteractions": "0x048603543a0fd41b56b831b80981addb19c1ea30" } } }
[{"inputs":[{"internalType":"address","name":"_collateralAsset","type":"address"},{"internalType":"address","name":"_oTokenFactory","type":"address"},{"internalType":"address","name":"_gammaController","type":"address"},{"internalType":"address","name":"_marginPool","type":"address"},{"internalType":"address","name":"_liquidityPool","type":"address"},{"internalType":"address","name":"_addressBook","type":"address"},{"internalType":"address","name":"_authority","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyExpired","type":"error"},{"inputs":[],"name":"HealthyVault","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidCollateral","type":"error"},{"inputs":[],"name":"InvalidDecimals","type":"error"},{"inputs":[],"name":"NoVault","type":"error"},{"inputs":[],"name":"NonExistentSeries","type":"error"},{"inputs":[],"name":"NotExpired","type":"error"},{"inputs":[],"name":"NotKeeper","type":"error"},{"inputs":[],"name":"NotLiquidityPool","type":"error"},{"inputs":[],"name":"UNAUTHORIZED","type":"error"},{"inputs":[],"name":"VaultExpired","type":"error"},{"inputs":[],"name":"VaultNotLiquidated","type":"error"},{"inputs":[],"name":"WithdrawExceedsLiquidity","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IAuthority","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"OptionTokenCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"series","type":"address"},{"indexed":false,"internalType":"uint256","name":"vaultId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"closedAmount","type":"uint256"}],"name":"OptionsContractClosed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"series","type":"address"},{"indexed":false,"internalType":"uint256","name":"vaultId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"optionsAmount","type":"uint256"}],"name":"OptionsContractOpened","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"series","type":"address"},{"indexed":false,"internalType":"uint256","name":"collateralReturned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"collateralLost","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountLost","type":"uint256"}],"name":"OptionsContractSettled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"series","type":"address"},{"indexed":false,"internalType":"uint256","name":"underlyingAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"strikeAmount","type":"uint256"}],"name":"SeriesRedeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"series","type":"address"},{"indexed":false,"internalType":"uint256","name":"vaultId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountLiquidated","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"collateralLiquidated","type":"uint256"}],"name":"VaultLiquidationRegistered","type":"event"},{"inputs":[],"name":"addressBook","outputs":[{"internalType":"contract AddressBookInterface","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultId","type":"uint256"}],"name":"adjustCollateral","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultId","type":"uint256"}],"name":"adjustCollateralCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract IAuthority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"callLowerHealthFactor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"callUpperHealthFactor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultId","type":"uint256"}],"name":"checkVaultHealth","outputs":[{"internalType":"bool","name":"isBelowMin","type":"bool"},{"internalType":"bool","name":"isAboveMax","type":"bool"},{"internalType":"uint256","name":"healthFactor","type":"uint256"},{"internalType":"uint256","name":"upperHealthFactor","type":"uint256"},{"internalType":"uint256","name":"collatRequired","type":"uint256"},{"internalType":"address","name":"collatAsset","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_series","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"close","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collateralAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"strikePrice","type":"uint256"},{"internalType":"address","name":"collateral","type":"address"}],"name":"formatStrikePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gammaController","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"internalType":"struct Types.OptionSeries","name":"series","type":"tuple"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getCollateral","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"internalType":"struct Types.OptionSeries","name":"_series","type":"tuple"}],"name":"getIssuanceHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"uint256","name":"expiration","type":"uint256"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"uint256","name":"strike","type":"uint256"},{"internalType":"address","name":"collateral","type":"address"}],"name":"getOtoken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"internalType":"struct Types.OptionSeries","name":"_series","type":"tuple"}],"name":"getSeries","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"issuanceHash","type":"bytes32"}],"name":"getSeriesAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"series","type":"address"}],"name":"getSeriesInfo","outputs":[{"components":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"internalType":"struct Types.OptionSeries","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"internalType":"struct Types.OptionSeries","name":"optionSeries","type":"tuple"}],"name":"issue","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"keeper","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_series","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"name":"open","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"putLowerHealthFactor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"putUpperHealthFactor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_series","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultId","type":"uint256"}],"name":"registerLiquidatedVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"seriesInfo","outputs":[{"internalType":"uint64","name":"expiration","type":"uint64"},{"internalType":"uint128","name":"strike","type":"uint128"},{"internalType":"bool","name":"isPut","type":"bool"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"address","name":"strikeAsset","type":"address"},{"internalType":"address","name":"collateral","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IAuthority","name":"_newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_putLower","type":"uint64"},{"internalType":"uint64","name":"_putUpper","type":"uint64"},{"internalType":"uint64","name":"_callLower","type":"uint64"},{"internalType":"uint64","name":"_callUpper","type":"uint64"}],"name":"setHealthThresholds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"bool","name":"_auth","type":"bool"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newLiquidityPool","type":"address"}],"name":"setLiquidityPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_series","type":"address"}],"name":"settle","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vaultCount","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultIds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultId","type":"uint256"}],"name":"wCollatLiquidatedVault","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
610120604052792af80000000000002ee00000000000002af800000000000032c86005553480156200003057600080fd5b5060405162003f5138038062003f518339810160408190526200005391620001c6565b600080546001600160a01b0319166001600160a01b03831690811790915560405190815281907f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150866001600160a01b031660c0816001600160a01b0316815250506012876001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015620000fd57600080fd5b505afa15801562000112573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200013891906200025b565b60ff1611156200015b57604051630692acc560e51b815260040160405180910390fd5b506001600160a01b0394851660805292841660a05290831661010052600480549184166801000000000000000002600160401b600160e01b03199092169190911790551660e0525062000287565b80516001600160a01b0381168114620001c157600080fd5b919050565b600080600080600080600060e0888a031215620001e257600080fd5b620001ed88620001a9565b9650620001fd60208901620001a9565b95506200020d60408901620001a9565b94506200021d60608901620001a9565b93506200022d60808901620001a9565b92506200023d60a08901620001a9565b91506200024d60c08901620001a9565b905092959891949750929550565b6000602082840312156200026e57600080fd5b815160ff811681146200028057600080fd5b9392505050565b60805160a05160c05160e05161010051613bdd620003746000396000818161169401528181611cd40152818161201d0152612a4f01526000818161078a01528181610927015281816109f00152818161224f01526123260152600081816104840152818161148c0152818161158501526129a001526000818161036f01528181610cf201528181610f000152818161166c015281816117c20152818161194b01528181611baa01528181611cac01528181611ff5015281816120ff01528181612764015281816128d601528181612a270152612ca401526000818161084401526111650152613bdd6000f3fe608060405234801561001057600080fd5b50600436106102065760003560e01c806395a2251f1161011a578063c7bc163b116100ad578063dfeddb7e1161007c578063dfeddb7e14610703578063e341c12c1461072c578063e49280cb1461073f578063e8cf860814610752578063f5887cdd1461078557600080fd5b8063c7bc163b146104e6578063c84feaca146105a3578063d1b9e853146105bd578063dac9675b146105d057600080fd5b8063aabaecd6116100e9578063aabaecd61461047f578063b0b96a35146104a6578063b9402079146104c0578063bf7e214f146104d357600080fd5b806395a2251f146103fb5780639b8c8dc21461040e578063a3895ce614610459578063a7c6a1001461046c57600080fd5b80635fb708cf1161019d5780636abf4c5e1161016c5780636abf4c5e1461036a5780637a9e5e4b1461039157806389a86ad3146103a457806389f92871146103ce5780638cbb6511146103e857600080fd5b80635fb708cf146102f557806363009ac314610308578063665a11ca1461031b5780636a256b291461033557600080fd5b80632e79bf42116101d95780632e79bf421461029c57806332c926cb146102af57806341849afc146102c25780634c9a1c61146102e257600080fd5b8063018770201461020b578063164e6ea9146102205780631c19975914610250578063210fc56a14610271575b600080fd5b61021e610219366004613343565b6107ac565b005b600554610233906001600160401b031681565b6040516001600160401b0390911681526020015b60405180910390f35b61026361025e366004613497565b6107e5565b604051908152602001610247565b61028461027f3660046134b3565b610825565b6040516001600160a01b039091168152602001610247565b6102636102aa366004613523565b610922565b61021e6102bd36600461354e565b610c4e565b6102636102d0366004613343565b60026020526000908152604090205481565b61021e6102f03660046135a2565b610ccb565b610284610303366004613497565b6110ac565b61021e6103163660046135a2565b61145f565b60045461028490600160401b90046001600160a01b031681565b610348610343366004613343565b611846565b6040805194151585526020850193909352918301526060820152608001610247565b6102847f000000000000000000000000000000000000000000000000000000000000000081565b61021e61039f366004613343565b611a75565b6103b76103b23660046135bb565b611ad1565b604080519215158352602083019190915201610247565b60055461023390600160401b90046001600160401b031681565b6102846103f6366004613497565b611e0c565b610263610409366004613343565b611e6a565b61042161041c3660046135a2565b6120cc565b604080519615158752941515602087015293850192909252606084015260808301526001600160a01b031660a082015260c001610247565b6102636104673660046135f0565b61265c565b600454610233906001600160401b031681565b6102847f000000000000000000000000000000000000000000000000000000000000000081565b60055461023390600160c01b90046001600160401b031681565b61021e6104ce3660046135a2565b612731565b600054610284906001600160a01b031681565b6105526104f4366004613343565b600160208190526000918252604090912080549181015460028201546003909201546001600160401b03841693600160401b81046001600160801b031693600160c01b90910460ff16926001600160a01b0390811692918116911686565b604080516001600160401b0390971687526001600160801b039095166020870152921515938501939093526001600160a01b03908116606085015291821660808401521660a082015260c001610247565b60055461023390600160801b90046001600160401b031681565b61021e6105cb366004613620565b612942565b6106976105de366004613343565b6040805160c081018252600080825260208201819052918101829052606081018290526080810182905260a0810191909152506001600160a01b03908116600090815260016020818152604092839020835160c08101855281546001600160401b0381168252600160401b81046001600160801b031693820193909352600160c01b90920460ff16151593820193909352908201548316606082015260028201548316608082015260039091015490911660a082015290565b604051610247919081516001600160401b031681526020808301516001600160801b0316908201526040808301511515908201526060808301516001600160a01b039081169183019190915260808084015182169083015260a092830151169181019190915260c00190565b6102846107113660046135a2565b6000908152600360205260409020546001600160a01b031690565b61021e61073a3660046135a2565b612975565b6103b761074d36600461364e565b612ad5565b610775610760366004613343565b60066020526000908152604090205460ff1681565b6040519015158152602001610247565b6102847f000000000000000000000000000000000000000000000000000000000000000081565b6107b4612d86565b600480546001600160a01b03909216600160401b0268010000000000000000600160e01b0319909216919091179055565b600061081f826060015183608001518460a0015185600001516001600160401b0316866040015187602001516001600160801b0316612e3d565b92915050565b60008073048603543a0fd41b56b831b80981addb19c1ea3063f7b98e1b7f0000000000000000000000000000000000000000000000000000000000000000858b8b6108708a8a61265c565b60405160e087901b6001600160e01b03191681526001600160a01b039586166004820152938516602485015291841660448401529092166064820152608481019190915260a4810189905287151560c482015260e40160206040518083038186803b1580156108de57600080fd5b505af41580156108f2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610916919061367a565b98975050505050505050565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663cf28493f6040518163ffffffff1660e01b815260040160206040518083038186803b15801561097e57600080fd5b505afa158015610992573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b6919061367a565b90506000816001600160a01b0316630b0509fb866060015187608001518860a001516402540be400896109e991906136ad565b8a602001517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663833b1fce6040518163ffffffff1660e01b815260040160206040518083038186803b158015610a4757600080fd5b505afa158015610a5b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a7f919061367a565b60608d01516040516341976e0960e01b81526001600160a01b0391821660048201529116906341976e099060240160206040518083038186803b158015610ac557600080fd5b505afa158015610ad9573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610afd91906136cf565b8c600001518d60a001516001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015610b3f57600080fd5b505afa158015610b53573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b7791906136e8565b8e604001516040518a63ffffffff1660e01b8152600401610ba09998979695949392919061370b565b60206040518083038186803b158015610bb857600080fd5b505afa158015610bcc573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bf091906136cf565b905060008560400151610c0e576005546001600160401b0316610c22565b600554600160801b90046001600160401b03165b6001600160401b03169050612710610c3a828461376f565b610c4491906136ad565b9695505050505050565b610c56612d86565b600580546001600160801b0316600160c01b6001600160401b039687160267ffffffffffffffff60801b191617600160801b94861694909402939093176fffffffffffffffffffffffffffffffff1916600160401b9285169290920267ffffffffffffffff1916919091179216919091179055565b610cd3612eae565b60405163d99d13f560e01b8152306004820152602481018290526000907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063d99d13f59060440160006040518083038186803b158015610d3c57600080fd5b505afa158015610d50573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d789190810190613880565b90508060600151600081518110610d9157610d916139a0565b6020026020010151600014610df85760405162461bcd60e51b815260206004820152602260248201527f5661756c74206861732073686f727420706f736974696f6e73205b616d6f756e604482015261745d60f01b60648201526084015b60405180910390fd5b80518051600091908290610e0e57610e0e6139a0565b60200260200101516001600160a01b031614610e765760405162461bcd60e51b815260206004820152602160248201527f5661756c74206861732073686f727420706f736974696f6e73205b746f6b656e6044820152605d60f81b6064820152608401610def565b60008160a00151600081518110610e8f57610e8f6139a0565b602002602001015111610ee45760405162461bcd60e51b815260206004820152601760248201527f5661756c7420686173206e6f20636f6c6c61746572616c0000000000000000006044820152606401610def565b73048603543a0fd41b56b831b80981addb19c1ea3063fd5b6dd57f00000000000000000000000000000000000000000000000000000000000000008360400151600081518110610f3657610f366139a0565b60200260200101518460a00151600081518110610f5557610f556139a0565b6020026020010151866040518563ffffffff1660e01b8152600401610f7d94939291906139b6565b60006040518083038186803b158015610f9557600080fd5b505af4158015610fa9573d6000803e3d6000fd5b50505050600460089054906101000a90046001600160a01b03166001600160a01b0316631e4bc5578260a00151600081518110610fe857610fe86139a0565b602002602001015160016040518363ffffffff1660e01b815260040161101a9291909182521515602082015260400190565b600060405180830381600087803b15801561103457600080fd5b505af1158015611048573d6000803e3d6000fd5b505050506110a88160400151600081518110611066576110666139a0565b6020026020010151600460089054906101000a90046001600160a01b03168360a0015160008151811061109b5761109b6139a0565b6020026020010151613022565b5050565b60006110b66130a1565b4282600001516001600160401b0316116110e35760405163506b27c560e11b815260040160405180910390fd5b600061110083602001516001600160801b03168460a0015161265c565b90506000611138846060015185608001518660a0015187600001516001600160401b03168860400151876001600160801b0316612e3d565b60a08501516060860151608087015187516040808a01519051630e4e99e360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152958616602482015293851660448501529390911660648301526001600160801b03861660848301526001600160401b031660a482015290151560c482015290915060009073048603543a0fd41b56b831b80981addb19c1ea3090630e4e99e39060e40160206040518083038186803b15801561120657600080fd5b505af415801561121a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061123e919061367a565b90506040518060c0016040528086600001516001600160401b03168152602001846001600160801b0316815260200186604001511515815260200186606001516001600160a01b0316815260200186608001516001600160a01b031681526020018660a001516001600160a01b031681525060016000836001600160a01b03166001600160a01b0316815260200190815260200160002060008201518160000160006101000a8154816001600160401b0302191690836001600160401b0316021790555060208201518160000160086101000a8154816001600160801b0302191690836001600160801b0316021790555060408201518160000160186101000a81548160ff02191690831515021790555060608201518160010160006101000a8154816001600160a01b0302191690836001600160a01b0316021790555060808201518160020160006101000a8154816001600160a01b0302191690836001600160a01b0316021790555060a08201518160030160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550905050806003600084815260200190815260200160002060006101000a8154816001600160a01b0302191690836001600160a01b031602179055507ff434a81a703b3b06f1dd290881e157c47d663389196c88db9f57819ec6f6ae9f8160405161144f91906001600160a01b0391909116815260200190565b60405180910390a1949350505050565b611467612eae565b600080600080611476856120cc565b95509550505093509350806001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316146114d2576040516368f7a67560e11b815260040160405180910390fd5b831580156114de575082155b156114fc576040516315fe9b6160e21b815260040160405180910390fd5b83156117235760048054604051631e4bc55760e01b815291820184905260006024830152600160401b90046001600160a01b031690631e4bc55790604401600060405180830381600087803b15801561155457600080fd5b505af1158015611568573d6000803e3d6000fd5b50506004805460405163f8b2cb4f60e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811693820193909352869450600160401b909104909116915063f8b2cb4f9060240160206040518083038186803b1580156115de57600080fd5b505afa1580156115f2573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061161691906136cf565b10156116355760405163b84beb5d60e01b815260040160405180910390fd5b600454611655908290600160401b90046001600160a01b031630856130d3565b6040516347e200ad60e11b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f00000000000000000000000000000000000000000000000000000000000000008116602483015282166044820152606481018390526084810186905273048603543a0fd41b56b831b80981addb19c1ea3090638fc4015a9060a40160006040518083038186803b15801561170657600080fd5b505af415801561171a573d6000803e3d6000fd5b5050505061183f565b821561183f5760048054604051631e4bc55760e01b815291820184905260016024830152600160401b90046001600160a01b031690631e4bc55790604401600060405180830381600087803b15801561177b57600080fd5b505af115801561178f573d6000803e3d6000fd5b505060405163fd5b6dd560e01b815273048603543a0fd41b56b831b80981addb19c1ea30925063fd5b6dd591506117f0907f000000000000000000000000000000000000000000000000000000000000000090859087908b906004016139b6565b60006040518083038186803b15801561180857600080fd5b505af415801561181c573d6000803e3d6000fd5b505060045461183f9250839150600160401b90046001600160a01b031684613022565b5050505050565b6000806000806118546130a1565b6001600160a01b03858116600090815260016020818152604092839020835160c08101855281546001600160401b038116808352600160401b82046001600160801b031694830194909452600160c01b900460ff16151594810194909452918201548416606084015260028201548416608084015260039091015490921660a0820152906118f55760405163117af06360e31b815260040160405180910390fd5b4281600001516001600160401b0316106119225760405163d0404f8560e01b815260040160405180910390fd5b6001600160a01b038681166000908152600260205260408082205490516315afd40960e01b81527f0000000000000000000000000000000000000000000000000000000000000000909316600484015260248301819052918190819073048603543a0fd41b56b831b80981addb19c1ea30906315afd4099060440160606040518083038186803b1580156119b557600080fd5b505af41580156119c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119ed91906139df565b925092509250611a178560a00151600460089054906101000a90046001600160a01b031685613022565b60408051848152602081018490529081018290526001600160a01b038b16907ffd7eb2273d5660864e5ad7b3a1afd8ff16166a5c5fb2fe03c29f9fdbdc8930d49060600160405180910390a260019a92995090975095509350505050565b611a7d612d86565b600080546001600160a01b0319166001600160a01b0383169081179091556040519081527f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9060200160405180910390a150565b600080611adc6130a1565b6001600160a01b03858116600090815260016020818152604092839020835160c08101855281546001600160401b038116808352600160401b82046001600160801b031694830194909452600160c01b900460ff16151594810194909452918201548416606084015260028201548416608084015260039091015490921660a0820152904210611b7f5760405163506b27c560e11b815260040160405180910390fd5b611b8f8160a001513330876130d3565b6001600160a01b0386166000908152600260205260409020547f00000000000000000000000000000000000000000000000000000000000000009080611c9557604051636553690d60e11b81523060048201526001600160a01b0383169063caa6d21a9060240160206040518083038186803b158015611c0e57600080fd5b505afa158015611c22573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c4691906136cf565b611c51906001613a0d565b600480549192506001600160401b03909116906000611c6f83613a25565b91906101000a8154816001600160401b0302191690836001600160401b03160217905550505b604051633718f97560e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f00000000000000000000000000000000000000000000000000000000000000008116602483015289166044820152606481018790526084810182905260a48101889052600160c482015260009073048603543a0fd41b56b831b80981addb19c1ea3090633718f9759060e40160206040518083038186803b158015611d5757600080fd5b505af4158015611d6b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d8f91906136cf565b60408051848152602081018390529192506001600160a01b038b16917f242b1ddd06a984a28045d1a261fcddca274c5f29be7c894def55d7b938d4c7ce910160405180910390a2611de1893383613022565b506001600160a01b038816600090815260026020526040902055506001925083915050935093915050565b600060036000611e4a846060015185608001518660a0015187600001516001600160401b0316886040015189602001516001600160801b0316612e3d565b81526020810191909152604001600020546001600160a01b031692915050565b6001600160a01b038181166000908152600160208181526040808420815160c08101835281546001600160401b038116808352600160401b82046001600160801b031695830195909552600160c01b900460ff16151592810192909252928301548516606082015260028301548516608082015260039092015490931660a08201529091611f0b5760405163117af06360e31b815260040160405180910390fd5b4281600001516001600160401b031610611f385760405163d0404f8560e01b815260040160405180910390fd5b6040516370a0823160e01b81523360048201526000906001600160a01b038516906370a082319060240160206040518083038186803b158015611f7a57600080fd5b505afa158015611f8e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fb291906136cf565b905080611fd257604051631e9acf1760e31b815260040160405180910390fd5b611fde843330846130d3565b6040516302e80dad60e61b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f000000000000000000000000000000000000000000000000000000000000000081166024830152851660448201526064810182905260009073048603543a0fd41b56b831b80981addb19c1ea309063ba036b409060840160206040518083038186803b15801561208b57600080fd5b505af415801561209f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906120c391906136cf565b95945050505050565b60405163d99d13f560e01b8152306004820152602481018290526000908190819081908190819081906001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063d99d13f59060440160006040518083038186803b15801561214157600080fd5b505afa158015612155573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261217d9190810190613880565b9050600060016000836000015160008151811061219c5761219c6139a0565b6020908102919091018101516001600160a01b039081168352828201939093526040918201600020825160c08101845281546001600160401b038116808352600160401b82046001600160801b031694830194909452600160c01b900460ff161515938101939093526001810154841660608401526002810154841660808401526003015490921660a0820152915042111561224b57604051631267999960e31b815260040160405180910390fd5b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663cf28493f6040518163ffffffff1660e01b815260040160206040518083038186803b1580156122a657600080fd5b505afa1580156122ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122de919061367a565b90506000816001600160a01b0316630b0509fb846060015185608001518660a001518860600151600081518110612317576123176139a0565b602002602001015188602001517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663833b1fce6040518163ffffffff1660e01b815260040160206040518083038186803b15801561237d57600080fd5b505afa158015612391573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123b5919061367a565b60608b01516040516341976e0960e01b81526001600160a01b0391821660048201529116906341976e099060240160206040518083038186803b1580156123fb57600080fd5b505afa15801561240f573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061243391906136cf565b8a600001518b60a001516001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b15801561247557600080fd5b505afa158015612489573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124ad91906136e8565b8c604001516040518a63ffffffff1660e01b81526004016124d69998979695949392919061370b565b60206040518083038186803b1580156124ee57600080fd5b505afa158015612502573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061252691906136cf565b905060008460a00151600081518110612541576125416139a0565b60200260200101519050816127108261255a919061376f565b61256491906136ad565b98508360400151612580576005546001600160401b0316612594565b600554600160801b90046001600160401b03165b6001600160401b03169750600084604001516125c257600554600160401b90046001600160401b03166125d6565b600554600160c01b90046001600160401b03165b6001600160401b03169050888a11156126155760019a506127106125fa8a8561376f565b61260491906136ad565b61260e9083613a4c565b9750612646565b808a10156126465760019b508161271061262f8b8661376f565b61263991906136ad565b6126439190613a4c565b97505b8460a00151965050505050505091939550919395565b60008061266e6402540be400856136ad565b90506000836001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156126ab57600080fd5b505afa1580156126bf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906126e391906136e8565b60ff169050600881106126f85750905061081f565b6000612705826008613a4c565b905061271281600a613b47565b61271d82600a613b47565b61272790856136ad565b610c44919061376f565b612739612eae565b60405163f62fc0b360e01b815230600482015260248101829052600090819081906001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063f62fc0b39060440160606040518083038186803b1580156127a657600080fd5b505afa1580156127ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906127de9190613b53565b919450925090506001600160a01b03831661280c5760405163df66968160e01b815260040160405180910390fd5b60408051858152602081018490529081018290526001600160a01b038416907f47aa675faf14c5e3b5da8d235f13812988463fbe9e8d3da67741f8c068e8132d9060600160405180910390a260048054604051631e4bc55760e01b815291820183905260016024830152600160401b90046001600160a01b031690631e4bc55790604401600060405180830381600087803b1580156128aa57600080fd5b505af11580156128be573d6000803e3d6000fd5b5050604051630fb0af3f60e31b8152600481018790527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169250637d8579f89150602401600060405180830381600087803b15801561292457600080fd5b505af1158015612938573d6000803e3d6000fd5b5050505050505050565b61294a612d86565b6001600160a01b03919091166000908152600660205260409020805460ff1916911515919091179055565b61297d61316d565b600080600061298b846120cc565b955095505050509250806001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316146129e6576040516368f7a67560e11b815260040160405180910390fd5b82612a04576040516315fe9b6160e21b815260040160405180910390fd5b612a10813330856130d3565b6040516347e200ad60e11b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f00000000000000000000000000000000000000000000000000000000000000008116602483015282166044820152606481018390526084810185905273048603543a0fd41b56b831b80981addb19c1ea3090638fc4015a9060a40160006040518083038186803b158015612ac157600080fd5b505af4158015612938573d6000803e3d6000fd5b600080612ae06130a1565b6001600160a01b03848116600090815260016020818152604092839020835160c08101855281546001600160401b038116808352600160401b82046001600160801b031694830194909452600160c01b900460ff16151594810194909452918201548416606084015260028201548416608084015260039091015490921660a082015290612b815760405163117af06360e31b815260040160405180910390fd5b4281600001516001600160401b031611612bae5760405163506b27c560e11b815260040160405180910390fd5b6001600160a01b03851660009081526002602052604090205480612be55760405163a1b86ccf60e01b815260040160405180910390fd5b6000612c6486886001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015612c2457600080fd5b505afa158015612c38573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612c5c91906136e8565b60ff166132a8565b9050612c72873330846130d3565b604051633f83640160e21b815260009073048603543a0fd41b56b831b80981addb19c1ea309063fe0d900490612cd2907f0000000000000000000000000000000000000000000000000000000000000000908c90879089906004016139b6565b60206040518083038186803b158015612cea57600080fd5b505af4158015612cfe573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612d2291906136cf565b9050612d338460a001513383613022565b60408051848152602081018490526001600160a01b038a16917f8b307ec2cdec0ea71518d1d82e315a365c5789f3e02e4466b9d886b3474b1793910160405180910390a260019890975095505050505050565b60008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b815260040160206040518083038186803b158015612dd257600080fd5b505afa158015612de6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612e0a919061367a565b6001600160a01b0316336001600160a01b031614612e3b5760405163075fd2b160e01b815260040160405180910390fd5b565b6040516bffffffffffffffffffffffff19606088811b8216602084015287811b8216603484015286901b166048820152605c810184905282151560f81b607c820152607d8101829052600090609d016040516020818303038152906040528051906020012090509695505050505050565b3360009081526006602052604090205460ff16158015612f63575060008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b815260040160206040518083038186803b158015612f1557600080fd5b505afa158015612f29573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612f4d919061367a565b6001600160a01b0316336001600160a01b031614155b8015613004575060008054906101000a90046001600160a01b03166001600160a01b031663481c6a756040518163ffffffff1660e01b815260040160206040518083038186803b158015612fb657600080fd5b505afa158015612fca573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612fee919061367a565b6001600160a01b0316336001600160a01b031614155b15612e3b57604051631ea2564f60e31b815260040160405180910390fd5b600060405163a9059cbb60e01b81526001600160a01b03841660048201528260248201526000806044836000895af191505061305d816132e4565b61309b5760405162461bcd60e51b815260206004820152600f60248201526e1514905394d1915497d19052531151608a1b6044820152606401610def565b50505050565b600454600160401b90046001600160a01b03163314612e3b5760405163f539349760e01b815260040160405180910390fd5b600084905060006040516323b872dd60e01b81526001600160a01b03861660048201526001600160a01b03851660248201528360448201526000806064836000875af1915050613122816132e4565b6131655760405162461bcd60e51b81526020600482015260146024820152731514905394d1915497d19493d357d1905253115160621b6044820152606401610def565b505050505050565b60005460405163794f111b60e11b81523360048201526001600160a01b039091169063f29e22369060240160206040518083038186803b1580156131b057600080fd5b505afa1580156131c4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906131e89190613b8a565b15801561328a575060008054906101000a90046001600160a01b03166001600160a01b0316630c340a246040518163ffffffff1660e01b815260040160206040518083038186803b15801561323c57600080fd5b505afa158015613250573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613274919061367a565b6001600160a01b0316336001600160a01b031614155b15612e3b5760405163075fd2b160e01b815260040160405180910390fd5b600060128211156132b857600080fd5b60006132c5836012613a4c565b90506132d281600a613b47565b6132dc90856136ad565b949350505050565b60003d826132f657806000803e806000fd5b806020811461330e57801561331f5760009250613324565b816000803e60005115159250613324565b600192505b5050919050565b6001600160a01b038116811461334057600080fd5b50565b60006020828403121561335557600080fd5b81356133608161332b565b9392505050565b634e487b7160e01b600052604160045260246000fd5b60405160c081016001600160401b038111828210171561339f5761339f613367565b60405290565b604051601f8201601f191681016001600160401b03811182821017156133cd576133cd613367565b604052919050565b80356001600160401b03811681146133ec57600080fd5b919050565b801515811461334057600080fd5b600060c0828403121561341157600080fd5b61341961337d565b9050613424826133d5565b815260208201356001600160801b038116811461344057600080fd5b60208201526040820135613453816133f1565b604082015260608201356134668161332b565b606082015260808201356134798161332b565b608082015260a082013561348c8161332b565b60a082015292915050565b600060c082840312156134a957600080fd5b61336083836133ff565b60008060008060008060c087890312156134cc57600080fd5b86356134d78161332b565b955060208701356134e78161332b565b94506040870135935060608701356134fe816133f1565b92506080870135915060a08701356135158161332b565b809150509295509295509295565b60008060e0838503121561353657600080fd5b61354084846133ff565b9460c0939093013593505050565b6000806000806080858703121561356457600080fd5b61356d856133d5565b935061357b602086016133d5565b9250613589604086016133d5565b9150613597606086016133d5565b905092959194509250565b6000602082840312156135b457600080fd5b5035919050565b6000806000606084860312156135d057600080fd5b83356135db8161332b565b95602085013595506040909401359392505050565b6000806040838503121561360357600080fd5b8235915060208301356136158161332b565b809150509250929050565b6000806040838503121561363357600080fd5b823561363e8161332b565b91506020830135613615816133f1565b6000806040838503121561366157600080fd5b823561366c8161332b565b946020939093013593505050565b60006020828403121561368c57600080fd5b81516133608161332b565b634e487b7160e01b600052601160045260246000fd5b6000826136ca57634e487b7160e01b600052601260045260246000fd5b500490565b6000602082840312156136e157600080fd5b5051919050565b6000602082840312156136fa57600080fd5b815160ff8116811461336057600080fd5b6001600160a01b03998a168152978916602089015295909716604087015260608601939093526001600160801b0391909116608085015260a08401526001600160401b031660c083015260ff90921660e08201529015156101008201526101200190565b600081600019048311821515161561378957613789613697565b500290565b60006001600160401b038211156137a7576137a7613367565b5060051b60200190565b600082601f8301126137c257600080fd5b815160206137d76137d28361378e565b6133a5565b82815260059290921b840181019181810190868411156137f657600080fd5b8286015b8481101561381a57805161380d8161332b565b83529183019183016137fa565b509695505050505050565b600082601f83011261383657600080fd5b815160206138466137d28361378e565b82815260059290921b8401810191818101908684111561386557600080fd5b8286015b8481101561381a5780518352918301918301613869565b60006020828403121561389257600080fd5b81516001600160401b03808211156138a957600080fd5b9083019060c082860312156138bd57600080fd5b6138c561337d565b8251828111156138d457600080fd5b6138e0878286016137b1565b8252506020830151828111156138f557600080fd5b613901878286016137b1565b60208301525060408301518281111561391957600080fd5b613925878286016137b1565b60408301525060608301518281111561393d57600080fd5b61394987828601613825565b60608301525060808301518281111561396157600080fd5b61396d87828601613825565b60808301525060a08301518281111561398557600080fd5b61399187828601613825565b60a08301525095945050505050565b634e487b7160e01b600052603260045260246000fd5b6001600160a01b0394851681529290931660208301526040820152606081019190915260800190565b6000806000606084860312156139f457600080fd5b8351925060208401519150604084015190509250925092565b60008219821115613a2057613a20613697565b500190565b60006001600160401b0380831681811415613a4257613a42613697565b6001019392505050565b600082821015613a5e57613a5e613697565b500390565b600181815b80851115613a9e578160001904821115613a8457613a84613697565b80851615613a9157918102915b93841c9390800290613a68565b509250929050565b600082613ab55750600161081f565b81613ac25750600061081f565b8160018114613ad85760028114613ae257613afe565b600191505061081f565b60ff841115613af357613af3613697565b50506001821b61081f565b5060208310610133831016604e8410600b8410161715613b21575081810a61081f565b613b2b8383613a63565b8060001904821115613b3f57613b3f613697565b029392505050565b60006133608383613aa6565b600080600060608486031215613b6857600080fd5b8351613b738161332b565b602085015160409095015190969495509392505050565b600060208284031215613b9c57600080fd5b8151613360816133f156fea26469706673582212202653e9aa8a1965c2c41a440146e010c7d9d38e5ed9b7de26e8c54a867c69a20164736f6c63430008090033000000000000000000000000ff970a61a04b1ca14834a43f5de4533ebddb5cc8000000000000000000000000ba1952ecdba02de66fcf73f29068e8cf072644ec000000000000000000000000594bd4ec29f7900ae29549c140ac53b5240d4019000000000000000000000000b9f33349db1d0711d95c1198acba9511b8269626000000000000000000000000a67d0c1180e0e183f482304a9b5436a3478f0674000000000000000000000000ca19f26c52b11186b4b1e76a662a14da5149ea5a0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ff970a61a04b1ca14834a43f5de4533ebddb5cc8000000000000000000000000ba1952ecdba02de66fcf73f29068e8cf072644ec000000000000000000000000594bd4ec29f7900ae29549c140ac53b5240d4019000000000000000000000000b9f33349db1d0711d95c1198acba9511b8269626000000000000000000000000a67d0c1180e0e183f482304a9b5436a3478f0674000000000000000000000000ca19f26c52b11186b4b1e76a662a14da5149ea5a0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
-----Decoded View---------------
Arg [0] : _collateralAsset (address): 0xff970a61a04b1ca14834a43f5de4533ebddb5cc8
Arg [1] : _oTokenFactory (address): 0xba1952ecdba02de66fcf73f29068e8cf072644ec
Arg [2] : _gammaController (address): 0x594bd4ec29f7900ae29549c140ac53b5240d4019
Arg [3] : _marginPool (address): 0xb9f33349db1d0711d95c1198acba9511b8269626
Arg [4] : _liquidityPool (address): 0xa67d0c1180e0e183f482304a9b5436a3478f0674
Arg [5] : _addressBook (address): 0xca19f26c52b11186b4b1e76a662a14da5149ea5a
Arg [6] : _authority (address): 0x0c83e447dc7f4045b8717d5321056d4e9e86dcd2
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 000000000000000000000000ff970a61a04b1ca14834a43f5de4533ebddb5cc8
Arg [1] : 000000000000000000000000ba1952ecdba02de66fcf73f29068e8cf072644ec
Arg [2] : 000000000000000000000000594bd4ec29f7900ae29549c140ac53b5240d4019
Arg [3] : 000000000000000000000000b9f33349db1d0711d95c1198acba9511b8269626
Arg [4] : 000000000000000000000000a67d0c1180e0e183f482304a9b5436a3478f0674
Arg [5] : 000000000000000000000000ca19f26c52b11186b4b1e76a662a14da5149ea5a
Arg [6] : 0000000000000000000000000c83e447dc7f4045b8717d5321056d4e9e86dcd2
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.